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Figure 1: We begin with 8 input images from wide-baseline viewpoints, extract and refine the 3D strands (the strands from
3 adjacent views are shown in different colors), and reconstruct the surface from the positions of the refined strands. Our
result is robust to the wide-baseline setup and reveals detailed hair structures. In contrast, general multi-view stereo methods
based on texture are less accurate [5] or unable to converge in the wide-baseline setup [7].

Abstract

We propose a novel algorithm to reconstruct the 3D
geometry of human hairs in wide-baseline setups using
strand-based refinement. The hair strands are first extracted
in each 2D view, and projected onto the 3D visual hull for
initialization. The 3D positions of these strands are then
refined by optimizing an objective function that takes into
account cross-view hair orientation consistency, the visual
hull constraint and smoothness constraints defined at the
strand, wisp and global levels. Based on the refined strands,
the algorithm can reconstruct an approximate hair surface:
experiments with synthetic hair models achieve an accuracy
of ∼3mm. We also show real-world examples to demon-
strate the capability to capture full-head hair styles as well
as hair in motion with as few as 8 cameras.

1 Introduction

Multi-view stereo methods have been widely used to re-

construct real world objects with ever improving quality [7,

1]. However, hair reconstruction remains one of the most

challenging tasks due to many unique hair characteristics.

For instance, omni-present occlusions and complex strand

geometry preclude general surface-based smoothness pri-

ors [26] for hair reconstruction. The highly specular nature

of hair [17] also violates the Lambertian surface assump-

tion employed in most multi-view stereo methods. Con-

sequently, many practical systems have either completely

avoided hair reconstruction during facial capture (e.g. [1]),

or relied on manual input to achieve plausible results [19].

Researchers have explored specialized hardware to facil-

itate hair capture, such as a fixed camera with moving light

sources [21], a stage-mounted camera with macro lens [8],

thermal imaging [12], etc. These methods are often costly,

and require lengthy capture sessions that limit their appli-

cability to only static hairstyles. An alternative approach is

to deploy dense camera arrays that have small baselines. To

capture complete full-head hairstyles, it is typical to have

20 to 30 camera views [25, 15, 12]. However, due to the

complex hardware setup, it is challenging to adopt many

cameras in real-world systems.

In this work, we study hair capture with a wide-baseline

camera setup. Merely 8 cameras are used to capture the

complete hair geometry, with each adjacent pair of cameras

having a large 45-degree wide angular baseline. Under such

a setup, stereo matching based on aggregation schemes such

as local window or surface patch in existing methods [15,

25] is unreliable and error-prone. Instead, we propose that

3D strand is a better “aggregation unit” for stereo matching

in hair reconstruction because it models hair’s characteristic

“strand-like” structural continuity and thus yields improved

robustness against matching ambiguities in wide-baseline

setups. The 3D strands are first generated separately from a

2D strand extraction step in each view and then jointly opti-

mized in a strand-based refinement step. We also introduce

a novel formulation of smoothness energy that regularizes

the optimization at the strand, wisp and global levels to bet-
ter account for real hair dynamics, hair wisp structures and
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Figure 2: The overview of our reconstruction method. We take 8 input images from different views and compute the orienta-
tion map for each. Using the visual hull constructed from the segmented images, we extract strands on the orientation maps
and project them from each view onto the visual hull for strand initialization. Finally we perform strand-based refinement to
obtain the final strand positions. The hair surface can then be reconstructed from the refined strands using [10].

cross-view reconstruction consistency.

We quantitatively evaluate our reconstruction method on

synthetic hairstyles, and achieve an accuracy of ∼3mm.

In addition, the approach can handle a wide variety of

hairstyles in static images and dynamic sequences, as

demonstrated with real examples in the results section and

the supplemental materials.

2 Related Work
In this section, we review existing technologies for hair cap-

ture, including those using dedicated setups and dense cam-

era arrays. In addition, we survey a few traditional multi-

view stereo methods that are closely related to the proposed

algorithm, including refinement-based reconstruction and

wide-baseline stereo.

2.1 Hair Capture

A few dedicated systems in the literature have been de-

signed for hair capture. Paris et al. [20] proposed to estimate

the hair orientation in images and analyze the highlights on

the hair. This analysis requires a fixed camera with a light

source moving along a predefined trajectory. Later, Paris et

al. [21] presented Hair Photobooth, a complex systemmade

of several light sources, projectors, and video cameras that

capture a rich set of data to extract the hair geometry and

appearance. Jakob et al. [8] showed how to capture indi-

vidual hair strands using focal sweeps with a macro-lens

equipped camera controlled by a robotic gantry. Recently,

thermal imaging has been applied for hair reconstruction to

avoid shadowing and anisotropic reflectance [12]. While

accurate, these techniques are expensive, and the capture

process is usually slow and only applicable for static hairs.

Work has also been done to capture hair with more flex-

ible setups. Wei et al. [25] proposed a technique based

on many hand-held photographs. Their approach uses a

coarse visual hull as the approximate bounding geometry

for hair growing constrained with orientation consistency.

Yamaguchi et al. [27] used an array of 12 cameras to cap-

ture partial geometry of straight hair in moderate motion.

Guided by hair simulation, Zhang et al. [29] reconstructed

smooth hair dynamics with 7 cameras. Using only a sin-

gle view, Chai et al. [4] proposed a method to generate

a depth map for convincing view interpolation of different

hairstyles. Beeler at al. [2] used a high resolution dense

camera array to reconstruct facial hair strand geometry by

matching distinctive strands. In contrast with these ap-

proaches, our method is capable of reconstructing accurate

hair geometry from a wide-baseline sparse camera array.

2.2 Related Multi-view Stereo Methods

There have been many multi-view stereo methods presented

in the literature [22]. The proposed method belongs to the

general category of refining a rough initial geometry (e.g., a

visual hull) by optimizing for cross-view consistency. And

the consistency is measured in novel ways in order to handle

the wide-baseline and challenging hair characteristics.

Space carving [11] reconstructs objects by eliminating

voxels in a volume with low photo-consistency across visi-

ble views. Inspired by the active contour method [9], many

reconstruction methods iteratively refine a rough initial

shape (usually the visual hull) to obtain the final reconstruc-

tion by optimizing cross-view photo-consistency and sur-

face smoothness. For instance, Hernandez and Schmitt [5]

proposed a visual hull refinement method by iteratively

minimizing the texture, silhouette and surface smoothness

energies. Furukawa and Ponce [6] segmented the initial

visual hull into surface areas between the rims and refined

each via graph cuts.

Another important line of research for wide-baseline

camera setups is to find robust feature correspondences be-

tween images. The well-known SIFT descriptor [14] is ca-

pable of finding feature points on images with significantly

different viewpoints and illuminations. Tola et al. [23]

extended the idea of SIFT to find dense correspondences

266266266



Figure 3: Our hair capture setup and a few sample images.
We use 8 cameras (outlined in red) in wide-baseline to cap-
ture the complete hair styles. Four area lamps (outlined in
blue) are used to compensate for the short exposure time.

across views for high quality reconstruction. Local regions

with view-invariant properties have also been studied such

as affinely invariant regions [24] and maximally stable ex-

tremal regions [18]. However, due to the lack of reliable

texture and corner-like features on hair, it is difficult to ap-

ply these methods on hair reconstruction.

3 Overview

Given a set of wide-baseline images (see Fig. 3 for some

sample images), our goal is to compute a shape that best

approximates the captured hair volume. We achieve this by

refining the positions of a dense set of representative 3D

hair strands derived from each camera view.

Fig. 2 gives an overview of the various steps involved in

our hair capture algorithm. We defer the description of our

acquisition setup to Sec. 6. To create the initial 3D strands

for refinement, we first compute the hair orientation map for

each input image, and extract the 2D strands by tracking the

confident ridges on the orientation map. The 2D strands are

then back-projected onto the visual hull constructed from

the segmented foreground of all input images to form the

initial 3D strands. An iterative strand refinement algorithm

is then applied to optimize the orientation consistency of the

projected strands on all the orientation maps. We regularize

the optimization with the silhouette constraint as well as a

set of specialized smoothness priors for hair. The final hair

shape is obtained using Poisson surface reconstruction [10]

from the refined 3D strands.

In the rest of the paper, we will describe strand initializa-

tion in Sec. 4, and present the novel strand-based refinement

algorithm in Section 5. Experimental results and conclu-

sions are given in Sections 6 and 7, respectively.

(a) (b) (c)

Figure 4: The steps of strand initialization in Sec. 4. For
each input image (a), we compute the orientation map (b).
Then we extract strands on the orientation map and project
them onto the visual hull for initialization (c).

4 Strand initialization
We first compute an orientation map for each image using

the method proposed in [15], which uses a bank of rotated

filters to detect the dominant orientation at each pixel. The

orientation map is enhanced with 3 passes of iterative re-

finement to improve the signal-to-noise ratio as in [4]. To

further reduce noises in regions with low confidence, we

apply the bilateral filtering method in [20] to diffuse the

orientations of the high confidence regions.

We then track the confidence ridges of each orientation

map (Fig. 4(b)) using hysteresis thresholding similar to [4].

The result is a set of poly-line 2D strands consisting of

densely sampled vertices in about 1-pixel steps. We back-

project each vertex of the resulting 2D strands onto the vi-

sual hull to determine the initial position of the 3D strands,

as shown in Fig. 4(c). Note that the 3D strands are generally

over-sampled after back-projection from 2D strands. Thus

we down-sample each 3D strand by uniformly decimating

the vertices to 20% of the original vertex count in order to

reduce the computation cost in the following steps.

5 Strand-based refinement
After initializing the 3D strands from the 2D strands in

each reference view (the view from which the strands were

extracted), we iteratively refine all the strands by optimiz-

ing the projected orientation consistency across all visible

views with silhouette and smoothness constraints (Fig. 5).

The optimization is formulated as an energy minimiza-

tion problem. The total energy is defined as the weighted

sum of a few specific energies, such as orientation energy,

silhouette energy and smoothness energy:

E = ∑
�

α�E� (1)

where � denotes each specific energy term as we will de-

scribe in detail in the following sections. All the energy

terms are formulated in squared forms so that we can mini-

mize the total energy with efficient non-linear solvers such

as Levenberg-Marquardt [16].
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Figure 5: In strand-based refinement (Sec. 5), the strands
(first row) are refined over the iterations with their recon-
structed surfaces (second row) revealing more hair details.

5.1 Notations and Definitions

Let p denote a strand vertex on a 3D strand S. We use

subscript to reference its successor p+1 and and predecessor

p−1 on S. Similarly, we can define p+0.5 as the middle point

between p and p+1. The strand direction d(p) at p is defined

as p+1 − p−1. The reference view of p is denoted as R(p)
and the visibility V (p) of p defines the set of views where p
is visible. Since strand visibility is difficult to define exactly

during strand refinement, we approximate V (p) by the vis-

ibility of its closest point h(p) on the visual hull H during

the refinement. It is obvious to see that p’s reference view
R(p) ∈ V (p).

We define two different neighborhoods for vertex p:
the same-view neighborhood N +(p) and the different-view
neighborhood N −(p), as shown in Fig. 6. N +(p) is de-

fined as the vertices from the same reference view as p and

located within a certain 3D Euclidean distance from p. Ver-
tices on the same strand as p are excluded from N +(p).
N −(p) is defined similarly but the neighboring vertices are

from different reference views.

Likewise, we define the same-view weight w+(p, q) be-
tween two vertices p and q if q ∈ N +(p) and different-view
weight w−(p, q) if q ∈ N −(p). The different-view weight

w−(p, q) is simply defined as the Gaussian weight:

w−(p, q) = exp

(
− ‖p− q‖2

2σ2
e

)
(2)

where σe controls the influence radius around the strand ver-

tices and is set to 0.05 of the diagonal length D of the visual

hull’s bounding box. The same-view weight w+(p, q) is a
bilateral weight that takes into account both the Euclidean

p
q1

q2 q

p

q1, q2 ∈ N +(p) q ∈ N −(p)

Figure 6: The illustrations of same-view neighborhood
N +(p) and different-view neighborhood N −(p) for p. The
neighbors are searched within the radius (2.5σe) indicated
by the dashed circles. Same-view neighbors q1 and q2 can
be weighted differently by how their orientations differ from
p’s. The different-view neighbor q is located on the strands
from a different reference view (in blue).

distance and the orientation difference between p and q:

w+(p, q) = exp

(
− 1− 〈d(p), d(q)〉2

2σ2
o

− ‖p− q‖2
2σ2

e

)
(3)

where σo controls the influence between strand vertices with

similar orientations and is set to 0.5. The notation 〈A,B〉 is
defined as the cosine of the angle between two vectors A
and B, i.e., 〈A,B〉 � A · B/(‖A‖‖B‖). This applies to both

3D and 2D cases. If either A or B is zero, 〈A,B〉 = 1.

Note that we often use the normalized weights for all

the neighbors. We define the normalized same-view weight

w̄+(p, q) and different-view weight w̄−(p, q) as:

w̄+(p, q) =
w+(p, q)

∑q∈N +(p) w+(p, q)
, w̄−(p, q) =

w−(p, q)
∑q∈N −(p) w−(p, q)

.

We also define a “surface” normal n(p) at each strand

vertex p, which can be computed by finding the eigenvec-

tor with the smallest eigenvalue of the covariance matrix

∑q∈N +(p) w+(p, q)(q− p)(q− p)�.
We use superscript pV to define the projected 2D point

of p on one of the visible views V ∈ V (p). During the

refinement, the position of p in 3D space is restricted along

the ray shooting from the optical center of the reference

view R(p) to its projected point pR(p) on the reference view.

This ensures that the vertex has the same projection on the

reference view, and saves computation cost thanks to the

reduced degrees-of-freedom.

5.2 Orientation Energy

The orientation energy Eorient is designed to make sure that

when a 3D strand is projected onto its visible views, the

projected orientations are consistent with those indicated by

the orientation maps of those views.

Once we apply the diffusion scheme described in Sec. 4

to the orientation map OV of view V , an orientation vector

OV (pV ) is defined at any point pV in the hair region , other-

wise we set OV (pV ) = 0 (Fig. 7). We then define an orien-

tation energy term eV
orient(pV ) for each segment (p, p+1) on
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pV
pV+1pV+0.5

OV (pV+0.5)

Figure 7: The illustration of orientation energy. A strand is
projected on the orientation map in similar color coding as
in Fig. 4. The orientation energy term eV

orient(pV ) is deter-
mined by the angle between OV (pV

+0.5) and pV
+1 − pV .

S as follows:

eV
orient(pV ) = min

{
1− 〈pV

+1 − pV ,OV (pV
+0.5)〉2, Torient

}
(4)

where Torient = 0.5 is a threshold to make the energy robust

to outliers with large projected orientation inconsistency.

Note that the square in the definition makes it invariant to

±180◦ directional ambiguity.

Finally, we define the orientation energy Eorient as:

Eorient = ∑
p

∑
V∈V (p)

wV (p)eV
orient(pV ), (5)

where wV (p) = max(〈n(p), v(p)〉, 0) is the visibility weight
of p with respect to view V , and v(p) is the direction from

p to the optical center of view V .

5.3 Silhouette Energy

We also enforce the 3D strands to be within and near the vi-

sual hull H using silhouette energy. As illustrated in Fig. 8,

given p’s closest point h(p) on H and h(p)’s normal nh, we

can define silhouette energy Esilh as:

Esilh =
1

D2 ∑
p
β
((

p− h(p)
) · nh

)2
(6)

where · represents inner product, and β is used to discrim-

inate the inside and outside cases for p with respect to H :

β =

{
1 (p− h(p)) · nh ≤ 0

wout (p− h(p)) · nh > 0
, (7)

where wout is a large penalty (10
4) against the case where the

vertex is outside the visual hull H . Note that the diagonal

length D of H ’s bounding box is used to make the energy

unit-less. Similar approach is applied for unit-less energy

formulation in the following sections.

5.4 Smoothness Energy

Smoothness energy is formulated at three different levels to

better control the smoothness granularity: the strand level,

the wisp level and the global level. The formulation for

strand level smoothness Estrand stems from the discrete elas-

tic rod model [3] often used in hair simulation that min-

imizes the squared curvature along hair strands. Further

inspired by [4], we take into account the orientation sim-

ilarity in the bilateral same-view weight w+ so that the

H pin
pout

h(p)
nh

h(p)
nh

Figure 8: The illustration of silhouette energy. The sign of
(p − h(p)) · nh determines if a point is inside H and thus
the value of β in silhouette energy for pin and pout.

wisp smoothness energy Ewisp can better adapt to the local

wisp structures and hair’s depth discontinuities. Finally, the

global smoothness energy Eglobal ensures the global consis-

tency of strand geometry across different views.

Strand smoothness energy Inspired by [3], we define the

strand smoothness energy as the summation of squared cur-

vature for each vertex along all the strands:

Estrand = D2 ∑
p
curv2(p) (8)

where curvature is computed as:

curv(p) =
2

l+1 + l−1

∥∥∥∥ p+1 − p
l+1

− p− p−1
l−1

∥∥∥∥ (9)

where l+1 = ‖p+1 − p‖ and l−1 = ‖p− p−1‖.
Wisp smoothness energy We use wisp smoothness en-

ergy to enforce a strand vertex and its small same-view

neighborhood N +(p) within the same wisp to lie on a lo-

cal plane. We use the orientation similarity to estimate the

likelihood of being in the same wisp and encode it in the

same-view weight w+. The wisp smoothness energy is thus

defined as:

Ewisp =
1

D2 ∑
p

((
p− ∑

q∈N +(p)

w̄+(p, q)q
)
· n(p)

)2

(10)

Global smoothness energy Finally, the global smooth-

ness energy is defined similarly to the wisp smoothness en-

ergy to enforce global refinement consistency through local

planar resemblance across different views:

Eglobal =
1

D2 ∑
p

((
p− ∑

q∈N −(p)

w̄−(p, q)q
)
· n(p)

)2

(11)

6 Results
We use a camera rig that contains 8 cameras around the

subject powered by a single workstation, as shown in Fig. 3.

The cameras are Point Grey Flea2 FireWire cameras, oper-

ating at 600 × 800 pixel resolution and 30 frames per sec-

ond. A few example images are also shown in Fig. 3. We

find the current 8-camera setup a good trade-off between

reconstruction quality and acquisition complexity for full

hairstyle capture. Fewer camera views will push the recon-

struction quality towards visual hull due to smaller overlap

between views. We also use the hair datasets from [13], but
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Figure 9: We evaluate the reconstruction accuracy on three
synthetic hair styles (straight, wavy and wavythin, first
row). We compute the depth maps of our reconstruction
(second row) and compare them with the hair’s. The depth
map differences are visualized in coded color (third row).
The average reconstruction error is around 3 millimeters.

only select 8 images with similar views as our setup from

each original dataset for the reconstruction tests.

The same set of energy weights are used for all the re-

sults in this work. Note that a relatively small αsilh is used

to de-emphasize the importance of the visual hull on the

reconstruction once the shape is inside the visual hull:

αorient = 2× 10−2 αstrand = 10−4 αglobal = 0.5
αsilh = 3× 10−5 αwisp = 0.5

The reconstruction results for all the examples are shown

in Fig. 11. Note that we use [7] to reconstruct each sub-

ject’s facial area and then merge our hair reconstruction us-

ing Poisson surface reconstruction [10]. Our method can

accurately reconstruct a variety of hair styles from short

to long, from smooth to messy and from unconstrained to

constrained. Also, our method is able to faithfully reveal

interesting hair structures like wisps and curls. In contrast,

general visual hull refinement on color texture [5] loses de-

tails (Fig. 1). Multi-view stereo methods with weak regu-

larization, such as [7], fail to converge to the correct shape

(Fig. 1) due to the challenging wide-baseline setup.

Quantitative evaluation To quantitatively evaluate our

method, we use the hair models by [28] and render them

using the hair appearance model in [17], as shown in Fig. 9.

Figure 10: Sample frames (first row) and the reconstructed
surfaces (second row) from the dynamic hair capture setup.

The three hair models (straight, wavy, wavythin) in the eval-

uation are representative for a variety of common hair types.

Using the rendered images from viewpoints similar to our

real capture setup, we are able to reconstruct the surface for

the synthetic hair models. Since hair is volumetric, average

closest point distance is not a good error measure. We there-

fore evaluate the reconstruction accuracy by comparing the

depth maps of the hair model and the reconstructed surface

on a specific view and visualize the differences in coded

color (Fig. 9). The average reconstruction error is around

3mm. Larger errors can be observed in deep concave re-

gions and regions at grazing angles to the cameras.

Dynamic hair capture Compared to previous methods

[21, 15], our method is able to capture complete mov-

ing hair with only 8 cameras. Three sample reconstructed

frames for a hair-shaking performance are shown in Fig. 10

(please see the accompanying video for more results).

Computation time The algorithm is implemented in

C++. All the reconstruction tests are performed on a Core i7

2.3 GHz machine with 4GB memory. It takes 10 seconds to

compute the orientation map for each 600×800 input image

and 1 second to compute the visual hull from 8 segmented

images. The strand-based refinement takes 2 minutes.

7 Conclusion and Future Work
We have proposed a novel algorithm to reconstruct com-

plete full-head hair styles with strand-based refinement us-

ing only 8 views. Compared to previous methods, our

method is able to capture hair accurately with faithful hair

structures even with a wide baseline setup. The reconstruc-

tion results are evaluated on a set of synthetic hair models

and achieve ∼3mm reconstruction error on average. The

flexible requirement for input allows us to capture complete

hair in motion with an inexpensive camera rig.
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However, our method does have a few limitations that

need to be addressed in the future. The strand-based re-

finement relies on reasonably long strands to provide good

regularization in the optimization. For certain extreme hair

styles, like very short hair and fluffy hair, long continuous

strands are scarce, which can adversely affect our recon-

struction result. Also, because segmentation of hairy ob-

jects is still a very challenging problem in compute vision,

the visual hull we used to reconstruct the hair is often too

smooth, which causes our method to easily miss interest-

ing stray hairs in the reconstruction. For dynamic capture,

the motion blur can introduce “artificial strands” along the

moving direction that undermines the reconstruction accu-

racy. The temporal coherence issue also needs to be ad-

dressed in the future by imposing temporal constraints.
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Figure 11: Reconstruction results of all real examples. For each, we show three views with the reference input images.
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