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Abstract

In this paper, we address two problems in Sparse Sub-
space Clustering algorithm (SSC), i.e., scalability issue and
out-of-sample problem. SSC constructs a sparse similar-
ity graph for spectral clustering by using �1-minimization
based coefficients, has achieved state-of-the-art results for
image clustering and motion segmentation. However, the
time complexity of SSC is proportion to the cubic of prob-
lem size such that it is inefficient to apply SSC into large
scale setting. Moreover, SSC does not handle with out-of-
sample data that are not used to construct the similarity
graph. For each new datum, SSC needs recalculating the
cluster membership of the whole data set, which makes SSC
is not competitive in fast online clustering. To address the
problems, this paper proposes out-of-sample extension of
SSC, named as Scalable Sparse Subspace Clustering (SSS-
C), which makes SSC feasible to cluster large scale data
sets. The solution of SSSC adopts a ”sampling, clustering,
coding, and classifying” strategy. Extensive experimental
results on several popular data sets demonstrate the effec-
tiveness and efficiency of our method comparing with the
state-of-the-art algorithms.

1. Introduction
Clustering is one of the fundamental and important top-

ics in pattern recognition and computer version commu-

nities, which aims to group the similar patterns into the

same cluster by maximizing the inter-cluster dissimilarity

and the intra-cluster similarity. Over the past two decades,

a number of clustering approaches such as k-means cluster-

ing have been extensively studied. Recently, clustering in

non-linearly separable data has became a hot topic. To ad-

dress this problem, numerous methods have been proposed,

for example, kernel-based clustering [10], algebraic meth-

ods [20], iterative methods [27], statistical methods [19],

and spectral clustering [21]. In this paper, we mainly focus

on scalable spectral clustering algorithms.

Spectral clustering belongs to the family of subspace
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Figure 1. Architecture of our Scalable Sparse Subspace Clustering

algorithm.

clustering [26] which aims at finding a low-dimensional

subspace for each group of points. The assumption of spec-

tral clustering is that the high-dimensional data actually lie

on a low-dimensional manifold. It has achieved impres-

sive results in various applications [2, 5]. The basic idea

of spectral clustering is to find a cluster membership of the

data points by using the spectrum of the affinity matrix that

depicts the similarity among data points, and thus the con-

struction of similarity graph lies on its heart. In a similarity

graph, the vertex denotes a data point and the connection

weight between two points represents the similarity.

Generally, there are two ways to build a similarity graph.

One is based on pairwise distance, e.g. Euclidean distance.

However, the points are close in terms of pairwise distance

may not belong to the same subspace. As a result, the way

to construct similarity graph by using reconstruction rep-

resentation coefficient has became more and more popular

since it measures the similarity based on the data distribu-

tion. The representation coefficient based spectral cluster-

ing approaches assume that each data point can be denoted

as a linear combination of other data points owing to the

intrinsic similarity among the intra-subspace data, and thus

the representation coefficient can be regarded as a kind of

measurement. Several algorithms have been proposed, for
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example, Locally linear manifold clustering (LLMC) [13],

SMCE [8], �1-graph [5, 30], Low Rank Representation (L-

RR) [18] and L2-graph [24].

Recently, Elhamifar and Vidal [7, 9] constructed a s-

parse similarity graph by using �1-minimization based co-

efficients for spectral clustering, named Sparse Subspace

Clustering (SSC). It automatically selects the nearby points

for each datum by utilizing the principle of sparsity without

a fixed global parameter to determine the size of neighbor-

hood. However, SSC requires solving n optimization prob-

lems over n data points and calculating the eigenvectors of

the graph Laplacian matrix. Its computational complexity

is more than O(n3) even though the fast �1-solver is used,

which means that any medium sized data set will bring up

the scalability issues with SSC. Moreover, SSC is an offline

algorithm which does not handle with the data not used to

construct similarity graph (out-of-sample data). For each

new datum, SSC has to perform the algorithm over the w-

hole data set such that it is not suitable for fast online clus-

tering.

In this paper, we propose a simple but effective out-of-

sample extension of SSC, named as Scalable Sparse Sub-

space Clustering (SSSC), which resolves the scalability is-

sue in SSC as a kind of out-of-sample problem. The pro-

posed method adopts a ”sampling, clustering, coding, and

classifying” strategy, as shown in Figure 1. Our motivation

derives from the sparsity assumption that each data point

can be represented as a linear combination of a few basis

vectors. It implies that the union of the linear subspaces

spanned by in-sample data could equal or approximate to

that spanned by the original data. In other words, one could

use a small number of data points (in-sample data) to rep-

resent the original one without loss of information. Conse-

quently, in theory, the solution of scalability issue may be

not at the cost of clustering quality, which is an interesting

conclusion. The property may only belong to the represen-

tation coefficient based spectral clustering, which has not

been exploited to develop a scalable method as far as we

known.

The rest of the paper is organized as follows: Section 2

provides a brief review of SSC and some popular method-

s for large scale spectral clustering. Section 3 presents the

Scalable Sparse Subspace Clustering (SSSC) method. Sec-

tion 4 carries out the experiments to examine the effective-

ness of SSSC. Finally, Section 5 concludes this work.

2. Related Works
Except in some specified cases, lower-case bold letters

represent column vectors and upper-case bold ones repre-

sent matrices. AT denotes the transpose of the matrix A
whose pseudo-inverse is A−1, and I is reserved for iden-

tity matrix. Moreover, we summarize some notations used

throughout the paper in Table 1.

Table 1. Notations used in this paper.

Notation Definition

n the number of data points

m the dimensionality of data

k the number of clusters

p the number of in-sample data

ci,j the jth element of ci
Y = [y1,y2, . . . ,yn] data points

C = [c1, c2, . . . , cn] the sparse representation of Y
Yi = Y \ yi the data points except yi

A ∈ Rp×p affinity matrix

L ∈ Rp×p Laplacian matrix

v1,v2, . . . ,vk the first k eigenvectors of L

V ∈ Rp×k eigenvector matrix

X = [x1,x2, . . . ,xp] in-sample data

X̄ = [x̄1, x̄2, . . . , x̄n−p] out-of-sample data

2.1. Sparse Subspace Clustering

Recently, some researchers have explored to utilize the

inherent sparsity of sparse representation to construct a sim-

ilarity graph for dimension reduction [25], image analy-

sis [5], and so on. In these works, Elhamifar and Vi-

dal [7, 9] proposed the SSC algorithm for subspace seg-

mentation with well-founded recovery theory for indepen-

dent subspaces and disjoint subspaces. SSC calculates the

similarity among data points via solving the following opti-

mization problem:

min ‖ci‖1 s.t. ‖yi −Yici‖2 < δ, (1)

where ci ∈ Rn is the sparse representation of data point

yi ∈ Rm over dictionary Yi � [y1 . . .yi−1 0 yi+1 . . .yn],
and δ ≥ 0 is the error tolerance. The solution of the (1)

can be achieved by using convex optimization methods re-

ferring to [31] which provides an extensive survey.

After getting the coefficients of all data points, SSC per-

forms spectral clustering [21] over the sparse coefficients as

described in Algorithm 1.

It is easy to find that the computational complexity of SS-

C is very high. For example, SSC needs O(tn2m2+ tmn3)
to construct a similarity graph even though it adopts Ho-

motopy optimizer [23] to get the sparsest solution, where

Homotopy optimizer is one of the fastest �1-minimization

algorithm according to [31] and t denotes the number of it-

erations of the algorithm. In addition, it will take O(n3) to

calculate the eigenvectors of the Laplacian matrix L. Con-

sider L is a sparse matrix, the time complexity of this step

could be reduced to O(mn + mn2) when Lanczos eigen-

solver is used. However, it is still a daunting task even for a

moderate n > 100, 000.
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Algorithm 1 Sparse Subspace Clustering (SSC).

Input: A set of data points Y ∈ Rm×n, and the number of

desired clusters k.

1: Solve the �1-minimization problem (1) to get the col-

lection of ci.
2: Form an affinity matrix A = |C|T + |C|, where C =

[c1, c2, . . . , cn].
3: Construct a Laplacian matrix L = I−D−1/2AD−1/2

using A, where D = diag{di} with di =
∑n

j=1 Aij .

4: Obtain the eigenvector matrix V ∈ Rn×k which con-

sists of the first k normalized eigenvectors of L corre-

sponding to its k smallest eigenvalues.

5: Get the segmentations of the data by performing k-

means on the row of V.

Output: The cluster assignments of Y.

2.2. Large Scale Spectral Clustering

Recently, some works have devoted to solve the scala-

bility issue in spectral clustering. One natural option is to

reduce the time cost of eigen-decomposition over Laplacian

matrix. Fowlkes et al. [11] proposed using Nyström method

to avoid computing the whole similarity matrix. Chen et

al. [3] performed eigen-decomposition in a distributed sys-

tems.

Another option is to reduce the data size by performing

sampling techniques or replacing the original data set with

a small number of points. Yan et al. [30] provided a frame-

work for fast approximate spectral clustering by selecting

some representative points based on k-means or random

projection trees. Chen and Cai [4] proposed an approach,

called Landmark-based Spectral Clustering (LSC). It firstly

chooses p representative points (landmarks) from data using

k-means clustering or randomly sampling; then, construct-

s a Laplacian matrix L = ATA, where the element aij
of A ∈ Rp×n is the similarity between the original data

point and the landmark based on pairwise distance. final-

ly, performs spectral clustering over L. Wang et al. [28]

firstly selected landmarks by performing selective sampling

technique; then performed spectral clustering over the cho-

sen samples based on pairwise distance; after that, project-

ed out-of-sample data into a low-dimensional space using

Locality Preserving Projections algorithm [16]; finally, got

the labels of out-of-sample data by using k-nearest neigh-

bor classifier in the embedding space. Based on similar

idea, Nie et al. [22] proposed Spectral Embedded Clustering

(SEC) which groups out-of-sample data by using subspace

learning methods.

The second option, which selects some key data points

to represent the others, has became more and more popu-

lar owing to its effectiveness and efficiency. However, all

these approaches focus on developing a large scale method

for pairwise similarity based spectral clustering and did not

explore the intrinsic characteristics of data structure. In

this paper, we will fill this gap by making SSC feasible for

grouping out-of-sample data. As far as we know, it is the

first work to address the scalability issue of non-pairwise

similarity based spectral clustering.

3. Scalable Sparse Subspace Clustering
In this section, we present the Scalable Sparse Subspace

Clustering algorithm (SSSC) which is an out-of-sample ex-

tension of SSC [7, 9]. We make SSC feasible to cluster large

scale data sets in ”sampling, clustering, coding, and classi-

fying” manner. The first two steps chose a small number of

data points as in-sample data and perform SSC over it. The

third and fourth steps encode out-of-sample data as a linear

combination of in-sample data and assign the non-sampled

data to the cluster which produces the minimal residual over

the chosen data, respectively.

3.1. Algorithm Description and Discussion

The basic idea of our approach is: for a set of data points

Y drawn from the linear subspaces {Si}ki=1, each subspace

Si is spanned by a collection of data points Bi � {yi}di
i=1,

where di is the dimensionality of Si. Then, any data points

yi ∈ Si and yi /∈ Bi can be represented as a linear com-

bination of Bi. It implies that scalable spectral clustering

could be resolved in two steps.

The first step is performing spectral clustering over a s-

mall number of data points (in-sample data) which could

exactly or approximately represent the original data space.

In other words, out-of-sample data has no influence on the

segmentation result. The assumption is reasonable and has

been widely used in many works, e.g., Neighbor Preserving

Embedding [15]. It is an interesting and challenging prob-

lem to select some key points as in-sample data. Benefit

from the characteristic of large scale data set, we adopt u-

niform random sampling technique which has been proved

competitive in practice [4, 6, 30].

After getting the cluster assignment of in-sample data, it

is nature to obtain the cluster membership of out-of-sample

data by performing classification over it. Based on the

above analysis, we can find that the clustering error of SSSC

mainly comes from the grouping error of out-of-sample da-

ta. Therefore, it is a key to design an effective approach for

grouping the non-sampled data. The most simple method is

to directly assign out-of-sample data to the nearest cluster

in terms of Euclidean distance or other pairwise distances.

However, most high-dimensional data are not lie into the

Euclidean space such that Euclidean distance is not a good

metric to measure the adjacency relationship among data

points. On the other hand, a important task of subspace

clustering is to find a low-dimensional representation for

each data point. Therefore. we adopted sparse representa-
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tion based classification (SRC) [29] which could satisfy the

requirements. The first step of SRC is coding the testing

sample y over the training data D:

min ‖c‖1 s.t. ‖y −Dc‖2 < δ, (2)

where the columns of D are sorted according to their labels.

Once the optimal c is achieved, SRC assigns y to the

class that has the minimum residual:

ri(y) = ‖y −D · δi(c∗)‖2. (3)

identity(y) = argmin
i

{ri(y)}, (4)

where the nonzero entries of δi(c
∗) ∈ Rn are the elements

in c∗ that are associated with ith class, and the identity(y)
denotes the label of y.

Although SRC has achieved impressive results in pat-

tern recognition, a recent work [32] empirically showed that

non-sparse linear representation could achieve competitive

recognition rate with less time cost. Therefore, to reduce

the computational cost for grouping out-of-sample data, the

main block in large scale clustering, we perform linear cod-

ing scheme but sparse one by solving

min
c
‖y −Dc‖22 + λ‖c‖22, (5)

where the second term is used to avoid over-fitting. The

solution of (5) is named as Collaborative Representation by

Zhang et al. [32].

Then, the classification results are achieved by calculat-

ing regularized residuals over all classes by computing

ri(y) =
‖y −Dδi(c

∗)‖2
‖δi(c∗)‖2 . (6)

and assigning y to the class which produces the minimal

ri(y) using (4).

Algorithm 2 summarizes our algorithm.

3.2. Complexity Analysis

Suppose p samples are randomly selected from n da-

ta points with dimensionality m, we need O(t1p
2m2 +

t1mp3 + p2 + t2pk
2) to get the cluster membership over

in-sample data when Homotopy optimizer [23] is used to

solve �1-minimization problem and Lanczos eigensolver is

used to compute the eigenvectors of Laplacian matrix L,

where k is the number of desired clusters, and t1 and t2
are the number of iterations of Homotopy optimizer and k-

means clustering, respectively.

To group out-of-sample data points, our approach needs

computing the inverse of the matrix XXT to get the lin-

ear representation of X̄ ∈ Rm×(n−p). Therefore, the time

complexity is O(pm2 + p3 + (n− p)p2).

Algorithm 2 Scalable Sparse Subspace Clustering (SSSC).

Input: A set of data points Y ∈ Rm×n, the number of

desired clusters k, and the rigid regression parameter

λ = 1e− 6.

1: Select p data points from Y using random sampling

or other methods, e.g. k-means clustering, denoted by

X = (x1,x2, . . . ,xp).
2: Perform SSC (Algorithm 1) over X.

3: Calculate the linear representation of out-of-sample da-

ta X̄ over X by

C̄∗i = (XTX+ λI) ·XT X̄. (7)

4: Calculate the normalized residuals of x̄i ∈ X̄ over all

classes by

rj(x̄i) =
‖x̄i −Xδj(c

∗
i )‖2

‖δj(c∗i )‖2
. (8)

5: Assign x̄i to the class which produces the minimal

residual by

identity(x̄i) = argmin
j

{rj(x̄i)}. (9)

Output: The cluster membership of X and X̄.

Putting everything together, the computational com-

plexity of SSSC is O(t1mp3 + t2pk
2 + np2) owing to

k,m < p � n, which is obviously less than that of SSC

(O(t1mn3 + t2nk
2)). On the other hand, the space com-

plexity of SSSC is only O(p2), comparing with O(n2) of

SSC.

4. Experimental verification and analysis
In this section, several experiments were conducted to

show the effectiveness and efficiency of our Scalable Sparse

Subspace Clustering (SSSC1).

4.1. Data sets

We carried out our experiments using six real-world da-

ta sets which cover facial images, handwritten digital data,

news corpus, etc. The data sets include one small-sized data

sets, three medium-sized data sets, and two large scale da-

ta sets. We presented some statistics on these data sets in

Table 2 and a brief description as follows:

Extended Yale Database B (ExYaleB) [12] is a facial

database which contains 2414 frontal-face images of 38

subjects (about 64 images for each subject). We cropped

1We have provided the MATLAB code of SSSC at

”http://www.machineilab.org/users/pengxi/”
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Table 2. Data sets used in our experiments.

Data sets # of instances Dim. # of classes

ExYaleB 2414 32256 38

RCV 8293 18933 65

MPIE 8916 8200 286

PenDigits 10992 16 10

Covtype 581012 54 7

PokerHand 1000000 10 10

the images from 192 × 168 to 48 × 42 and extracted 114

features by using PCA to retain 98% energy of the cropped

data; Multiple PIE (MPIE) [14] contains the facial images

of 286 individuals captured in four sessions with simulta-

neous variations in pose, expression and illumination. The

size of cropped images is 50 × 41 (from 100 × 82), and

the experiments were conducted on the 115 features which

preserve 98% information of the data; Reuters-21578 (R-

CV) [1] is a documental corpus, we performed experiments

using 785 features that retain 85% information of the orig-

inal data. Moreover, we tested SSSC using three UCI data

sets2, i.e., PenDigits, Covtype, and PokerHand. PokerHand

is an extreme unbalanced data set, of which the maximal

class contains 501,209 samples, comparing with 3 samples

of the minimal class. We examined the performance of the

algorithms using the original data set (PokerHand-1) and

a subset (PokerHand-2) with 971,329 data points over the

three largest classes.

4.2. Baselines and Evaluation Metrics

Spectral clustering and kernel-based methods are two

popular methods to cope with non-linear separable data,

and several studies [10] have established the equivalence

between them. In our experiments, we compared SSSC

with three accelerating spectral clustering algorithms

(KASP [30], Nyström approximation based spectral

clustering [11], LSC [4]), one kernel-based approach

(AKK [6]), and k-means as a baseline. We examined

the two variants of Nyström based methods and LSC,

denoted as Nyström, Nyström-Orth, LSC R, and LSC K.

The approximate affinity matrix of Nyström is non-

orthogonal, while that of Nyström-Orth has orthogonalized

columns. LSC R randomly selects landmarks from data

set, but LSC K uses the cluster centers of k-means as

landmarks. All algorithms were implemented in MAT-

LAB and ran on an Intel Xeon 2.13GHz processor with

16.00 GB RAM. The Matlab code of SSSC and the used

data sets could be downloaded from the website ’http-

s://www.dropbox.com/s/e7e9a16nhvpk4o8/SSSC code%26Da

ta MM2013.rar’.

In all experiments, we tuned the parameters of all meth-

ods to get their best Accuracy. For SSSC, we used Ho-

2http://archive.ics.uci.edu/ml/datasets.html

motopy optimizer to solve �1-minimization problem. It

needs two user-specified parameters, sparsity parameter λ
and error tolerance parameter δ. We found a good val-

ue in the ranges of λ = (10−7, 10−6, 10−5) and δ =
(10−3, 10−2, 10−1). It should be pointed out that SSSC

does not introduce new parameter, the number of required

parameters only depends on the adopted optimization algo-

rithm. Refer to the parameter configurations in [4, 6, 30],

respectively, we found the optimal parameter for the inves-

tigated approaches. KASP and Nyström employ heat kernel

to calculate the pairwise similarity, which need specifying

the width of heat kernel τ . We specified the range of τ is

[0.1, 1] with an interval of 0.1 and [2, 20] with an interval of

1; LSC needs the number of nearest landmarks r for a single

point. We searched a good r in the range of [2, 20] with an

interval of 1; AKK employs RBF kernel with the parameter

σ lying in the range [0.1, 1] with an interval of 0.1.

We measured the quality of the competing algorithm vi-

a Accuracy [33] and Normalized Mutual Information (N-

MI) [1] between the produced clusters and the ground truth

categories. The value of accuracy or NMI is 1 indicates per-

fect matching with the true subspace distribution whereas 0

indicates perfect mismatch.

4.3. Experimental Results

Accuracy and NMI versus varying p: We firstly study

the role of in-sample data size in clustering quality. There

are two approaches adopted by the investigated algorithms

to select some data points as in-sample data, i.e., uniform

random sampling (SSSC, Nyström, Nyström Orth, LSC R

and AKK) and k-means clustering algorithm (KASP and

LSC K). In our experiments, we randomly partitioned each

data set into two parts, in-sample data and out-of-sample

data. The in-sample data contains p = 6 × p̃ images from

each subject of the ExYaleB database, where p̃ increases

from 1 to 9 with an interval of 1. In the same way, we got

another nine data sets for KASP and LSC K by perform-

ing k-means to select p in-sample data points. To avoid the

difference in data set, we ran different algorithms over the

same data partition.

Figure 2(a) and 2(b) report the clustering quality of the

proposed method on the ExYaleB with the different in-

sample data size. We have the following observations:

• The accelerating spectral clustering methods (SSSC,

Nyström, Nyström Orth, LSC, and KASP) outperform

kernel-based method (AKK) with considerable margin

in Accuracy and NMI, and our SSSC achieves the best

results in the tests.

• The Accuracy and NMI of AKK are very close to that

of k-means. The result is consistent with the report

of Chitta et al. [6] that the difference in the clustering

errors between standard kernel k-means and AKK will
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(b) NMI versus the different number of in-sample data

Figure 2. Clustering quality of the competing algorithms using the

ExYaleB data set. The x-coordinate denotes the number of sam-

ples per class.

decrease at the rate of O(1/p), where p is the number

of in-sample data.

• All large scale spectral clustering algorithms perfor-

m better with the increasing of in-sample data except

Nyströms which cope with scalability issues of spec-

tral clustering by reducing the size of affinity matrix

but data set. By changing the number of in-sample

data, the difference in the max-min Accuracy of SSS-

C is about 15.91%, compared with 20.80% of KASP,

28.96% of LSC R, and 26.31% of LSC K; the differ-

ences in max-min NMI are 5.66%, 22.24%, 31.74%,

and 30.54%, respectively. The results shows that SSS-

C is more robust than KASP, LSC R and LSC K to the

in-sample data size.

Medium-sized data sets: Tables 3-5 report the clus-

tering quality and the time cost of the examined method-

s. It also lists the tuned parameters when the algorithms

achieve these results. We carried out experiments over three

medium-sized data sets which contain different data type-

s, i.e., facial image, handwritten digit data and documents.

For each data set, we chose 1000 data points as in-sample

data. These results reveal a number of interesting points as

follows:

Table 3. Performance comparison among different algorithms us-

ing MPIE. The numbers in the parenthesis are the tuned parame-

ters for achieving the best Accuracy.

Algorithms Accuracy NMI Time(s)

SSSC (1e-6, 0.01) 61.53% 82.81% 847.0

KASP (0.1) 17.09% 57.54% 1479.83

Nyström (0.7) 47.01% 76.97% 15.28
Nyström Orth (0.7) 51.92% 79.96% 64.80

LSC R (2) 18.50% 54.90% 62.05

LSC K (3) 17.50% 56.60% 65.69

AKK (0.1) 11.40% 40.16% 24.60

k-means 14.69% 52.45% 268.54

Table 4. Performance comparison among different algorithms us-

ing PenDigits.

Algorithms Accuracy NMI Time(s)

SSSC (1e-7, 1e-4) 81.99% 78.37% 17.02

KASP (4) 77.84% 77.97% 12.48

Nyström (0.4) 77.96% 70.20% 35.93

Nyström Orth (3) 74.78% 67.59% 6.20

LSC R (15) 80.09% 76.67% 5.62
LSC K (11) 81.73% 77.34% 7.93

AKK (0.01) 77.02% 69.15% 6.21

k-means 77.05% 69.21% 23.71

Table 5. Performance comparison among different algorithms us-

ing RCV.

Algorithms Accuracy NMI Time(s)

SSSC (1e-7, 0.01) 32.40% 33.81% 1320.63

KASP (0.1) 22.32% 24.79% 198.80

Nyström (0.4) 23.22% 27.55% 27.08

Nyström Orth (0.1) 25.88% 22.70% 3401.30

LSC R (2) 14.24% 22.58% 8.87

LSC K (4) 14.45% 23.69% 17.72

AKK (1) 23.57% 36.40% 27.94

k-means 19.05% 26.98% 0.33

• Considering the clustering quality, SSSC achieves the

best clustering quality over the three data sets except

the second best result in NMI over the RCV data set.

For example, SSSC achieves a 9.61% gain in Accuracy

on MPIE over the second best algorithm. We can see

that running times is a main weakness of SSSC when

the data set is medium-sized. However, it will be more

competitive when we perform SSSC to cluster large

scale data set as demonstrated in the next experiment.

In Section 3.2, we have shown that the time cost of

SSSC also depends on the dimensionality of data set.

Therefore, performing SSSC over RCV (785D) is the

more time-consuming than over MPIE and PenDigits.

• In most cases, LSC K outperforms LSC R with a little

improvement, which verifies the claim [17] that com-

plex sampling techniques actually could not produce

a better result than random sampling. Consequently,
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Table 6. Performance comparison among different algorithms us-

ing Covtype.

Algorithms Accuracy NMI Time(s)

SSSC (1e-5, 0.1) 31.05% 6.82% 325.51

KASP (3) 25.36% 3.50% 1314.52

Nyström (0.1) 23.76% 3.79% 40.61
Nyström Orth (0.1) 23.36% 3.98% 351.58

LSC R (2) 23.24% 6.06% 154.48

LSC K (4) 25.90% 6.74% 1155.40

AKK (1) 25.36% 3.67% 344.24

k-means 20.84% 3.69% 4895.70

Table 7. Performance comparison among different algorithms us-

ing PokerHand-1 over 10 classes.

Algorithms Accuracy NMI Time(s)

SSSC (1e-5, 0.1) 19.31% 0.20% 474.14

KASP (3) 12.37% 0.05% 7049.90

Nyström (0.2) 13.09% 0.23% 65.50

Nyström Orth (18) 16.48% 0.04% 205.70

LSC R (5) 12.24% 0.00% 1936.80

LSC K (3) 12.32% 0.00% 8829.00

AKK (0.01) 10.50% 0.03% 2882.50

k-means 10.41% 0.03% 7188.80

Table 8. Performance comparison among different algorithms us-

ing PokerHand-2 over 3 classes.

Algorithms Accuracy NMI Time(s)

SSSC (1e-7,0.2) 51.60% 0.63% 267.71

KASP (0.3) 35.24% 0.09% 5497.06

Nyström (0.2) 47.90% 0.16% 61.43
Nyström Orth (20) 47.74% 0.00% 204.43

LSC R (8) 34.91% 0.00% 1891

LSC K (2) 34.99% 0.00% 8765.5

AKK (0.1) 35.96% 0.62% 1039.28

k-means 36.02% 0.01% 4760.4

with the increasing of data size, a better choice is per-

forming random sampling as preprocessing step for its

computational complexity only is O(1).

• In [4], Chen and Cai investigated the Accuracy of

LSC R, LSC K, Nyström Orth, and KASP using the

PenDigits data set. The best Accuracy of these four

algorithms are 79.04%, 79.27%, 73.94% and 72.47%,

comparing with 81.73%, 80.09%, 74.78% and 77.84%

in our experiments.

Large scale data sets: Tables 6-8 are the results of the

competing methods over three large scale data sets. For

each data set, we set the size of in-sample data as 1000, and

used the remaining data as out-of-sample data. We have the

following observations:

• For the large scale data set, NMI failed to measure the

performance of the competing algorithms whose NMIs

are close to 0.

• SSSC is superior to the other approaches. For exam-

ple, the Accuracy of SSSC over Covtype is least 5.14%

higher than the other tested methods. For PokerHand-

1 and PokerHand-2, the gains are 2.83% and 3.71%,

respectively.

• In literature, [4] reported that the highest Accura-

cy over Covtype achieved by LSC R, LSC K, Nys-

tröm Orth and KASP are 24.75%, 25.50%, 22.31%

and 22.42%, respectively. In our experiments, the Ac-

curacy of the algorithms are 23.24%, 25.90%, 23.36%

and 25.36%, respectively. Moreover, KASP performed

better in [30] over Pokerhand-2, whose the Accuracy is

about 50.11%. The possible reason is that they adopted

a more complex random sampling technique.

• With the increasing of data size, the running time of

SSSC is no longer a fatal weakness. It benefits from

the way to solve scalability issue, i.e., ”sampling, clus-

tering, coding and classifying”. In the other hand, the

used memory of SSSC only depends on the number in-

sample data, which makes SSSC feasible to group very

large data set, e.g., n is larger than one billion.

5. Conclusion

The representation based spectral clustering algorithms

have became more and more popular owing to its effective-

ness. However, the over-high computational complexity has

hindered its application in practice, especially, the scenari-

o of booming big data. In this paper, we have presented a

simple but effective accelerating spectral clustering method,

called Scalable Sparse Subspace Clustering (SSSC). SSSC

is an out-of-sample extension of Sparse Subspace Cluster-

ing (SSC) which makes SSC feasible in large scale setting.

Given a data set with n data points, SSSC selects p� n da-

ta as in-sample data and performs SSC over these data; after

that, get the final cluster assignment by coding and classi-

fying non-sampled data based on the sampled data. Exten-

sive experiments show the effectiveness and efficiency of

our method comparing the state-of-the-art approaches.

There are some potential ways to improve or extend this

work. Although the experimental results show that the pro-

posed algorithm has achieved state-of-the-art results, the re-

covery conditions of SSSC is largely untouched, especially,

when the subspaces are dependent with each other. More-

over, it is also important to develop the error bound of SSS-

C which is useful to determine the value of in-sample data

size.
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