
Transfer Sparse Coding for Robust Image Representation∗

Mingsheng Long†‡, Guiguang Ding†, Jianmin Wang†, Jiaguang Sun†, Yuchen Guo†, and Philip S. Yu§
†TNLIST; MOE Lab of Information System Security; School of Software

‡Department of Computer Science and Technology, Tsinghua University, Beijing, China
§Department of Computer Science, University of Illinois at Chicago, IL, USA

{longmingsheng,guoyc09}@gmail.com {dinggg,jimwang,sunjg}@tsinghua.edu.cn psyu@uic.edu

Abstract

Sparse coding learns a set of basis functions such that
each input signal can be well approximated by a linear
combination of just a few of the bases. It has attracted in-
creasing interest due to its state-of-the-art performance in
BoW based image representation. However, when labeled
and unlabeled images are sampled from different distribu-
tions, they may be quantized into different visual words of
the codebook and encoded with different representations,
which may severely degrade classification performance. In
this paper, we propose a Transfer Sparse Coding (TSC) ap-
proach to construct robust sparse representations for classi-
fying cross-distribution images accurately. Specifically, we
aim to minimize the distribution divergence between the la-
beled and unlabeled images, and incorporate this criterion
into the objective function of sparse coding to make the new
representations robust to the distribution difference. Exper-
iments show that TSC can significantly outperform state-of-
the-art methods on three types of computer vision datasets.

1. Introduction

In computer vision, image representation is a crucial pro-
cedure for image processing and understanding. As a pow-
erful tool for finding succinct representations of stimuli and
capturing high-level semantics in visual data, sparse coding
can represent images using only a few active coefficients.
This makes the sparse representations easy to interpret and
manipulate, and facilitates efficient content-based image in-
dexing and retrieval. Sparse coding is receiving increasing
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interest in machine learning, pattern recognition, signal pro-
cessing [9, 11, 8], and has been successfully applied to im-
age classification [22, 12, 24] and face recognition [21, 6].

One major computational problem of sparse coding is to
improve the quality of the sparse representation while max-
imally preserving the signal fidelity. To achieve this goal,
many works have been proposed to modify the sparsity con-
straint. Liu et al. [10] added nonnegative constraint to the
sparse coefficients. Gao et al. [6] introduced a Laplacian
term of coefficients in sparse coding, which was extended
to an efficient algorithm in Cai et al. [24]. Wang et al. [20]
adopted the weighted ℓ2-norm for the sparsity constraint.
Another line of works focus on improving the signal fideli-
ty, e.g., robust sparse coding proposed by Yang et al. [23].

However, when labeled and unlabeled images are sam-
pled from different distributions, they may be quantized into
different visual words of the codebook and encoded with d-
ifferent representations. In this case, the dictionary learned
from the labeled images cannot effectively encode the unla-
beled images with high fidelity, and also the unlabeled im-
ages may reside far away from the labeled images under the
new representation. This distribution difference will great-
ly challenge the robustness of existing sparse coding algo-
rithms for cross-distribution image classification problems.

Recently, the literature has witnessed an increasing focus
on transfer learning [15] problems where the labeled train-
ing data and unlabeled test data are sampled from different
probability distributions. This is a very common scenario
in real applications, since training and test data are usually
collected in different time periods, or under different condi-
tions. In this case, standard classifiers such as SVM and lo-
gistic regression trained on the labeled data may fail to make
correct predictions on the unlabeled data [13, 14, 16, 17].
To improve the generalization performance of supervised
classifiers across different distributions, Pan et al. [13, 14]
proposed to extract a “good” feature representation through
which the probability distributions of labeled and unlabeled
data are drawn close. It achieves much better classification
performance by explicitly reducing distribution divergence.
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Inspired by recent progress in sparse coding and trans-
fer learning, we propose a novel Transfer Sparse Coding
(TSC) algorithm to construct robust sparse representations
for classifying cross-distribution images accurately. We aim
to minimize the distribution divergence between labeled and
unlabeled images using a nonparametric distance measure.
Specifically, we incorporate this criterion into the objective
function of sparse coding to make the new representations
of the labeled and unlabeled images close to each other. In
this way, the induced representations are made robust for
cross-distribution image classification problems. Moreover,
to enrich the new representations with more discriminating
power, we also incorporate the graph Laplacian term of co-
efficients [24] in our objective function. Extensive experi-
mental results verify the effectiveness of the TSC approach.

2. Related Work

In this section, we discuss prior works that are most re-
lated to ours, including sparse coding and transfer learning.

Recently, sparse coding has been a hot research focus in
computer vision. To solve the ℓ1-regularized least squares
problem more efficiently, Lee et al. [9] proposed a feature-
sign search method to reduce the nondifferentiable problem
to an unconstrained quadratic programming (QP), which ac-
celerates the optimization process. Our work adapts Lee’s
method to solve the proposed TSC optimization problem.
For adapting the dictionary to achieve sparse representation,
Aharon et al. [1] proposed a K-SVD method to learn the
dictionary using orthogonal matching pursuit or basis pur-
suit. Our work aims to discover a shared dictionary which
can encode both labeled and unlabeled data sampled from
different probability distributions. To improve the quality of
sparse representations, researchers have modified the sparse
constraint by adding nonnegative constraint [10], graph reg-
ularization [6, 24], weighted ℓ2-norm constraint [20], etc.
Our approach aims to construct robust sparse representa-
tions for cross-distribution image classification problems,
which is a different learning goal from the previous works.

In the machine learning literature, transfer learning [15],
which aims to transfer knowledge between the labeled and
unlabeled data sampled from different distributions, has al-
so attracted extensive research interest. To achieve this goal,
Pan et al. proposed a Transfer Component Analysis (TCA)
method to reduce the Maximum Mean Discrepancy (MMD)
[7] between the labeled and unlabeled data, and simultane-
ously minimize the reconstruction error of the input data
using PCA. Different from their method, our work focus-
es on learning robust image representations by building an
adaptive model based on sparse coding. Lastly, Quanz et al.
[16, 17] have explored sparse coding to extract features for
knowledge transfer. However, their method adopts a kernel
density estimation (KDE) technique to estimate the PDFs
of distributions and then minimizes the Jensen-Shannon di-

vergence between them. This is a more restricted procedure
than TSC and is prone to overfitting. Moreover, our work
additionally incorporates the graph Laplacian term of coef-
ficients [24] in the objective function, which can discover
more discriminating representations for classification tasks.

3. Preliminaries

3.1. Sparse Coding

Given a data matrix X = [x1, . . . ,x𝑛] ∈ ℝ
𝑚×𝑛, with

𝑛 data points sampled in the 𝑚-dimensional feature space,
let B = [b1, . . . ,b𝑘] ∈ ℝ

𝑚×𝑘 be the dictionary matrix
where each column b𝑖 represents a basis vector in the dic-
tionary, and let S = [s1, . . . , s𝑛] ∈ ℝ

𝑘×𝑛 be the coding
matrix where each column s𝑖 is a sparse representation for
a data point x𝑖. The goal of sparse coding is to learn a dic-
tionary (over-complete if 𝑘 > 𝑚) and corresponding sparse
codes such that input data can be well approximated [16].
Assuming the reconstruction error for a data point follows a
zero-mean Gaussian distribution with isotropic covariance,
while taking a Laplace prior for the coding coefficients and
a uniform prior for the basis vectors, then the maximum a
posterior estimate (MAP) of B and S given X is reduced to

min
B,S

∥X−BS∥2𝐹 + 𝜆
𝑛∑

𝑖=1

∣s𝑖∣ 𝑠.𝑡. ∥b𝑖∥2 ≤ 𝑐, ∀𝑖 = 1, . . . , 𝑘

(1)
where 𝜆 is a tunable regularization parameter to trade off

the sparsity of coding and the approximation of input data.
The constraints on the basis vectors are to control the model
complexity. Although the objective function in Equation (1)
is not convex in both variables, it is convex in either B or
S. Therefore, it can be solved by alternatingly optimizing
one variable while fixing the other one. Finally, it can be
reduced to an ℓ1-regularized least squares problem and an
ℓ2-constrained least squares problem, both of which can be
solved efficiently by existing optimization software [9, 11].

3.2. Graph Regularized Sparse Coding

To make the basis vectors respect the intrinsic geometric
structure underlying the input data, Cai et al. [24] proposed
a Graph Regularized Sparse Coding (GraphSC) method,
which further explores the manifold assumption [2]. Graph-
SC assumes that if two data points x𝑖 and x𝑗 are close in
the intrinsic geometry of data distribution, then their cod-
ings s𝑖 and s𝑗 are also close. Given a set of 𝑚-dimensional
data points {x1, . . . ,x𝑛}, GraphSC constructs a 𝑝-nearest
neighbor graph 𝐺 with 𝑛 vertices each representing a data
point. Let W be the weight matrix of 𝐺, if x𝑖 is among the
𝑝-nearest neighbor of x𝑗 or vice versa,𝑊𝑖𝑗 = 1; otherwise,
𝑊𝑖𝑗 = 0. Define 𝑑𝑖 =

∑𝑛
𝑗=1𝑊𝑖𝑗 , D = diag(𝑑1, . . . , 𝑑𝑛),

and graph Laplacian L = D −W. A reasonable criterion
for preserving the geometric structure in graph 𝐺 is to min-
imize 1

2

∑𝑛
𝑖,𝑗=1 ∥s𝑖 − s𝑗∥2𝑊𝑖𝑗 = tr

(
SLST

)
. Integrating
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this criterion into Equation (1) leads to the GraphSC [6, 24]:

min
B,S

∥X−BS∥2𝐹 + 𝛾tr
(
SLST

)
+ 𝜆

∑𝑛

𝑖=1
∣s𝑖∣

𝑠.𝑡. ∥b𝑖∥2 ≤ 𝑐, 𝑖 = 1, . . . , 𝑘
(2)

where 𝛾 is a graph regularization parameter to trade off the
weight between sparse coding and geometric preservation.

4. Transfer Sparse Coding

In this section, we present the Transfer Sparse Coding
(TSC) algorithm for robust image representation, which ex-
tends GraphSC by taking into account the minimization of
distribution divergence between labeled and unlabeled data.

4.1. Problem Definition

Given labeled data 𝒟𝑙 = {(x1, 𝑦1), . . . , (x𝑛𝑙
, 𝑦𝑛𝑙

)} with
𝑛𝑙 examples, unlabeled data 𝒟𝑢 = {x𝑛𝑙+1, . . . ,x𝑛𝑙+𝑛𝑢

}
with 𝑛𝑢 examples, denote X = [x1, . . . ,x𝑛] ∈ ℝ

𝑚×𝑛, 𝑛 =
𝑛𝑙 + 𝑛𝑢 as the input data matrix. Assume that the labeled
and unlabeled data are sampled from different probability
distributions in an𝑚-dimensional feature space. Frequently
used notations and descriptions are summarized in Table 1.

Problem 1 (Transfer Sparse Coding) Given labeled data
𝒟𝑙 and unlabeled data𝒟𝑢 under different distributions, our
goal is to learn a dictionary B and a sparse coding S which
performs robustly across the labeled and unlabeled data.

With Transfer Sparse Coding (TSC), we aim to construct
a robust representation for images sampled from different
distributions. In this way, a supervised classifier trained on
the labeled data can generalize better on the unlabeled data.

4.2. Objective Function

To make sparse coding robust to different probability dis-
tributions, one may expect that the basis vectors can capture
the commonality underlying both the labeled and unlabeled
data, rather than only the individual property in the labeled
data. However, even in the extracted 𝑘-dimensional sparse
representation, the distribution difference between labeled
and unlabeled data will still be significantly large. Thus one
major computational problem is to reduce the distribution d-
ifference by explicitly minimizing some predefined distance
measures. To realize this idea, a natural strategy is to make
the probability distributions of labeled and unlabeled data
close to each other in the sparse representation. That is, by
representing all data points X with the learned coding ma-
trix S, the probability distributions of the sparse codes for
the labeled and unlabeled data should be close enough. In
this paper, we follow [7, 13, 14] and adopt the empirical
Maximum Mean Discrepancy (MMD) as the nonparametric
distance measure to compare different distributions, which

Table 1. Notations and descriptions used in this paper.
Notation Description Notation Description

𝒟𝑙,𝒟𝑢 labeled/unlabeled data X input data matrix
𝑛𝑙, 𝑛𝑢 #labeled/unlabeled examples B dictionary matrix

𝑚 #shared features S coding matrix
𝑘, 𝑝 #basis vectors/nearest neighbors M MMD matrix

𝜇, 𝛾, 𝜆 MMD/graph/sparsity reg. param. L graph Laplacian matrix

computes the distance between the sample means of the la-
beled and unlabeled data in the 𝑘-dimensional coefficients:
∥∥∥∥∥∥
1

𝑛𝑙

𝑛𝑙∑
𝑖=1

s𝑖 − 1

𝑛𝑢

𝑛𝑙+𝑛𝑢∑
𝑗=𝑛𝑙+1

s𝑗

∥∥∥∥∥∥

2

=
𝑛∑

𝑖,𝑗=1

sT𝑖 s𝑗𝑀𝑖𝑗 = tr
(
SMST

)

(3)
where M is the MMD matrix and is computed as follows

𝑀𝑖𝑗 =

⎧⎨⎩
1/𝑛2𝑙 , x𝑖,x𝑗 ∈ 𝒟𝑙

1/𝑛2𝑢, x𝑖,x𝑗 ∈ 𝒟𝑢

−1
𝑛𝑙𝑛𝑢

, otherwise

(4)

By regularizing Equation (2) with Equation (3), dictio-
nary matrix B is refined and the probability distributions of
labeled and unlabeled data are drawn close under the new
representation S. We obtain the objective function for TSC:

min
B,S

∥X−BS∥2𝐹 + tr
(
S (𝜇M+ 𝛾L)ST

)
+ 𝜆

∑𝑛

𝑖=1
∣s𝑖∣

𝑠.𝑡. ∥b𝑖∥2 ≤ 𝑐,∀𝑖 = 1, . . . , 𝑘
(5)

where 𝜇 > 0 is the MMD regularization parameter trading
off the weight between GraphSC and distribution matching.
To compare the effectiveness between MMD regularization
and graph regularization (GraphSC), we refer to the special
case of TSC with 𝛾 = 0 as TSCMMD and test it empirically.

The MMD regularization in Equation 5 is important to
make TSC robust to different probability distributions. Ac-
cording to Gretton et al. [7], MMD will asymptotically
approach zero if and only if the two distributions are the
same. By minimizing MMD, TSC can match distributions
between labeled and unlabeled data based on sparse coding.

Following [9, 11, 24], we divide the optimization of TSC
into two iterative steps: 1) learning transfer sparse codes S
with dictionary B fixed, i.e., an ℓ1-regularized least squares
problem; and 2) learning dictionary B with transfer sparse
codes S fixed, i.e., an ℓ2-constrained least squares problem.

4.3. Learning Transfer Sparse Codes

We solve optimization problem (5) for transfer sparse
codes S. By fixing dictionary B, problem (5) becomes

min
S
∥X−BS∥2𝐹 + tr

(
S (𝜇M+ 𝛾L)ST

)
+ 𝜆

∑𝑛

𝑖=1
∣s𝑖∣
(7)

Unfortunately, problem (7) is nondifferentiable when s𝑖
takes values of 0, which makes standard unconstrained op-
timization techniques infeasible. Several recent approaches
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Algorithm 1: Learning Transfer Sparse Codes
Input: Data matrix X, dictionary B, MMD matrix M, graph Laplacian matrix L, MMD/graph/sparsity regularization parameters 𝜇, 𝛾, 𝜆.
Output: Current optimal coding matrix S∗ = [s∗1, . . . , s

∗
𝑛].

1 begin Learning Transfer Sparse Codes
2 foreach s𝑖, 𝑖 ∈ [1, 𝑛] do
3 step Initialize

4 s𝑖 := 0,𝜽 := 0, and active set𝒜 := ∅, where 𝜃𝑗 ∈ {−1, 0, 1} denotes sign(𝑠(𝑗)𝑖 ).

5 step Activate

6 From zero coefficients of s𝑖, select 𝑗 := argmax𝑗 ∣∇(𝑗)
𝑖 𝑔 (s𝑖)∣. Activate 𝑠

(𝑗)
𝑖 (add 𝑗 to𝒜) only if it locally improves (9), namely:

7 If∇(𝑗)
𝑖 𝑔 (s𝑖) > 𝜆, then set 𝜃𝑗 := −1,𝒜 := {𝑗} ∪ 𝒜; else if∇(𝑗)

𝑖 𝑔 (s𝑖) < −𝜆, then set 𝜃𝑗 := 1,𝒜 := {𝑗} ∪ 𝒜.

8 step Feature-sign Search
9 Let B̂ be a submatrix of B that contains only the columns in𝒜; let ŝ𝑖, ĥ𝑖, and 𝜽 be subvectors of s𝑖, h𝑖, and 𝜽 in𝒜, respectively.

10 Compute the solution to the resulting unconstrained QP: min 𝑓 (ŝ𝑖) = ∥x𝑖 − B̂ŝ𝑖∥2 + (𝜇𝑀𝑖𝑖 + 𝛾𝐿𝑖𝑖) ŝ
T
𝑖 ŝ𝑖 + ŝT𝑖 ĥ𝑖 + 𝜆𝜽Tŝ𝑖

11 Let ∂𝑓 (ŝ𝑖) /∂ŝ𝑖 := 0, we can obtain the optimal value of s𝑖 under the current𝒜:

ŝnew𝑖 :=
(
B̂TB̂+ (𝜇𝑀𝑖𝑖 + 𝛾𝐿𝑖𝑖) I

)−1 (
B̂Tx𝑖 −

(
𝜆𝜽 + ĥ𝑖

)
/2

)
(6)

12 Perform a discrete line search on the closed line segment from ŝ𝑖 to ŝnew𝑖 :
13 Check the objective value at ŝnew𝑖 and all other points where any coefficient changes sign.
14 Update ŝ𝑖 (and the corresponding entries in s𝑖) to the point with the lowest objective value.
15 Remove zero coefficients of ŝ𝑖 from𝒜 and update 𝜽 := sign (s𝑖).

16 step Check Optimality Conditions

17 (a) Optimality condition for nonzero coefficients: ∇(𝑗)
𝑖 𝑔 (s𝑖) + 𝜆sign(𝑠

(𝑗)
𝑖 ) = 0, ∀𝑠(𝑗)𝑖 ∕= 0

18 If condition (a) is not satisfied, go to step “Feature-sign Search” (without any new activation); else check condition (b).

19 (b) Optimality condition for zero coefficients: ∣∇(𝑗)
𝑖 𝑔 (s𝑖)∣ ≤ 𝜆,∀𝑠(𝑗)𝑖 = 0

20 If condition (b) is not satisfied, go to step “Activate”; otherwise return s𝑖 as the optimal solution, redenote it as s∗𝑖 .

have been proposed to solve the ℓ1-regularized least squares
problem [1, 9, 11, 24], where the coordinate descent opti-
mization strategy is often adopted to update each vector s𝑖
individually with the other vectors {s𝑗}𝑗 ∕=𝑖 fixed. To facili-
tate vector-wise manipulations, we rewrite problem (7) as

min
{s𝑖}

𝑛∑
𝑖=1

∥x𝑖 −Bs𝑖∥2 +
𝑛∑

𝑖,𝑗=1

(𝜇𝑀𝑖𝑗 + 𝛾𝐿𝑖𝑗) s
T
𝑖 s𝑗 + 𝜆

𝑛∑
𝑖=1

∣s𝑖∣

(8)
The optimization problem involving only s𝑖 is reduced to

min
s𝑖
𝑓 (s𝑖) = ∥x𝑖 −Bs𝑖∥2 + 𝜆

∑𝑘

𝑗=1
∣𝑠(𝑗)𝑖 ∣

+ (𝜇𝑀𝑖𝑖 + 𝛾𝐿𝑖𝑖) s
T
𝑖 s𝑖 + sT𝑖 h𝑖

(9)

h𝑖 = 2
∑

𝑗 ∕=𝑖 (𝜇𝑀𝑖𝑗 + 𝛾𝐿𝑖𝑗) s𝑗 , 𝑠(𝑗)𝑖 is 𝑗th element of s𝑖.
We adapt the feature-sign search algorithm [9] to solve

the optimization problem (9). In nonsmooth optimization
methods for solving nondifferentiable problems, a neces-
sary condition for a parameter vector to be a local minimum
is that the zero-vector is an element of the subdifferential—
the set containing all subgradients at the parameter vector
[5]. Define 𝑔 (s𝑖) = ∥x𝑖 −Bs𝑖∥2 + (𝜇𝐾𝑖𝑖 + 𝛾𝐿𝑖𝑖) s

T
𝑖 s𝑖 +

sT𝑖 h𝑖, then 𝑓 (s𝑖) = 𝑔 (s𝑖) + 𝜆
∑𝑘

𝑗=1 ∣𝑠(𝑗)𝑖 ∣. Let ∇(𝑗)
𝑖 ∣s𝑖∣

be the subdifferentiable value of the 𝑗th coefficient of s𝑖: if
∣𝑠(𝑗)𝑖 ∣ > 0, ∇(𝑗)

𝑖 ∣s𝑖∣ = sign(𝑠
(𝑗)
𝑖 ); else 𝑠(𝑗)𝑖 = 0, ∇(𝑗)

𝑖 ∣s𝑖∣

is nondifferentiable and can take values in {−1, 1}. The
optimality conditions for getting minimum value of 𝑓(s𝑖) is{

∇(𝑗)
𝑖 𝑔 (s𝑖) + 𝜆sign(𝑠

(𝑗)
𝑖 ) = 0, if ∣𝑠(𝑗)𝑖 ∣ ∕= 0

∣∇(𝑗)
𝑖 𝑔 (s𝑖)∣ ≤ 𝜆, otherwise

(10)

We consider how to select optimal subgradients ∇(𝑗)
𝑖 𝑓 (s𝑖)

when the optimality conditions (10) are violated, that is,
∣∇(𝑗)

𝑖 𝑔 (s𝑖)∣ > 𝜆 if 𝑠(𝑗)𝑖 = 0. Suppose that ∇(𝑗)
𝑖 𝑔 (s𝑖) > 𝜆,

which implies ∇(𝑗)
𝑖 𝑓 (s𝑖) > 0 regardless of sign(𝑠(𝑗)𝑖 ). In

this case, to decrease 𝑓(s𝑖), we need to decrease 𝑠(𝑗)𝑖 . Since

𝑠
(𝑗)
𝑖 starts at zero, any infinitesimal adjustment to 𝑠(𝑗)𝑖 will

take it negative. Thus we directly let sign(𝑠(𝑗)𝑖 ) = −1. Sim-

ilarly, if ∇(𝑗)
𝑖 𝑔 (s𝑖) < −𝜆, we directly let sign(𝑠(𝑗)𝑖 ) = 1.

Notice that, if we have known the signs of 𝑠(𝑗)𝑖 ’s at the

optimal value, we can just replace each term ∣𝑠(𝑗)𝑖 ∣ with ei-

ther 𝑠𝑗𝑖 (if 𝑠(𝑗)𝑖 > 0), −𝑠𝑗𝑖 (if 𝑠𝑗𝑖 < 0), or 0 (if 𝑠𝑗𝑖 = 0).
Thus by considering only nonzero coefficients, problem (9)
is reduced to an unstrained quadratic optimization problem
(QP), which can be solved analytically and efficiently. The
sketch of learning transfer sparse codes {s𝑖 : 𝑖 ∈ [1, 𝑛]} is:

∙ for each s𝑖, search for the signs of {𝑠(𝑗)𝑖 : 𝑗 ∈ [1, 𝑘]};
∙ solve the equivalent QP problem to get the optimal s∗𝑖

that minimizes the vector-wise objective function (9);
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∙ return the optimal coding matrix S∗ = [s∗𝑖 , . . . , s
∗
𝑛].

It maintains an active set𝒜 ≜ {𝑗∣𝑠(𝑗)𝑖 = 0,∇(𝑗)
𝑖 𝑔 (s𝑖) > 𝜆}

for potentially nonzero coefficients and their corresponding
signs 𝜽 = [𝜃1, . . . , 𝜃𝑘] while updating each s𝑖, and system-
atically searches for the optimal active set and coefficients
signs which minimize objective function (9). In each acti-
vate step, the algorithm uses the zero-value whose violation
to the optimality condition ∣∇(𝑗)

𝑖 𝑔 (s𝑖)∣ > 𝜆 is the largest.
In each feature-sign step: 1) given a current value for the
active set and the signs, it computes the analytical solution
snew𝑖 to the resulting unconstrained QP; 2) it updates the
solution, the active set, and the signs using an efficient dis-
crete line search between the current solution and snew𝑖 . The
complete learning procedure is summarized in Algorithm 1.

4.4. Learning Dictionary

Learning the dictionary B with the coding S fixed is re-
duced to the following ℓ2-constrained optimization problem

min
B
∥X−BS∥2𝐹 , 𝑠.𝑡. ∥b𝑖∥2 ≤ 𝑐,∀𝑖 = 1, . . . , 𝑘 (11)

This problem has been well studied by prior works [9, 11,
24]. For space limitation, we omit the technical details here.

5. Experiments

In this section, we conduct extensive experiments for im-
age classification problems to evaluate the TSC approach.

5.1. Data Preparation

USPS, MNIST, PIE, MSRC, and VOC2007 (see Figure 1
and Table 2) are five benchmark datasets widely adopted to
evaluate computer vision and patter recognition algorithms.

USPS1 dataset consists of 7,291 training images and
2,007 test images of size 16× 16.

MNIST2 dataset has a training set of 60,000 examples
and a test set of 10,000 examples of size 28× 28.

From Figure 1, we see that USPS and MNIST follow
very different distributions. They share 10 semantic classes,
each corresponding to one digit. To speed up experiments,
we construct one dataset USPS vs MNIST by randomly sam-
pling 1,800 images in USPS to form the training data, and
randomly sampling 2,000 images in MNIST to form the test
data. We uniformly rescale all images to size 16 × 16, and
represent each image by a 256-dimensional vector encoding
the gray-scale values of all pixels. In this way, the training
and test data can share the same label set and feature space.

PIE3, which stands for “Pose, Illumination, Expression”,
is a benchmark face database. The database has 68 individu-
als with 41,368 face images of size 32×32. The face images

1http://www-i6.informatik.rwth-aachen.de/˜keysers/
usps.html

2http://yann.lecun.com/exdb/mnist
3http://vasc.ri.cmu.edu/idb/html/face

Figure 1. Examples of PIE, USPS, MNIST, MSRC, and VOC2007.

Table 2. Statistics of the six benchmark image datasets.
Dataset Type #Examples #Features #Classes

USPS Digit 1,800 256 10
MNIST Digit 2,000 256 10

PIE1 Face 2,856 1,024 68
PIE2 Face 3,329 1,024 68

MSRC Photo 1,269 240 6
VOC2007 Photo 1,530 240 6

were captured by 13 synchronized cameras and 21 flashes,
under varying poses, illuminations, and expressions.

In the experiments, we adopt two preprocessed versions
of PIE4,i.e., PIE1 [4] and PIE2 [3], which are generated by
randomly sampling the face images from the near-frontal
poses (C27) under different lighting and illumination con-
ditions. We construct one dataset PIE1 vs PIE2 by selecting
all 2,856 images in PIE1 to form the training data, and all
3,329 images in PIE2 to form the test data. Due to the vari-
ations in lighting and illumination, the training and test data
can follow different distributions in the same feature space.

MSRC5 dataset is provided by Microsoft Research Cam-
bridge, which contains 4,323 images labeled by 18 classes.

VOC20076 dataset (the training/validation subset) con-
tains 5,011 images annotated with 20 concepts.

From Figure 1, we see that MSRC and VOC2007 follow
very different distributions, since MSRC is from standard
images for evaluations, while VOC2007 is from digital pho-
tos in Flickr7. They share the following 6 semantic classes:
“aeroplane”, “bicycle”, “bird”, “car”, “cow”, “sheep”. We
construct one dataset MSRC vs VOC by selecting all 1,269
images in MSRC to form the training data, and all 1,530 im-
ages in VOC2007 to form the test data. Then following [19],
we uniformly rescale all images to be 256 pixels in length,
and extract 128-dimensional dense SIFT (DSIFT) features
using the VLFeat open package [18]. A 240-dimensional
codebook is created, where K-means clustering is used to
obtain the codewords. In this way, the training and test data
are constructed to share the same label set and feature space.

4http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.
html

5http://research.microsoft.com/en-us/projects/
objectclassrecognition

6http://pascallin.ecs.soton.ac.uk/challenges/VOC/
voc2007

7http://www.flickr.com
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5.2. Experimental Setup

5.2.1 Baseline Methods

We compare the TSC approach with five state-of-the-art
baseline methods for image classification, as shown below.

∙ Logistic Regression (LR)
∙ Principle Component Analysis (PCA) + LR
∙ Sparse Coding (SC) [9] + LR
∙ Graph Regularized SC (GraphSC) [24] + LR
∙ Our proposed MMD Regularized SC (TSCMMD) + LR

All SC, GraphSC, TSCMMD, and TSC algorithms can learn
sparse representations for input data points. In particular,
SC is a special case of TSC with 𝜇 = 𝛾 = 0, GraphSC is a
special case of TSC with 𝜇 = 0, TSCMMD is a special case
of TSC with 𝛾 = 0. Note that, our proposed TSCMMD is
essentially different from the method introduced in Quanz et
al. [16, 17], which adopts kernel density estimation (KDE)
to estimate the PDFs of distributions and then minimizes the
Jensen-Shannon divergence between them. This is a stricter
regularization than MMD and may be prone to overfitting.

5.2.2 Implementation Details

Following [24, 14], SC, GraphSC, TSCMMD, and TSC are
performed on both labeled and unlabeled data as an unsu-
pervised dimensionality reduction procedure, then a super-
vised LR classifier is trained on labeled data to classify un-
labeled data. We apply PCA to reduce the data dimensional-
ity by keeping 98% information in the largest eigenvectors,
and then perform all above algorithms in the PCA subspace.

Under our experimental setup, it is impossible to auto-
matically tune the optimal parameters for the target classi-
fier using cross validation, since the labeled and unlabeled
data are sampled from different distributions. Therefore, we
evaluate the five baseline methods on our datasets by em-
pirically searching the parameter space for the optimal pa-
rameter settings, and report the best results of each method.
For LR8, we set the trade-off parameter 𝐶 by searching
𝐶 ∈ {0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100}. For SC9 [9]
based methods, we set the #basis vectors as 𝑘 = 128. For
GraphSC10 [24], we set the trade-off parameter 𝛾 by search-
ing 𝛾 ∈ {0.01, 0.1, 1, 10, 100}. For dimensionality reduc-
tion methods, we use ℓ2-norm normalized feature vectors.

The TSC approach has three model parameters: MMD
regularization parameter 𝜇, graph regularization parameter
𝛾, and sparsity regularization parameter 𝜆. In the coming
sections, we provide empirical analysis on parameter sen-
sitivity, which verifies that TSC can achieve stable perfor-

8http://www.csie.ntu.edu.tw/˜cjlin/liblinear
9http://ai.stanford.edu/˜hllee/softwares/

nips06-sparsecoding.htm
10http://www.cad.zju.edu.cn/home/dengcai/Data/

SparseCoding.html

Dataset USPS vs MNIST PIE1 vs PIE2 MSRC vs VOC

LR 31.70±0.00 29.53±0.00 34.38±0.00
PCA 32.15±0.00 28.93±0.00 32.75±0.00
SC [9] 36.90±0.65 17.74±0.85 30.28±0.93
GraphSC [24] 41.18±0.15 19.72±1.55 30.61±0.34
TSCMMD 47.30±2.13 36.71±1.76 34.27±0.45
TSC 57.77±1.69 37.30±1.68 36.47±0.40

Table 3. Classification accuracy (%) on cross-distribution datasets.

mance under a wide range of parameter values. When com-
paring with the baseline methods, we use the following pa-
rameter settings: 𝑘 = 128, 𝑝 = 5, 𝜇 = 105, 𝛾 = 1, 𝜆 = 0.1,
and #iterations 𝑇 = 100. We run TSC 10 repeated times to
remove any randomness caused by random initialization.

We use classification Accuracy on test data as the evalu-
ation metric, which is widely used in literature [17, 24, 16]

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∣x : x ∈ 𝒟𝑡𝑠 ∧ 𝑦 (x) = 𝑦 (x)∣

∣x : x ∈ 𝒟𝑡𝑠∣
where 𝒟𝑡𝑠 is the set of test data, 𝑦(x) is the truth label of x,
𝑦(x) is the label predicted by the classification algorithm.

5.3. Experimental Results

The classification accuracy of TSC and the five baseline
methods on the three cross-distribution image datasets USP-
S vs MNIST, PIE1 vs PIE2, and MSRC vs VOC is illustrated
in Table 3. From the results we observe that TSC achieves
much better performance than the first four baseline meth-
ods. The average classification accuracies of TSC on the
three datasets are 57.77%, 37.30%, and 36.47%, respective-
ly. The performance improvements are 16.59%, 7.77%, and
2.09% compared to the best baseline methods GraphSC and
LR, respectively. Furthermore, from the results averaged by
10 repeated runs in Table 3, we see that the deviations are
small compared to the accuracy improvements, which vali-
dates that TSC performs stably to the random initialization.
This verifies that TSC can construct robust sparse represen-
tations for classifying cross-distribution images accurately.

We have noticed that our TSCMMD approach, which is a
special case of TSC with 𝛾 = 0, also outperforms all the
first four baseline methods. This validates that minimizing
the distribution divergence is very important to make the
induced representations robust for cross-distribution image
classification. In particular, TSCMMD has significantly out-
performed GraphSC, which indicates that minimizing the
distribution divergence is more important than preserving
the geometric structure when labeled and unlabeled images
are sampled from different distributions. It is expected that
TSC can also achieve better performance than TSCMMD. By
incorporating the graph Laplacian term of coefficients into
TSC, we aim to enrich the sparse representations with more
discriminating power to benefit the classification problems.
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Figure 2. Similarity between sparse codes of GraphSC and TSC.

Standard supervised learning methods, i.e., LR, treat in-
put data from different distributions as if they were sampled
from the same distribution. In real applications, this strict
assumption is usually violated, since labeled training da-
ta and unlabeled test data are usually collected in different
time periods, or under different conditions. In this case, the
optimal decision hyperplane trained from the labeled data
cannot discriminate the unlabeled data effectively, leading
to poor classification performance, as is shown in Table 3.

Standard dimensionality reduction methods, i.e., PCA,
generally achieve comparable performance as LR. PCA s-
lightly outperforms LR on USPS vs MNIST, while slightly
underperforms LR on the other datasets. A possible reason
for preferring PCA is that it can extract a low-dimensional
subspace, where the distribution divergence may be reduced
to some extent. However, without explicitly reducing the
distribution divergence, it is not an always-successful case.

Sparse coding based methods, i.e., SC and GraphSC,
have either strong or vulnerable datasets. SC and Graph-
SC significantly outperform PCA on USPS vs MNIST, while
significantly underperform PCA on the other datasets. The
reason for preferring SC and GraphSC is that the sparse rep-
resentations can capture more succinct high-level semantics
for image understanding. By taking into account the graph
Laplacian regularizer, GraphSC can further outperform SC,
which verifies that the geometric structure can indeed enrich
the sparse representations with more discriminating power.
However, since the labeled data and unlabeled data are sam-
pled from different distributions as in our adopted datasets,
SC and GraphSC may further enlarge the distribution diver-
gence due to the sparse representation. Therefore, they may
be less robust than PCA for cross-distribution classification.
By extracting sparse representations and matching different
distributions simultaneously, TSC and TSCMMD can greatly
enhance the robustness of sparse coding, shown in Table 3.

5.4. Effectiveness Verification

We verify the effectiveness of our TSC by inspecting the
weight matrix W. We visualize in Figure 2 the values of

matrices obtained by running TSC on USPS vs MNIST with
𝜇 = 0 and 𝜇 = 105, and then computing W in Equation (2)
on sparse representation S. For clearer illustration, we sam-
ple 190 images in the dataset. Note that, the first 90 images
are from the labeled training data while the last 100 images
are from the unlabeled test data. Correspondingly, in weight
matrix W, the top-left and bottom-right blocks indicate the
within-distribution similarity, and the top-right and bottom-
left blocks indicate the between-distribution similarity.

Figure 2(a) shows the weight matrix W with 𝜇 = 0. We
observe that the between-distribution similarity is sparse,
indicating that the distribution difference is still very large,
even when feature extraction is performed. Most existing
sparse coding methods, such as SC and GraphSC, have not
explicitly minimized the distribution difference, resulting in
unsatisfactory performance for cross-distribution problems.

Figure 2(b) shows the weight matrix W with 𝜇 = 105.
This time, we observe that the between-distribution similar-
ity is greatly enriched. This naturally leads to better gener-
alization capability, that is, with sparse representation S, a
supervised classifier trained on the labeled training data is
expected to perform much better on the unlabeled test data.

5.5. Parameter Sensitivity

We conduct empirical analysis on parameter sensitivity
using all datasets, which validates that TSC can achieve op-
timal performance under a wide range of parameter values.

We run TSC with varying values of MMD regularization
parameter 𝜇. Theoretically, 𝜇 controls the weight of MMD
regularization, and larger values of 𝜇 will make the distri-
bution matching more important in TSC. An extreme case
is 𝜇→∞, where only distribution matching is guaranteed,
but both sparse coding and geometric preservation for the
input images are discarded. Another extreme case is 𝜇→ 0,
where only sparse coding and geometric preservation for in-
put images are guaranteed, but the distribution matching is
discarded. In both extreme cases, TSC cannot extract robust
sparse representations for cross-distribution image classifi-
cation. We plot the classification accuracy w.r.t. different
values of 𝜇 in Figure 3(a), and can choose 𝜇 ∈ [104, 106].

We run TSC with varying values of graph regularization
parameter 𝛾. Theoretically, 𝛾 controls the weight of graph
regularization, and larger values of 𝛾 will make the geomet-
ric preservation more important in TSC. An extreme case is
𝛾 → ∞, where only the geometric preservation is guaran-
teed. Then TSC will degenerate to standard spectral cluster-
ing, which cannot reduce the distribution divergence. An-
other extreme case is 𝛾 → 0, where the geometric preser-
vation is discarded. Then TSC will degenerate to TSCMMD,
which cannot enrich the new representations with discrimi-
nating power. We plot the classification accuracy w.r.t. dif-
ferent values of 𝛾 in Figure 3(b), and choose 𝛾 ∈ [0.01, 1].

We run TSC with varying values of sparsity regulariza-
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(b) graph regularization 𝛾
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Figure 3. Parameter sensitivity analysis and convergence study of the proposed TSC approach (dashed lines show the best baseline results).

tion parameter 𝜆. Theoretically, 𝜆 controls the complexity
of coding matrix S, and can prevent TSC from over-fitting
the input data or degenerating to trivial solutions during the
iterative procedure. More importantly, 𝜆 also controls the
sparsity level of TSC. When 𝜆 → 0, TSC will be ill-posed
since the over-complete approximation (𝑘 ≥ 𝑚) cannot be
well defined without proper regularization. On the contrary,
when 𝜆→∞, TSC will be dominated by the sparsity regu-
larization and the important properties of input data are not
captured. We plot the classification accuracy w.r.t. different
values of 𝜆 in Figure 3(c), and can choose 𝜆 ∈ [0.001, 0.1].

5.6. Convergence Study

Since TSC is an iterative algorithm, we empirically
check its convergence property. Figure 3(d) shows that the
objective value (averaged by #examples) decreases steadily
with more iterations and converges within 100 iterations.

6. Conclusion

In this paper, we propose a novel Transfer Sparse Coding
(TSC) approach for robust image representation. An impor-
tant advantage of TSC is the robustness to the distribution
difference between the labeled and unlabeled images, which
can substantially improve cross-distribution image classifi-
cation problems. Extensive experimental results on sever-
al benchmark datasets show that TSC can achieve superior
performance against state-of-the-art sparse coding methods.
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