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Abstract

Conventional decision forest based methods for image
labelling tasks like object segmentation make predictions
for each variable (pixel) independently [3, 5, 8]. This pre-
vents them from enforcing dependencies between variables
and translates into locally inconsistent pixel labellings.
Random field models, instead, encourage spatial consis-
tency of labels at increased computational expense.

This paper presents a new and efficient forest based
model that achieves spatially consistent semantic image
segmentation by encoding variable dependencies directly
in the feature space the forests operate on. Such corre-
lations are captured via new long-range, soft connectivity
features, computed via generalized geodesic distance trans-
forms. Our model can be thought of as a generalization
of the successful Semantic Texton Forest, Auto-Context, and
Entangled Forest models. A second contribution is to show
the connection between the typical Conditional Random
Field (CRF) energy and the forest training objective. This
analysis yields a new objective for training decision forests
that encourages more accurate structured prediction.

Our GeoF model is validated quantitatively on the task
of semantic image segmentation, on four challenging and
very diverse image datasets. GeoF outperforms both state-
of-the-art forest models and the conventional pairwise CRF.

1. Introduction

Many problems in computer vision can be formulated

in terms of structured output prediction. Here, the term

‘structured’ relates to the presence of dependencies be-

tween output variables. For instance, in image labelling

problems such as object segmentation or image denoising,

the variables associated with neighboring pixels are more

likely to take the same labels. In recent years, decision

forests [3, 5, 8] have become very popular for the solu-

tion of a wide variety of image labelling problems - from

anatomy delineation in 3D medical images [17] and seman-

tic segmentation in natural images [24, 25] to human pose

estimation for the Microsoft Kinect sensor [23].

The success of forest models is largely due to: their scal-

ability to large amount of data, ability to learn long-range

dependencies between features and output variables, rela-

tive robustness to overfitting, and finally, efficient predic-

tions. The last of these qualities is derived from the in-

dependence assumption made by these methods. In fact,

conventional decision forests ignore the structure in output

spaces and make predictions for each output variable inde-

pendently. This assumption prevents them from enforcing

dependencies between variables, and for semantic segmen-

tation tasks, translates into pixel labellings that do not fol-

low object boundaries and are inconsistent with context.

To overcome these problems, Markov or Conditional

random fields (MRF/CRF) [4] are used as a post-processing

step [19, 25]. For instance, in [10, 25] image segmentation

is achieved by first computing pixel-wise unaries via super-

vised classification, and then smoothing the labels with a

CRF. The more recent works in [11, 19] essentially present

a CRF model, where the pairwise potentials (and not just the

unaries) are conditioned on the data and predicted via a sin-
gle tree. Another way of mixing trees and fields is presented

in [20], where again, the underlying model is a CRF. In

the forest approach in [13], spatial smoothness is achieved

by combining structured class-labels that are learned by in-

corporating joint statistics in a small neighborhood. Al-

though all the above approaches lead to improved results,

this comes at the cost of increased computation at test time.

The main contribution of this paper is a new and efficient

forest-based model for structured output prediction. Our

framework overcomes the above-mentioned problem by in-

corporating learned spatial context directly within the forest

itself. This leads to smooth, pixel-wise labellings without

the need for field-based post-processing. Long-range corre-

lations between pixel labels are captured via new soft con-
nectivity features which can be computed efficiently using

generalized geodesic distance transforms. Another contri-

bution is to analyse the relationship between a typical CRF-

like energy and the forest training objective. This analysis

leads to a new objective for training decision forests that

produces more accurate semantic segmentation.

We validate our model on the task of segmenting four

challenging and very diverse image datasets: face images,
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medical scans, depth images and driving videos. Quantita-

tive results demonstrate the superiority of our model both

in terms of accuracy and efficiency, with respect to state-of-

the-art forest models and grid-based pairwise CRFs.

In the literature. Our work is related to methods based

on sequential classification. The recent work on auto-

context [24, 26], stacking [18, 28], deep learning [14, 15]

and entanglement [17] has shown how a sequence of clas-

sifiers using the output of the previous classifier as in-

put to the next can both effectively capture spatial context

(e.g. learning that the heart is between the lungs) and im-

prove accuracy. In [9], the relationship between anytime

classification and intermediate predictions within decision

trees is shown. In [21] the authors reinterpret conventional

message-passing inference on graphical models as a se-

quential probabilistic inference algorithm.

Our geodesic forest model (GeoF) can be seen as a gen-

eralization of semantic texton forests [24], auto-context [24,

26], and entanglement forests [17]. In fact, GeoF builds

upon these models by using: (i) new, long-range soft con-
nectivity features, and (ii) a new field-inspired objective for

forest training. The combination of those novel features

and objective function encourage GeoF to produce context-

consistent, spatially-smooth semantic image segmentation.

2. Background and Problem Formulation
In this work, an image1 is denoted J : Ω ⊂ N

2 → R,

and a 2D pixel position is denoted p ∈ Ω. We cast the se-

mantic segmentation task as that of associating each pixel

p with its corresponding discrete class label c ∈ C. It is

a typical, supervised classification task, where we assume

provided a set of labelled training images {J} and their seg-

mentations. A vector of feature responses at position p is

denoted v(p) = (v1, . . . , vi, . . . vm) ∈ R
m. A set of train-

ing data points (and associated labels) is denoted S = {zi},
with each training point-class pair being z = (v, c). Let

c = {cp|p ∈ Ω} denote the vector of class variables pre-

dicted by our classifier on the entire image. We use cd to

denote predictions obtained at depth d in the tree. D de-

notes the maximum tree depth and T the number of trees.

Random field models. Given an image J , its most probable

labelling can be inferred by maximizing the posterior:

c∗ = argmax
c
p(c|J) = argmax

c
p(J |c)p(c) (1)

The conventional pairwise random field models assume that

the posterior distribution factorizes into a product of unary

and pairwise potential functions as:

p(c|J) =
∏

p

ψ (cp,v(p))
∏

(p,q)∈N
φ (cp, cq,v(p),v(q)) (2)

1For simplicity the notation refers to single-banded images. The exten-

sion to multi-channel images is straightforward.

Figure 1. Training a split node j of a tree. Our model training

seeks parameters θj which aim to maximize both the class purity

and spatial compactnes of pixel clusters in child nodes.

where the setN of pixel pairs describes a pre-defined neigh-

bourhood system. Although this factorization assumption

makes inference of the Maximum a Posteriori (MAP) so-

lution for many models tractable, it severely limits the ex-

pressive power of the model. Furthermore, inference and

learning are computationally expensive.

Decision forest models. Decision forests [3, 5, 8] further

assume that the posterior decomposes over individual vari-

ables as: p(c|J) = ∏
p ψ (cp,v(p)). Ignoring the depen-

dency between output variables makes predictions indepen-

dent and efficient.

Forest prediction. To make predictions, a series of feature

tests starting at the root node are applied to each pixel inde-

pendently. At each node a test is computed on the feature

response v(p) and, depending on the results, the pixel is

sent to the left or right child. The procedure is repeated

until the pixel reaches a leaf node. At this point the empiri-

cal class distribution ψ(cp,v(p)) associated with the leaf is

read off. The MAP label for the pixel is obtained as:

c∗p = argmax
cp

ψ(cp,v(p)). (3)

Forest training. Training involves: (i) selecting the feature

tests at each split node of each tree, and (ii) estimating the

distribution ψ(cp,v(p)) associated with each leaf. Typi-

cally, a decision tree is trained greedily, where for each split

node j the parameters θj associated with a low energy (e.g.

low class entropy) in the child nodes are selected. Figure 1

illustrates this point and suggests that ideally we would like

training to maximize class purity as well as encouraging

spatial compactness of the resulting pixel clusters.

Coupling forest predictions to reveal hidden correla-
tions. Although the independence assumption enables ef-

ficient training and rapid predictions with random forests,

it prevents the model from enforcing dependencies between

variables, and for image segmentation problems, translates

into pixel labellings that do not follow object boundaries

and are not consistent with local or global context. In this

paper, we overcome this problem and encourage forests
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to produce spatially compact/coherent pixel labellings. In

what follows, we will show how a learned model of spa-

tial context can be encoded within a decision forest directly.

This leads to smooth, pixel-wise image labellings without

the need for additional post-processing.

One of the key theoretical insights of our work is the

observation that although forests make predictions for each

variable independently, these predictions are related due to

correlations at the feature level. For instance, in the seman-

tic image segmentation task consider the class predictions

of two pixels p and q. From (3) we can see that the MAP la-

bels c∗p and c∗q are functions of the input features responses

v(p) and v(q) i.e. c∗p = f(v(p)) and c∗q = f(v(q)).
Therefore, output-variable dependencies can be encoded in

the features that the forest operates on. We exploit this in-

sight to couple forest predictions in two ways: (i) we enable

long-range geodesic features for soft connectivity between

image regions; (ii) we train entangled classification forests,

where geodesically smoothed, intermediate class posteriors

estimated at higher levels in each tree are used as features

in the training of the tree lower levels. We describe details

of these two contributions in the next two sections.

3. Long-range, soft connectivity features
The need for long-range connectivity features. In [16,

23, 27] the authors have shown how simple pixel compar-

ison features can be effective in classification tasks when

used within a decision forest. Such features are extremely

fast to compute (they involve just pixel-wise read-outs), but

not very expressive. This is illustrated in Fig. 2 where we

compare pair-wise intensity difference features with an al-

ternative feature response based on the cost of the shortest

path connecting the two points. Intuitively, path-based fea-

tures should better capture connectivity between points. In

turn, this could be used within a supervised segmentation

algorithm to decide whether two points should be assigned

the same class label or not. For example, the points r3 and

p3 have identical intensity values. However, one is in the

lungs and the other in the air outside the body. Since the

shortest path connecting them has a high geodesic length

(it cuts through high image gradients, see definition in (4)),

this provides a hint that the two points may not be part of

the same object/class. Similarly, the points r2 and p2, de-

spite being far from each other in Euclidean terms, they are

close in geodesic terms. This provides evidence that they

may belong to the same object (the aorta in this case).

The problem. In theory using pixel-pair geodesic path

lengths within a supervised classifier could enable edge-

aware label smoothing, similar to CRFs. However, these

features need to be available at test time, for any pair of

pixels. But computing any-pair shortest paths within an im-

age on the fly is infeasible. We circumvent this problem

by proposing a novel set of visual features which are com-

Figure 2. Connectivity features. A 2D frontal slice through a 3D

computed tomography scan. (a) Given a pixel pair (a reference

and a probe pixel) popular features only look at the intensities at

the two pixel positions, and ignore what happens in between. (b)
In contrast, the length of the shortest path connecting the pixel pair

carries richer information. The geodesic length of the shortest path

connecting two points provides hints about the points belonging

(or not) to the same object class (e.g. the aorta in the figure).

putationally efficient and yet manage to capture the degree

of connectivity between probabilistically defined image re-
gions. They are based on the use of generalized geodesic

distances, as introduced in [7] and summarized next.

Generalized geodesic distances. Given a grey-valued im-

age J , and a real-valued object “soft mask” (that encodes

pixel likelihood) M(p) : Ω ∈ N
d → [0, 1] the generalized

geodesic distance Q is defined as follows:

Q(p;M,∇J) = min
p′∈Ω

(δ(p,p′) + νM(p′)) (4)

with the geodesic distance between two points p and q:

δ(p,q) = inf
Γ∈Pp,q

∫ l(Γ)

0

√
1 + γ2(∇J(s) · Γ′(s))2ds.

(5)

where Γ is a path connecting the two points and Pp,q is the

set of all possible paths. Thus (4) defines the distance of

any point in the image from a region in the image defined

via the “soft belief” M .

Soft connectivity between a pixel and a class region. Let

us assume that we have an image J and also the belief ma-

trixM associated with a chosen class. Now we can compute

the distance of every point in the image from the given class

region. Note that the class region is defined in a probabilis-

tic way and we do not need to select hard seed positions.

Also, the belief M could be the output of any given prob-

abilistic classifier2. We can think of having C such masks

and thusC such distances associated with each input image.

Figure 3 shows an illustration. Given a depth image

(e.g. acquired with Kinect), we assume we have a classi-

2For example, the map M could be defined as 1 − p, with p the prob-

ability of a pixel belonging to a given object class (In [7] M ∼ 0 when

p ∼ 1).
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Figure 3. Generalized geodesic distances from probabilistic
class regions. (a) Ground truth body part labels for a depth image.

(b, c) Approximate class probability maps p(c|v); assumed given

here. (b’, c’) Geodesic-filtered probability maps g(c|v). Notice

how g may be interpreted as an edge-aware, diffused version of the

noisier probabilities p (see definition in (6)). The visual features

used in GeoF are pixel read-outs of the g maps. They efficiently

capture long-range connectivity (of a pixel to a class region).

fier which when evaluated on an image produces the class

probabilities p(c = torso) and p(c = left leg). We can use

those probabilities to construct the soft masksM needed for

the generalized geodesic distance transform, and the cor-

responding filtered probabilities will be g(c = torso) and

g(c = left leg). The g maps (definition in (6)) are an edge-

aware, smoothed version of the class probabilities p. Con-

trast sensitivity is modulated by the geodesic strength pa-

rameter γ ≥ 0 in (5). Next we incorporate geodesic dis-

tances as connectivity features within a classification forest.

4. Entangled geodesic forests
Here we are interested in extremely efficient semantic

segmentation. Thus, we build upon decision forests [3, 5,

8], because of their speed and flexibility. Next we describe

our extension to enable coherent segmentation.

4.1. Entangled soft connectivity features

As illustrated in Fig. 4 in the spirit of entangled

forests [17] we train all trees: (i) in parallel, (ii) in breadth-

first order, and (iii) in sections. When training the first sec-

tion (section 0) only appearance-based features (e.g. raw

intensities) are available. However, when training the next

section more derived features become available. In fact,

the class posteriors p(c|v) of the previous section may be

used as input features to the next [17]. In this paper we

further augment such features by using the geodesically fil-

tered versions of those posteriors, g(c|v).
More formally, we are given an ordered set of sections

(s0, s1, . . . , D), where si indicates the maximum depth of

the ith section and D is the maximum tree depth. Given a

class posterior psi(c|v) computed at the ith section (with

i > 0), its geodesically smoothed version is defined as

gsi (c|v(p)) =
1

W
psi(c|v(p)) e−

Q(p;psi
(c|v(Ω)),∇J)2

σ2 (6)

Figure 4. An entangled geodesic forest. A forest with three en-

tangled trees. The trees are entangled because intermediate pre-

dictions of their top section are used (together with raw intensity

features) as features for training of the lower sections. Only one

entanglement section is shown here, for clarity.

where W is a normalization factor to ensure probabilistic

normalization:
∑

c gsi(c|v) = 1. Q(·) is defined in (4). As

shown in Fig. 3, this operation has the effect of diffusing the

class probabilities spatially, while preserving strong edges.

Feature responses for a reference pixel r are defined as a

function of tree depth d, and as sum, differences or abso-

lute differences between two pixel probe values in different

feature channels3, i.e.

vdi (r) = F d
k (p1) + F d

k (p2),

vdi (r) = F d
k (p1)− F d

k (p2), or

vdi (r) = |F d
k (p1)− F d

k (p2)|

where k ∈ {0, 1, 2} denotes the channel where features are

computed, and: (i) F d
0 (p) = J(p), i.e. the raw image inten-

sities, (ii) F d
1 (p) = ps(d)(c|(p)), i.e. the intermediate class

posteriors computed in the section s(d) defined by the depth

d, and (iii) F d
2 (p) = gs(d)(c|(p)), i.e. the geodesic-filtered

posteriors, capturing connectivity of point p to the region

of class c. The entangled feature channels (k = 1, 2) are

available only for section s1 and greater, and are computed

very efficiently as table look-ups.

4.2. Field-inspired forest training objective

This section describes our second contribution: the use

of a new objective for the forest training procedure. In what

follows we depart from the traditional information-theoretic

training objective, typically used in classification forests,

and derive a random-field inspired objective function.

Information-theory based objective (I). Most algorithms

for training classification forests are greedy and find

the optimal parameters for a split node j as θj =
argminθ E(Sj ,θ) (Fig. 1). The traditional choice for the

3Here the term “feature channel” indicates both the original image

bands (e.g. three bands for color images) as well as derived bands where

features are computed (e.g. gradients or intermediate class probabilities).
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objective function E is the Shannon entropy EIT, which af-

ter some algebraic manipulation reduces to

EIT(Sj ,θ) = −
∑

i∈{L,R}

∑
c∈C

n(c,Si
j) log

n(c,Si
j)

|Si
j |

(7)

with n(c,S) denoting the number of training pixels of class

c in the training subset S (please refer to Fig. 1 for notation).

Field-inspired objective (I). Similarly, we can think of

training each tree split node by using an MRF energy E =
ERF, which is typically defined as

ERF(Sj ,θ) =
∑

i∈{L,R}

⎛
⎜⎝

∑

zk∈Si
j

ψ(zk;Si
j) + λ

∑

zk∈Si
j ,r∈N (zk)

φ(zk, r)

⎞
⎟⎠

with N (zk) denoting a local neighborhood of the point zk.

As unary potentials we choose the commonly used log-loss

ψ(z;S) = − log p(c = c(z)|S). If we ignore the pairwise

term (by setting λ = 0) we get

ERF(Sj ,θ) = −
∑

i∈{L,R}

∑
c∈C

n(c,Si
j) log

n(c,Si
j)

|Si
j |

. (8)

So, we discover that under the above assumptions, (8) and

(7) are identical. Thus, conventional entropy-based tree

training corresponds exactly to minimizing an MRF-like en-

ergy which uses the log-loss as unary and no pairwise term4.

Further interesting findings arise when we consider the ef-

fect of having unbalanced classes in the training set.

4.2.1 Correcting class imbalance

In general, in the original training set S0 we have

n(c1,S0) �= n(c2,S0), c1, c2 ∈ C. So it is often benefi-

cial to re-balance the effect of different classes (as shown

e.g. in [24]). This is particularly important in the context of

semantic segmentation, where often the pixels in the back-

ground class are much more numerous than those in other

classes. Thus we define the following global re-balancing

factors: ωc =
∑

k∈C n(k,S0)

n(c,S0)
and the corresponding node-

based normalization factor Z(Sj) =
∑

k∈C ωk n(k,Sj).
Information-based objective (II). Now, after some alge-

braic manipulation the energy in (7) becomes

EIT(Sj ,θ) = −
∑

i∈{L,R}

∑
c∈C

wc n(c,Si
j) log

wcn(c,Si
j)

Z(Si
j)

.

(9)

Field-inspired objective (II). Analogously, the class-

rebalanced field unary in (8) becomes

ERF(Sj ,θ) = −
∑

i∈{L,R}
Z(Si

j)
∑
c∈C

n(c,Si
j) log

wcn(c,Si
j)

Z(Si
j)

.

(10)

4We will discuss the effect of removing the pair-wise interactions later.

Thus, after class re-balancing, the entropy-based en-

ergy in (9) and the field unary in (10) are no longer the

same. Quantitative comparisons in the next section will

show which training objective produces the most accurate

results. Also, as discussed later, the use of connectivity fea-

tures negates the need for a pair-wise term rich energy.

5. Results and Comparisons
We validate our semantic segmentation approach on

four, very diverse labelled image datasets.

LFW: Labelled Faces in the Wild. This is an augmented

version of the public dataset in [1], where we have manually

segmented a subset of 1250 images into the following 8 cat-

egories: background, nose, mouth, L/R eye, L/R eyebrow

and lower face. The contained faces exhibit strong varia-

tions in pose and appearance. Furthermore, the mouth and

eyes show considerable articulation.

CT: Computed Tomography. We tested our algorithm

also against a new dataset of medical images. It comprises

2D coronal slices taken at random positions within labelled,

3D CT scans. As ground truth, different anatomical enti-

ties have been segmented in 3D, using an interactive seg-

mentation tool. We have the following 9 classes: back-

ground (BG), heart (HR), liver (LI), spleen (SP), left/right

lung (LL/RL), left/right kidney (LK/RK) and aorta (AO).

KinBG: depth images. This is a new dataset, similar to the

body-part Kinect dataset in [23], with the difference that

the retargeted mocap characters have been inserted within a

Kinect acquired, real background scene. We have 12 body

parts (L/R head side, neck, torso, L/R arm, L/R hand, L/R

leg, L/R foot) and 3 background classes. In fact, in contrast

to [23], we do not assume a given FG/BG separation, and

the background is subdivided into: floor, back wall and ev-

erything else. This yields a total of 15 classes.

CamVid: video dataset. This road scene video dataset

was initially introduced in [6]. A subset of 711 image

frames are almost entirely segmented into 32 classes. In

our setup, we followed the training/test protocol as in recent

work [6, 13, 29] and used the following 11 object classes:

road, building, sky, tree, sidewalk, car, column-pole, sign-

symbol, fence, pedestrian and bicyclist.

Comparisons with related methods. We provide com-

parisons with various state-of-the-art forest-based ap-

proaches [13, 17, 29]. We also compare against ap-

proaches using forest-based unaries followed by CRF

smoothing [12]. In the latter, as energy model, we used a

log-loss as unary term and a contrast-sensitive Potts model

as pairwise term. Additionally, we also implemented an

auto-context [26] version of classification forests where: A

first forest is trained using raw intensity features; Then, a

second forest is trained using both raw intensities and the

probabilities from the first forest as features. Both entan-

gled geodesic features and un-entangled class posteriors are
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Figure 5. The effect of geodesic entanglement on spatial coherence of the output semantic segmentation. (a, g, j) Input test images,

from the LFW, KinBG and CT datasets, respectively. (b, h, k) Ground truth labels (different colors for different classes). (c) Segmentation

results from conventional pixel-wise classification forest. The lack of spatial smoothing produces noisy labeling. Notice also the overly

large eye/eyebrow segments. (d) Results from forest with probability entanglement. Entangling the p feature channels only helps spatial

coherence of the output. (e) Results from forest with geodesic entanglement. Enabling the long-range geodesic feature channels g helps

spatial coherence further. The spurious hand region is gone. (f, i, l) Results from forest with geodesic entanglement and field-inspired

energy term. Using our field-inspired energy term helps further still. e.g. notice the better recovered eyebrow shape in (f).

considered here. A fair comparison is ensured by training

all forest-based algorithms to the same number of nodes.

All baseline algorithms have been individually optimized

so as to yield the highest Jaccard scores.

Qualitative results. Fig. 5 shows qualitative results on

three datasets. The combination of entangled geodesic fea-

tures and log-loss training produces coherent segmentations

without the need for field-based post-processing.

Quantitative results are summarized in Table 5 where we

compare the accuracy of various segmentation algorithms in

terms of their Jaccard score (as adopted also in [2]). For all

forest based algorithms we fix T = 10 and D = 20, except

for the CamVid dataset where we use a maximum depth

D = 17 since the number of training samples is consid-

erably smaller. We also report runtimes for similarly non-

optimized C# implementations. However, decision forests

are well-suited for GPU implementations [22].

Labelled Faces in the Wild. The baseline forest (01)

yields a mean Jaccard score of only 38.1% as it pro-

duces noisy segmentations and overly bold segments for the

smaller objects such as the eyebrows (see Fig. 5 (c)). CRF-

based post-processing (02) boosts the score to 45.2%, still

lower than what our implemented auto-context forest (03)

and our proposed geodesic forests achieve (07-16). Both

the use of entangled geodesic features and the field-inspired

energy help achieve the highest accuracy in this dataset. As

shown in fig. 5f, GeoF better delineates small structures.

Figure 6 plots the testing accuracy of algorithms (01,08,14
and 16) as a function of the tree depth. Entangled geodesic

forests using either of the two energy models (14,16) work

better than the conventional forest (01). Using the field-

inspired energy (16) works better than the conventional

information gain (14). Using two entanglement sections
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Figure 6. Accuracy as a function of tree depth D, for different

forest variants, evaluated on the LFW face dataset.

works better than a single one on this data. Our auto-context

geodesic forest (08) does well, but the second forest does

not seem to yield much additional improvement.

In terms of runtime, the standard forest + CRF (02) takes

∼ 0.71s (per frame) vs. ∼ 0.42s for a single-section entan-

gled geodesic forest. Also, forest-based inference is simpler

and more easily parallelizable than using graph-cut algo-

rithms for inference on CRFs.

CT scans. Starting with baseline scores of 53.2% (01) and

68.3% (02) we find again that providing entangled geodesic

features improves on all our compared methods. The auto-

context forest performs well here too, even without these

additional features. However, the best results are achieved
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with one or two sections of entanglement in geodesic forests

(12, 16). The CRF approach (02) takes∼ 1.2s per frame

while geodesic forests (12) need ∼ 0.72s.

KinBG depth images. In this dataset the best results are

achieved by our auto-context geodesic forests (07, 08)

which yield strong improvements over the baseline (+ 6.8%
over (01), + 3.9% over (02)). However, using auto-

context forest variants (e.g. 03, 07, 08) results in higher

runtimes as two forests need to be evaluated (resulting in

∼ 1.39s/frame). The CRF approach (02) takes ∼ 1.35s

per frame while entangled geodesic forests are much faster

(∼ 0.64s/frame). In contrast to [23], here we achieve si-

multaneous body parts and background labeling without the

need for a preliminary background removal stage.

CamVid videos. For this dataset we have followed the ex-

perimental setup described in [13], providing Lab raw chan-

nel intensities, first and second order image gradients and

HOG-like features. The baseline result for (01) is 33.3%
which we are able to considerably outperform with all our

geodesic forest variants. The best performing geodesic for-

est (16) improves over the recent work in [13] (+2.1%)

and [29] (+8.7%). The highest score is obtained by the

CRF (02) (41.7%), but at the expense of twice the runtime:

∼ 1.07s/frame for (02) ∼ 0.56s/frame for geodesic forests.

Smoother energy models? In further experiments we have

tried training forests by adding pairwise terms or other

global smoothness terms in the energy (10), but without

consistently improving the accuracy further. These results

suggest that perhaps our long-range connectivity features

already do a sufficient job at capturing spatial smoothness.

Capturing semantic context via entangled geodesic fea-
tures. Figure 7 illustrates how GeoF captures long-range

semantic context on the CT dataset. For a reference pixel of

a given class (e.g. liver) the elements of each matrix indicate

the frequency of classes in the two automatically selected

probes (probe 1 in the rows and probe 2 in the columns).

For example, in Fig. 7a we see that at depth 10 (after one

level of entanglement) when the reference pixel is in the

liver, the two probes tend to be selected (during training)

to also be in the liver. This encourages local context and

label smoothing; and can be thought of as a generaliza-

tion of MRFs where the discriminative cliques are learned

automatically, rather than being manually predefined. For

deeper trees we start to see the effect of longer-range se-

mantic context. For example, in Fig. 7b the probes tend to

be selected frequently also in the heart and right lung re-

gions. This indeed makes sense when the goal is to identify

liver pixels. Similar reasoning applies to other classes (e.g.

see Fig. 7a’,b’,c’ for pixels in the left kidney).

6. Conclusion
This paper has presented a new forest-based model for

structured-output learning, applied to the task of semantic
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Figure 7. Class co-occurrence matrices for the feature probe
pixels. (a, b, c) The reference point is in the liver. (a’, b’, c’) The

reference point is in the left kidney. Co-occurrence matrices are

shown for three different tree depths: D = 10, D = 13, D = 17.

In this dataset (CT) classes are: background (BG), heart (HR),

liver (LI), spleen (SP), l./r. lung(LL/RL), l./r. kidney (LK/RK) and

aorta (AO). This figure demonstrates capturing semantic context.

e.g. in b’ when trying to identify the left kidney it helps to use

probes either in the spleen region (just above the left kidney) or in

the left kidney itself (encouraging local smoothness).

image segmentation. Our model encourages spatial smooth-

ness and long-range, semantic context within the forest it-

self, via the use of new, soft connectivity features which

build upon entangled, generalized geodesic distances. In

addition, the paper shows how training forests by minimiz-

ing a new random field-inspired energy yields higher accu-

racy than entropy based approaches. Quantitative validation

on four diverse image datasets shows at par or better accu-

racy than state-of-the-art approaches, with faster runtimes.
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Structured class-labels in random forests for semantic image

labelling. In Proc. IEEE ICCV, 2011.

[14] P. Kontschieder, S. Rota Bulò, A. Criminisi, P. Kohli,
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