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Abstract

We show that bilateral symmetry plane estimation for
three-dimensional (3-D) shapes may be carried out accu-
rately, and efficiently, in the spherical harmonic domain.
Our methods are valuable for applications where spheri-
cal harmonic expansion is already employed, such as 3-D
shape registration, morphometry, and retrieval. We show
that the presence of bilateral symmetry in the 3-D shape is
equivalent to a linear phase structure in the corresponding
spherical harmonic coefficients, and provide algorithms for
estimating the orientation of the symmetry plane. The ben-
efit of using spherical harmonic phase is that symmetry es-
timation reduces to matching a compact set of descriptors,
without the need to solve a correspondence problem. Our
methods work on point clouds as well as large-scale mesh
models of 3-D shapes.

1. Introduction

The motivation to apply spherical harmonic expansion
to solve three-dimensional (3-D) computer vision problems
stems from at least three well-known properties. First, the
expansion summarizes a large number of shape points (ver-
tices or surface voxels) in a relatively small number of
coefficients. Second, the expansion allows separation of
coarse and fine levels of detail in the shape through band-
width. Third, the spherical harmonic coefficients behave
predictably under 3-D rotation. Accordingly, spherical har-
monics have been successfully employed in computer vi-
sion for 3-D shape registration [10], morphometry [3], and
recognition [7][9]. In this paper, we show that spherical har-
monics also provide an accurate and efficient solution for
estimating the bilateral symmetry plane of a 3-D shape. Bi-
lateral symmetry has been studied in numerous works (for
example, [12] [6][20]). However, the problem of estimat-
ing the symmetry plane through spherical harmonic coeffi-
cients alone has not been solved, though there are results for
the special case of moment coefficients [11]. Consequently,
with current techniques, if the spherical harmonic expan-
sion has already been computed, as would be the case in

(a) (b)

(c) (d)

Figure 1: The image in (a) is reconstructed from only its
Fourier phase in (b), illustrating phase’s importance to ap-
pearance. The same is true for the sphere: the continental
edges in the world map (c) are clearly visible in (d), which
is reconstructed from (c) using only the spherical harmonic
“phase” as defined in this paper.

the applications mentioned above, there is no way to reuse
the computationally-expensive expansion to obtain a sym-
metry plane estimate. And yet, as we show, the information
required to obtain the estimate is clearly available in the
harmonic coefficients, and a relatively simple estimation al-
gorithm is possible.

Our approach makes use of the “phase” of spherical har-
monics, which is a term without a widely-accepted defi-
nition for spherical harmonics. In contrast, phase is well-
defined for the ordinary Fourier transform: on the real line,
the phase of transform F is φ in the polar decomposition
F = |F |ejφ. The analogous definition for spherical har-
monics must, as we argue below, consider vectors of coeffi-
cients and treat the unit vector direction (vector divided by
its length) as the phase. It is well-known that for the ordi-
nary Fourier transform, phase defines the locations of edges
and is therefore more important for appearance than magni-
tude. Figure 1 shows that this is true for phase of spherical
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harmonic coefficients as well. The figure motivates us to
examine what must be true for spherical harmonic phase if
symmetry exists in the spatial domain.

Our main contribution shows that bilateral symmetry in
spherical data manifests itself as linear phase structure in
the spherical harmonic coefficients. Our results allow sym-
metry to be determined from any type of spherical harmonic
expansion, which is valuable since there are several differ-
ent expansions in use in the literature. We also propose new
algorithms for estimating the orientation of the symmetry
plane by maximizing the fit of a linear phase equivalent to
the harmonic coefficients. In order to improve the fit, we
show how to sample from the surface of a mesh model with
a nearly uniform distribution of points. Our methods work
for a wide variety of data, including point clouds and polyg-
onal meshes (open as well as watertight), and they do not
require that the meshes be aligned to the symmetry or have
a star-shaped property.

2. Previous work

Given a point cloud in 3-D, one method for finding can-
didates for the bilateral symmetry plane is to evaluate the
distance of corresponding points when reflected across each
candidate plane. The simplest method of finding such can-
didate planes relies on the well-known fact that reflection
symmetry, if it exists, must preserve the eigenspaces of the
point cloud’s covariance matrix. If the 3 × 3 covariance
matrix has distinct eigenvalues, then its three eigenvectors
determine orthogonal candidates for the symmetry plane.
The covariance method has been used to provide starting
points in a limited search for peaks in the correlation of the
orientation histogram [20]. However, the covariance does
not provide a means of establishing which candidate is the
correct one, and is not reliable as a source of candidates if
the eigenvalues are nearly equal.

Kazhdan et al. [6] describe a reflective symmetry de-
scriptor that is constructed by measuring the norm of the
projection of a voxel set onto the space of bilaterally-
symmetric sets. The descriptor is computed at each candi-
date plane’s normal vector by using Fourier series expan-
sion, and therefore constitutes a function defined on the
sphere. The shape of the descriptor function agrees visu-
ally with the perceived symmetries of 3-D shapes, and is
valuable for shape registration and classification. However,
the problem of estimating the orientation of the symmetry
plane is not discussed in [6].

A large number of papers exist on detecting 3-D sym-
metries, of which [13] provides a survey. The RANSAC
algorithm is applied to detect 3-D mirror symmetric objects
from images [19]. Symmetry for non-rigid shapes is an-
alyzed and a numerical method for finding corresponding
components is provided [17]. The 3-D Fourier transform
is calculated on a psuedo-polar grid to detect symmetry

groups in voxel data [1].
The richness of the literature on 3-D symmetry shows

that the topic is of considerable interest. While many facets
of symmetry have been explored, there is no existing work
on determining bilateral symmetry from spherical harmonic
expansion alone. However, Martinet et al. [11] show that lo-
cal minima for the spherical harmonic coefficients of even-
order moments provide candidates for the symmetry axis.
To evaluate the suitability of a candidate reflection R, they
compute the maximum possible distance between all ver-
tices of S and their nearest points (which are found by min-
imization) in the reflection of S by R. That calculation
is expensive, and does not take advantage of the structure
present in the spherical harmonic coefficients. In this paper,
we compute a much cheaper and more suitable distance us-
ing spherical harmonics coefficients alone, which is a sub-
stantial savings since a shape having thousands of vertices
may be represented using only a few tens of coefficients.
Moreover, the wide-spread use of spherical harmonics in
various applications, as mentioned above, makes it attrac-
tive to investigate how to estimate the symmetry plane from
harmonic coefficients alone. Our methods are compatible
with each of the numerous uses of spherical harmonics in
the literature, whether applied to the spherical mappings in
[6], to the even-order moments in [11], or to the Zernike
coefficient mapping in [9].

3. Notation and background

Conventions and notations for spherical harmonics vary
across many papers on 3-D vision, and therefore we spec-
ify ours in this section, referring to standard works [21] for
details.

We use the z-y-z system of Euler angles, denoted α, β,
and γ, to describe each 3-D rotation. The two angles, α and
β, also parameterize the sphere S2, with 0 ≤ α < 2π as
longitude and 0 ≤ β ≤ π as colatitude: specifically, the
3× 1 unit vector X lying on the sphere is

X = [cos(α) sin(β), sin(α) sin(β), cos(β)]
�
. (1)

Spherical harmonics form an orthogonal basis for functions
on S2, and, for each non-negative integer �, they have the
functional form

Y n
� (X) = Y n

� (β, α) = Pn
� (cosβ)e

−jnα, −� ≤ n ≤ �.
(2)

Here Pn
� are the real-valued associated Legendre functions.

The expansion of each L2 function f on the sphere is

f(X) = f(β, α) =
∞∑
�=0

�∑
n=−�

Fn
� Y

n
� (β, α) (3)

For real-valued functions f , we have conjugate-symmetry
in the coefficients: F−n

� = (−1)nFn
�
∗. We combine all
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coefficients for a given � into a 1× (2�+ 1) row vector

F� =
[
F−�
� , . . . , F 0

� , . . . , F
�
�

]
. (4)

The vector convention simplifies analysis by removing un-
necessary summations. We also write Y�(α, β) to denote
the row vector arranged similarly to (4) whose entries are
Y n
� (α, β) for n = −�, . . . , �.

The rotation property of the spherical harmonic coef-
ficients is important to our development. Every 3-D ro-
tation may be represented by 3 × 3 orthogonal matrix P
with determinant +1. Rotation in the spherical harmonic
domain is determined for each frequency � by the Wigner
matrices D�(P ), which are (2� + 1)-dimensional, unitary
(D�(P )D�(P )† = I for conjugate-transpose †), and sat-
isfy D�(PS) = D�(P )D�(S) for every pair of rotations
P , S. The Wigner matrices play the role corresponding to
the complex exponential ejω at frequency ω in the ordinary
Fourier transform on R. Specifically, if for some P , it is the
case that g(X) = f(PX) for all X ∈ S2, so that g is a
rotated version of f , then the rotation property states that:

G� = F�D�(P ). (5)

The elements of the Wigner D-matrices are separable in the
Euler angles:

Dmn
� (α, β, γ) = e−jmαdmn

� (β)e−jnγ , −� ≤ m,n ≤ �.
(6)

Here dmn
� is the (little) Wigner d-function, which is real-

valued for the z-y-z choice of Euler angles. Therefore,
D�(0, β, 0) is a real-valued matrix.

Data in 3-D vision tasks are frequently presented as a
set of points (xi, yi, zi), or equivalently in spherical coor-
dinates (αi, βi, ρi), for i = 1, . . . , N . Such data may be
approximated with spherical harmonics by choosing coeffi-
cients F to minimize the squared error

N∑
i=1

∥∥∥∥∥ρi −
L∑

�=0

F�Y�(αi, βi)
�

∥∥∥∥∥
2

. (7)

Using the method of Chung et al. [3] to obtain the coeffi-
cients, the least-squares solution to (7) is illustrated in Fig-
ure 2 for two important cases. The first case minimizes (7)
by fitting the vertices from a triangulated mesh model, and
is referred to as the vertex mapping in this paper. The sec-
ond case uses the extended Gaussian image (EGI), which
associates to each of the triangular faces a surface normal
whose length is equal to the area of the face. Other possibil-
ities, which are not shown here but are nevertheless equally
applicable, include even-order moment functions [11] and
Zernike coefficient mapping [9]. For each case, the spheri-
cal harmonic approximation to the mapping function is nec-
essarily a star-shaped surface, but is still able to capture a
variety of surface features, as such as the antennae as illus-
trated for the vertex mapping in part (c) of Fig. 2(c).

(a) Vertex (b) L = 4 (c) L = 16

(d) EGI (e) L = 4 (f) L = 16

Figure 2: The ant model in (a) is approximated in its vertex
mapping using two bandwidths in (b) and (c). Note how the
features of the ant, especially the antennae, become evident
as the top red bumps in (c). The EGI mapping of the model
is obtained from surface normals, shown superimposed on
the model in (d), and approximated in (e) and (f).

4. Symmetry is equivalent to linear phase

Taking inspiration from the magnitude-phase decom-
position of the real-line Fourier transform value as F =
|F |ejφ, we define the magnitude-phase decomposition for
the spherical harmonic vector F� as F� = ‖F�‖U�. The
1 × (2� + 1) unit-vector U� determines the direction of the
�-th coefficient vector. From (5), we see that the magni-
tude ‖F�‖ remains invariant under rotation (since the D ma-
trix is unitary), but the spherical harmonic phase rotates as
U� �→ U�D�. Figure 1(d) shows that phase contains signifi-
cant information about the shape’s structure.

The spherical harmonic phase also transforms in a sim-
ple way under reflection. Suppose that the reflection is
across the x-z axis. Under that reflection, for the (α, β)
angular parameterization of the sphere, α �→ −α. Conse-
quently, (2) shows that the spherical harmonic basis takes
complex-conjugate values, and therefore the coefficient
vector F� �→ F∗� . Now suppose that the reflection is across
a plane with the 3×1 normal vector N ; the plane is denoted
N⊥. Let P be any rotation that maps N to the positive y,
i.e., PN = Y , where Y = [0, 1, 0]� is the y-axis. Using P ,
we may decompose the reflection across N⊥ into a cascade
of three steps: (1) rotation of N to Y by applying P ; (2)
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(a) (b)

Figure 3: The world map, whose spherical harmonic ap-
proximation using L = 64 is shown in (a), is reconstructed
in (b) from the real part of its coefficients. As expected, the
result is bilaterally symmetric.

reflection across x-z plane, i.e., α �→ −α; (3) rotating the y
axis back to N by applying P�. Using (5), the cascade is

F� �→ F�D�(P ) �→ F∗� D�(P )∗ �→ F∗� D�(P )∗D�(P
�).

(8)
Consequently, if f is reflection symmetric across N⊥, then
for every rotation P such that PN = Y , we must have that

F� = F∗� D�(P )∗D�(P )†. (9)

This relationship helps to establish conditions for bilateral
symmetry in the spherical harmonic domain. As discussed
above, if N = Y , then F� = F∗� , and therefore the co-
efficients are real-valued, and we may write F� = R� for
real-valued vector R�; see Figure 3 for an example. If a
function g is obtained by starting with a function f that is
symmetric across Y ⊥, and rotating f by P , then we have
that G� = R�D�(P ). We call such functions linear phase.
The terminology comes from the signal processing litera-
ture, because of the analogous situation on the real-line [5].
If a real-valued function h has symmetry across the origin,
i.e., h(x) = h(−x) for all x ∈ R, then its Fourier transform
H(ω) is real-valued. Translation of such a function by x0

results in H(ω) = r(ω)ejωx0 , where r(ω) is a real-valued
function for all frequencies ω. Such functions are described
in signal processing as having linear phase, since the phase
component ωx0 is linearly dependent on the shift x0. In
fact, if f is symmetric about a point x0 ∈ R, then it is easily
shown that

F (ω) = F (ω)∗e−jωx0e−jωx0 = F (ω)∗e−2jωx0 . (10)

Note the similarity of (10) to (9), with the translation phase
ejωx0 replaced by the rotation phase D�(P ).

5. Finding the symmetry plane

Since symmetric functions have linear-phase spherical
harmonic coefficients, the problem of finding the symmetry
plane requires optimizing a linear phase fit to the observed
coefficients. We formulate that optimization as follows.

Given observed coefficient vectors F� for � = 1, . . . , L, we
seek real-valued coefficient vectors {R�}L�=1

and a rotation
P that jointly minimize the objective function

Ψ(R, P ) =

∑L
�=1

‖F� −R�D�(P )‖2∑L
�=1

‖F�‖2
(11)

Since the generally suboptimal choice of setting all R� to
zero gives Ψ = 1, we conclude that, with the optimal
choice, the minimum of Ψ must lie in [0, 1], with lower val-
ues indicating a better linear-phase fit, and hence a more
symmetric function.

Before optimizing (11), let us consider the degrees
of freedom (DOF) between the data F� and the model
R�D�(P ) that we are trying to fit, in order to ascertain
when the fit is over, exactly, and under determined. Taking
into account the conjugate symmetry F−n

� = (−1)nFn
�
∗,

we impose a similar symmetry for the real coefficients:
R−n

� = (−1)nRn
� . Enumerating the real degrees of free-

dom, we see that each F� has 2� + 1 real DOF, which we
are trying to fit with � + 1 real parameters in R�. In addi-
tion, we need to find one set of three Euler angles in P for
all � ≤ L. Hence, if we compare

∑L
�=1

(2� + 1) real DOF
in the data to 3 +

∑L
�=1

(�+ 1) DOF in the model, then the
fit is under-determined for L = 1, and exact for L = 2. For
L > 2, we obtain a least-squares problem in which the data
overdetermine the model.

For L ≥ 2, the optimization of (11) proceeds as follows.
By expanding the numerator for each �, we obtain

‖F�‖2 −R�D�(P )F†� −F�D�(P )†R� + ‖R�‖2. (12)

Vector differentiation shows that the optimumR� are

Ropt
� =

1

2

(F�D�(P )† + F∗� D�(P )�
)
. (13)

InsertingRopt
� back into (12) and simplifying, we obtain our

main theoretical result: the optimal choice for the rotation
P that determines the orientation of the symmetry plane is
obtained by maximizing the function

Φ(P ) =
L∑

�=1

Real
{F�D�(P )†D∗� (P )F��

}
. (14)

Note that (14) is expressed only in terms of the spherical
harmonics coefficients F and the rotation P , and the previ-
ously unknown real coefficientsR have been eliminated.

Insight into the optimization of (14) is obtained by ex-
amining basic properties. First, due to the unitarity of the
Wigner D matrices, we have an upper bound: Φ(P ) ≤∑L

�=1
‖F�‖2. Second, if f is symmetric across the x-z

plane, then, as discussed above, F� is real-valued. Con-
sequently, we achieve the upper bound by setting P = I , as
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expected. Third, if f is linear phase and therefore has coef-
ficients F� = R�D�(PN ) where PN rotates the x-z plane
to N⊥, then (14) becomes

L∑
�=1

Real
{R�D�(PN )D�(P )†D∗� (P )D∗� (PN )†R��

}
.

(15)
Setting P = PN , the true symmetry plane, gives the global
maximum in this case, as expected. Fourth, if P is a ro-
tation about the y axis (Euler angles α = γ = 0), then
D�(P ) = D�(0, β, 0) is a real-valued matrix by (6). Conse-
quently, for every rotation Py about y axis, the function Φ
is invariant: Φ(PyP ) = Φ(P ), as verified by inserting PyP
into (14) and noting that D�(Py)

†D∗� (Py) = I . Hence, op-
timizing Φ recovers only two DOF due to invariance. This is
intuitively reasonable, since only two angles are required to
specify the orientation of a plane in 3-D. Finally, calculation
of (14) is efficient because it depends only on a relatively
small number of spherical harmonic coefficients, and not
on the much larger number of vertices. In our experiments
we use a bandwidth of L = 16, resulting in only 288 coef-
ficients, for shapes containing up to N=160,000 vertices.

6. Optimum estimates for the symmetry plane

The form of Φ in (14) may be rewritten using the trace
identity uAv� = Trace

(
v�uA

)
as follows

Φ(P ) =

L∑
�=1

Real
{
Trace

(F�� F�D�(P )†D∗� (P )
)}

.

(16)
In this form, Φ is tantalizingly close to the inverse Fourier
transform on the rotation group SO(3). The connection to
SO(3) is made more apparent if we define P̃ to be the con-
jugate rotation such that D�(P̃ ) = D∗� (P ); if P has Eu-
ler angles (α, β, γ), then P̃ has Euler angles (−α, β,−γ).
Then, setting U = P�P̃ , we observe that D�(U) =
D�(P )†D∗� (P ). Therefore, if we define the objective func-
tion

Ω(U) = Real

{
L∑

�=1

Trace
(F�� F�D�(U)

)}
, (17)

we observe that both Ω and Φ reach the same maximum
value. Optimization of Ω is straightforward by noting that
the inner sum is exactly an inverse Fourier transform over
the rotation group SO(3), which suggests we apply the FFT
developed for that group [8], and used for a similar purpose
of correlation matching [9]. However, once we know the
optimum value of U , we still need to obtain a P such that
P�P̃ = U . There are no simple equations for “inverting”
U to obtain P , though an iterative numerical solution is pos-
sible. Furthermore, optimizing over U entails optimization

(a) (b) L = 3

(c) L = 8 (d) L = 16

Figure 4: For the airplane model in (a), the three psuedo-
color images in parts (b), (c), and (d) show respectively the
cost function Φ as a function of α (horizontal) and β (verti-
cal). Darker red values indicate improving estimates of the
symmetry plane of (a). The global optimum, indicated with
an arrow in (d), becomes clearer with increasing bandwidth.

over three Euler angles α, β, and γ, which is, in principle,
unnecessary, as two angles suffice to specify the orientation
of the symmetry plane.

We propose an alternative approach to optimization of Φ,
by taking advantage of the property that Φ(PyP1) = Φ(P2)
for each pair of rotations P1, P2 and every rotation Py

about the y-axis. The property suggests that optimization
over only two of the three Euler angles, namely α, and
β, are possible. Given a candidate rotation P , we com-
pute N = PY , where Y = [0, 1, 0]� as before. Given
N = [nx, ny, nz]

�, the required angles are obtained as fol-
lows: β = atan2(nz,−nx) and α = acos(ny). Note that
the Euler angle γ = 0. Given α, β, the cost of computing
(6) for the Wigner matrix D�(α, β, 0) is dominated by the
cost of the computing the “little” Wigner d function d�(β).
The d function is computed recursively for a given β, which
is time-consuming. To reduce the computation, we take ad-
vantage of a decomposition [8], which shows that, as a func-
tion of the Euler angles:

P (α, β, 0) = P (α− π/2,−π/2, β)P (0, π/2, π/2). (18)

This equation ensures that, once we compute D�(0, π/2, 0)
offline for � ≤ L, we may use those stored values to com-
pute D�(P ) efficiently from (6).

Figure 4 illustrates how the cost function Φ increases in
detail with bandwidth L. For sufficiently high bandwidth, it
is clear from the figure that the finding the optimum of the
non-convex surface requires a search. To perform the search
efficiently, we use a nested polar grid search, in which we
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perform initially a coarse grid search by evaluating N val-
ues of α, β over [0, π]. (Note that α and α + π represent
the same plane.) We then repeat the grid-search in a nested
manner over the previously found best grid point, so that
each repetition subdivides the previous best grid cell and its
immediate neighbors as the domain of the new grid. The
advantage of the nested search over, say, making the ini-
tial coarse grid much finer, is that we reject many grid cells
in each repetition. We refer to this algorithm below as N-
GRID. Note that FFT search methods [8][9] are essentially
grid search methods, although they employ a fast algorithm
to compute the grid values due to the objective being formu-
lated as inverse SO(3) transform. N-GRID is also similar
to the recursive icosahedral search of Martinet et al. [11].

An alternative to grid search is stochastic search op-
timization. We use interacting simulating annealing [4]
(ISA), a global optimization technique designed for mul-
timodal objectives. We adapted the method to quaternion
space by generating samples using the Fisher-Von Mises
kernel:

f(x;μ, κ) ∝ exp(κμTx), (19)

where μ ∈ S
3 represent the mean and κ ∈ R is the con-

centration parameter. The distribution is transformed from
a uniform distribution to a delta distribution as κ is changed
from 0 to ∞. We defined a fixed diffusion schedule such
that, in first iteration κ = 0, and in subsequent iterations κ
is defined by a power law. This ensures that the search is
uniform over the entire manifold. We refer to this algorithm
as SH-ISA below.

As a baseline for both algorithms, we use the three eigen-
vectors of the covariance matrix to obtain three correspond-
ing candidates for the symmetry plane. The candidate that
maximizes (14) is designed as the SH-COV estimate. We
expect SH-COV to perform much worse than N-GRID and
SH-ISA, due to its known failure mode when the covariance
eigenvalues are nearly equal.

7. Experimental methods and results

We estimate spherical harmonic coefficients using the
iterated residual fitting (IRF) method [3]. IRF calculates
each vector F� by using a weighted least squares approach
based on the residual from lower frequencies, where the
weight is adjusted using a smoothing parameter σ. We use
σ = 5×10−4, which performs a mild amount of smoothing.
We use a bandwidth of L = 16 for all shapes, as Figure 4
shows that it gives a clear peak at the global optimum. Eval-
uation of the objective function (14) takes less than 10ms on
a computer with a 2.66 GHz quad-core processor and 10 Gb
RAM.

Previous works have tested symmetry estimation on a
relatively small number of shapes, and tested robustness
by simulating acquisition and topological noise [1][11][20].

(a) (b) (c)

Figure 5: Uniform densification is illustrated for the plant
model in (a), whose 316 vertices are plotted in (b), and
whose densified samples are shown in (c).

While such simulations are worthwhile, there are now
databases containing a wide variety of symmetric, nearly
symmetric, and asymmetric shapes which provide a more
extensive test. We use three databases: the Princeton Shape
Benchmark (PSB) [18], the SHREC 2010 Generic 3-D
warehouse (referred to as S10 here) [15] and the Mesh Seg-
mentation Database (SEG) [2]. The PSB is a database of
1,814 shapes defined by triangulated meshes, while the S10
has 3,168, and SEG has 380. The shapes vary in the number
of vertices from the hundreds to well over 100,000. How-
ever, the vertices are not uniformly distributed across the
shape’s surface, which may affect the symmetry estimation.
Therefore, we uniformly sample a dense set of points across
the surface of the shape by relying on the triangulated mesh.
For each triangle T , with vertices A, B, and C, a random
point p lying inside the triangle may be generated using

p = (1−√r1)A+
√
r1(1− r2)B +

√
r1r2C, (20)

where r1, r2 ∈ [0, 1] are two independent, uniformly-
distributed, random numbers [14]. The number of points
in each triangle is calculated to be proportional to the trian-
gle’s area in relation to the total area of all triangles. With
such a representation, the points are more uniformly dis-
tributed on the shape surface, helping the identification of
symmetry planes. This “densification” of vertices is illus-
trated in Figure 5.

In our experiments, every shape is randomly rotated in
all three Euler angles prior to symmetry estimation. To pro-
vide a shape-independent measure of fit, we define the nor-
malized fitting error as the relative error between the linear
phase fit for the optimum rotation Popt and its upper bound:

E(Popt) = 100×
∑L

�=1
‖F�‖2 − Φ(Popt)∑L
�=1

‖F�‖2
(21)

Low values of E, below 15%, indicate a good symmetry
plane fit. Figure 6 shows examples from the PSB database
of various degrees of symmetry and the associated fit. We
found over numerous shapes that the E measure correlated
well with our perception of how well the symmetry plane fit
the shape.
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(a) E=0.4% (b) E=13% (c) E=54%

Figure 6: The perfectly-symmetric airplane in (a) has
nearly zero fitting error E. The middle legs of the nearly-
symmetric insect in (b) are not matched, and the body is
slightly twisted, raising error E. The branches of the asym-
metric pine tree are not aligned, raising E to high levels.
In each case the symmetry plane found by optimizing (14)
with SH-ISA is shown superimposed in green.

Input \Algo SH-COV N-GRID SH-ISA
PSB EGI 29.1 16.2 15.7
PSB Vertex (O) 15.7 8.6 8.3
PSB Vertex (D) 8.8 5.6 5.3
S10 EGI 34.7 19.2 18.4
S10 Vertex (O) 19.7 10.4 9.9
S10 Vertex (D) 10.8 6.9 6.5
SEG EGI 35.7 19.5 18.7
SEG Vertex (O) 19.2 9.9 9.4
SEG Vertex (D) 9.6 6.1 5.7

Table 1: The normalized fitting error E is shown averaged
over all shapes in each of three databases, using three algo-
rithms. Rows 2-4 show results for the PSB database, and
contain respectively the results for the EGI mapping, the
vertex mapping using original vertices, denoted (O), and the
vertex mapping using the densified vertices (D); similarly
for other rows and S10 and SEG databases. For all three
databases, densification significantly reduces error, and SH-
ISA has the least error for all databases and mappings.

Table 1 summarizes the results on over 5,000 shapes in
all databases. We find that the symmetry plane is signifi-
cantly better estimated using the vertex mapping than the
EGI mapping, reducing E by at least 30%, and also that
densification improves the vertex mapping results substan-
tially, by similar amounts. The EGI mapping is unique only
for convex objects, and does not capture shape properties
as well as vertex mapping (see Fig. 2). In our experiments,
we used N = 30 for N-GRID, with up to 5 recursive eval-
uations, and use an average of 1,200 cost function evalua-
tions for the SH-ISA algorithm. The N-GRID takes approx-
imately 3 seconds per shape, and SH-ISA approximately 5
seconds, on the 2.66 GHz processor described above. The
processing times are independent of the number of vertices

(a) E=0.0% (b) E=1.8% (c) E=32%

(d) E=3.4% (e) E=1.8% (f) E=1.1%

Figure 7: The symmetry plane from SH-ISA is shown su-
perimposed in green. Asymmetries in the shapes, notice-
able on magnification, result in nonzero E values.

in the shape, as a benefit of (14) relying on the spherical
harmonic expansion alone. Densification allocates 100,000
samples to each surface, no matter how many vertices it has.

The robustness of our linear phase methods are due to
the least-squares fit of the spherical harmonic coefficients
using IRF, the ability of low-frequency spherical harmonics
to smooth fluctuations, and performing optimization of (14)
without differentiation. The large number of shapes tested
here precludes showing many in the style of Figure 6, but
Figure 7 shows representative results. More are presented
as supplementary material for review purposes, along with
the MATLAB code used.

The main limitation in symmetry determination is the
spherical mapping. One important case is articulated
shapes, which requires an analysis of intrinsic symmetry
[17], and would normally fail with the extrinsic methods
used here, as shown in the left column of Figure 8. How-
ever, by employing isometric embeddings which make the
surface mesh roughly invariant to pose, we obtain much bet-
ter planes of symmetry, as shown in the second column of
Fig. 8. The third column shows the partition obtained from
the embedding on the original surface.

8. Summary and conclusions

Figure 1 inspires us to look in the phase domain for infor-
mation about symmetry. By developing the idea that linear
phase in spherical harmonic coefficients is equivalent to bi-
lateral symmetry, our main theoretical contribution shows
that optimizing the degree of linear phase fit is equivalent
to estimating the symmetry plane. The benefit of relying on
spherical harmonic coefficients alone, as our method does,
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Figure 8: The left column shows how symmetry detection
fails on articulated shapes, the middle column shows the
result after isometric embedding, and the right shows the
result from the middle superimposed on the original shape.

is that they form a compact description of a shape; indeed,
that compactness is a primary motivator to their many uses
in 3-D modeling and vision [3][7][9][10]. Our method is
compatible with those works in that it is able to use any
symmetry-preserving mapping to the sphere, including the
vertex mapping and EGI mapping.

Beyond symmetry, our results suggest that the phase of
spherical harmonics is rich in other information about 3-D
structure. It is possible that non-rigid symmetry, such as
spiral structure, is connected to polynomial phase, rather
than linear phase. Furthermore, the structural properties of
phase for three-variable spherical harmonics, or SPHARM
[16] constitute another interesting extension to explore.
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