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Abstract

Non-blind deblurring is an integral component of blind
approaches for removing image blur due to camera shake.
Even though learning-based deblurring methods exist, they
have been limited to the generative case and are compu-
tationally expensive. To this date, manually-defined mod-
els are thus most widely used, though limiting the attained
restoration quality. We address this gap by proposing a dis-
criminative approach for non-blind deblurring. One key
challenge is that the blur kernel in use at test time is not
known in advance. To address this, we analyze existing ap-
proaches that use half-quadratic regularization. From this
analysis, we derive a discriminative model cascade for im-
age deblurring. Our cascade model consists of a Gaus-
sian CRF at each stage, based on the recently introduced
regression tree fields. We train our model by loss minimiza-
tion and use synthetically generated blur kernels to gener-
ate training data. Our experiments show that the proposed
approach is efficient and yields state-of-the-art restoration
quality on images corrupted with synthetic and real blur.

1. Introduction

Image blur (e.g., camera shake) is one of the main

sources of image corruption in digital photography and hard

to undo. Image deblurring has thus been an active area of

research, starting with the pioneering work of Lucy [21]

and Richardson [23]. Recent work has predominantly fo-

cused on blind deblurring, particularly on estimating the

blur from images (stationary and non-stationary). However,

relatively little attention has been paid to non-blind deblur-
ring, that is, restoring the image given known or estimated

image blur. Yet, this is an important problem since most

blind deblurring approaches separate the problem into blur

estimation and non-blind deblurring (theoretically justified

by Levin et al. [20]). To this date, most approaches rely on

the classical Lucy-Richardson algorithm as non-blind de-

blurring component [e.g., 8], or use manually-defined image

priors formulated as Markov random fields (MRFs) with

sparse, i.e. non-Gaussian, potential functions [17, 18, 30].

Learning-based approaches have been restricted to gener-

atively trained models [25], but have found limited adop-

tion due to computational challenges in inference. This is

in contrast to image denoising, where discriminative ap-

proaches have been used extensively [2, 4, 14, 27], and

are often characterized by state-of-the-art restoration per-

formance combined with low computational effort.

In this paper we introduce a discriminative non-blind im-

age deblurring approach for arbitrary photographic input

images and arbitrary blurs. To the best of our knowledge,

this is the first time discriminative deblurring has been at-

tempted. Our model is discriminatively trained by minimiz-

ing an application-specific loss function (here, PSNR) on a

training set. In this paper we assume stationary image blur,

i.e. the observed image is the result of convolving the un-

known original image with a blur kernel (+ noise), but our

approach is not limited to this setup and can be extended to

non-uniform image blurs.

In a discriminative approach, a number of challenges

have to be overcome. Since it is in general not feasible to

train a specialized model for every image blur, it is neces-

sary to train a model that outputs a deblurred image given

an arbitrary input image and blur kernel. We address this

by effectively parametrizing our discriminative model with

the blur kernel. The difficulty here is that the image dis-

tortion is only known at test time. We address this using a

model cascade based on regression tree fields [15], which

first predicts a relatively crude estimate that removes domi-

nant image blur and is refined further in later stages. More-

over, sufficient training data must be available, but realistic

image blurs are scarce [16, 20]. We use synthetically gen-

erated blur kernels to overcome this limitation.

We further make the following contributions: (1) We an-

alyze commonly used half-quadratic regularization [11, 12]

with sparse image priors, and show how our formula-

tion naturally arises as a generalization; (2) we train our

model with realistic, but synthetically generated blur ker-

nels and experimentally demonstrate that a model trained

in such a way generalizes to unseen real blur kernels; (3)
we demonstrate state-of-the-art performance on a syntheti-

cally blurred test set [25] and on two realistic data sets for

camera shake [16, 19]. While previous non-blind deblurring

approaches have for the most part either been very fast but
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with inferior performance, or slow but with high-quality re-

sults [e.g. 25], our approach delivers state-of-the-art deblur-

ring performance with an efficient inference method that al-

lows deblurring even higher-resolution images.

2. Generalizing Half-quadratic Regularization
To motivate our discriminative approach and understand

its connections to the existing literature, it is beneficial to re-

call half-quadratic regularizers [5, 11, 12] and their relation

to recent image restoration approaches1. In image deblur-

ring, denoising and other restoration applications, sparse

image priors are frequently used for regularization [e.g.

17, 18, 24]. Typically, they model an image x through the

response of linear filters fj (e.g., horizontal and vertical im-

age derivatives), which induce overlapping cliques c ∈ Cj
in the corresponding Markov random field (MRF) prior:

p(x) ∝
∏
j

∏
c∈Cj

ρj(f
T
j x(c)). (1)

A sparse (non-Gaussian) potential function ρj models the

filter response of fj to the clique pixels x(c).

The image corruption process is often modeled by spec-

ifying a Gaussian likelihood p(y|x) = N (y;Kx, σ2I) for

the observed, corrupted image y. In the case of non-blind

deconvolution, we have Kx = k ⊗ x, where K is the

blur matrix that corresponds to convolving the image with

a blur kernel k. The image noise is assumed to be pixel-

independent additive white Gaussian noise with variance

σ2. Using Bayes’ theorem, one obtains the posterior distri-

bution over the restored image as p(x|y) ∝ p(y|x) · p(x).
The principle of half-quadratic regularization [5, 11, 12]

is to ease inference (e.g., MAP estimation) by introducing

(independent) auxiliary/latent variables zjc for each filter

and image clique, such that the prior is retained by perform-

ing an operation
⊕ ∈ {max, sup,

∑
,
∫
, . . .} that elimi-

nates the auxiliary variables:

p(x) ∝
⊕
z

p(x, z)

∝
∏
j

∏
c∈Cj

⊕
zjc

φj(f
T
j x(c), zjc).

(2)

There are two choices for the form of φj : the multiplicative

form φj(u, z) = exp
(− 1

2u
2z − ψm(z)

)
[11] and the addi-

tive form φj(u, z) = exp
(−b(u− z)2 − ψa(z)

)
[12] . In

either case, ψm(z) respectively ψa(z) are chosen such that

ρj(u) =
⊕

z φj(u, z) (see example in Fig. 1). The name

stems from the fact that the energy of φj(u, z) is quadratic

in u but not in z. This further implies that for a fixed setting

of z the distribution p(x|z) = N (x;μx|z,Σx|z) is jointly

1To improve readability, related work will be reviewed in-line.

Figure 1. Half-quadratic representation of a sparse potential.
Hyper-Laplacian ρ(u) = exp(−|u|γ) (dashed, black), where

ρ(u) = supz φ(u, z), and φ(u, z) = exp(− 1
2
u2z − ψm(z))

(solid, red) with ψm(z) = (1− γ/2) · (z/γ) γ
γ−2 and γ = 2/3.

Gaussian. When combined with a Gaussian likelihood, we

obtain a Gaussian posterior for a fixed setting of z:

p(x|y, z) ∝ N (y;Kx, σ2I) · N (x;μx|z,Σx|z)

∝ N (x;μx|y,z,Σx|y,z).
(3)

The benefit of this is that MAP estimation can now be

carried out on the augmented posterior p(x, z|y) with a

variational EM algorithm [cf . 22] that alternates between

maximizing p(x|y, z) and using p(z|x,y) to update the

auxiliary variables based on the operation
⊕

. Maximiz-

ing p(x|y, z) w.r.t. x amounts to computing μx|y,z, which

requires solving a sparse linear equation system. Updating

z based on p(z|y,x) is easy, since all zjc are independent:

p(z|x,y) ∝
∏
j

∏
c∈Cj

p(zjc|x,y) (4)

p(zjc|x,y) ∝ φj(f
T
j x(c), zjc). (5)

By using the fact that a wide variety of robust (sparse)

potentials ρj can be expressed (or approximated) by taking

the supremum over the auxiliary variables z [3], one can re-

formulate the majority of sparse image priors in this way.

Levin et al. [18] and Krishnan and Fergus [17] have em-

ployed this principle for efficient image deblurring. Note

that MRF image priors based on Gaussian scale mixtures

(GSMs) [29] can also be interpreted as an instance of half-

quadratic regularization in which
⊕

=
∑

(or
⊕

=
∫

for

infinite GSMs). This has been used by Schmidt et al. [25]

for deblurring with sampling-based inference, which alter-

nates between sampling from p(x|y, z) and p(z|x,y).
2.1. Discriminative alternative

To see how classical half-quadratic regularization can be

connected to a discriminative approach, it is instructive to

consider what happens during the last inference iteration.

Once the final set of latent variables z∗ has been determined

from Eq. (5), the output image x∗ is inferred by maximizing

p(x|y, z∗) from Eq. (3). This distribution is nothing but

an anisotropic (or inhomogeneous) Gaussian random field,

whose mean and covariance depend on y and z∗.
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Therefore μx|y,z∗ and Σx|y,z∗ are the mean and covari-

ance parameters of a multivariate normal distribution de-

fined on the whole image, chosen through z∗ so as to hope-

fully lead to good deblurring results. The value of z∗ de-

pends on the specific choice of potential functions ρj and

their half-quadratic inference approximations φj (Eq. (5)).

It is now natural to ask whether we can instead directly

regress the Gaussian random field parameters from the in-

put image. To this end we can regress a precision matrix

Θ(y) and a vector θ(y), and set μ := [Θ(y)]−1θ and

Σ := [Θ(y)]−1. Then the mean μ and the covariance Σ are

learned functions of the observed image y. There are three

potential advantages: First, we avoid the expensive iterative

computation of the half-quadratic optimization. Second, we

can regress the parameters discriminatively in order to op-

timize a given performance measure, such as PSNR. Third,

we are no longer constrained to the form of Eq. (5) so that

we can now use an expressive regression model on the input

image. That is, we are not restricting2 the resulting model

compared to Eq. (3); in fact, we can potentially learn a more

expressive model.

We arrived at this model from a novel analysis of the

half-quadratic approximation, but predicting the means and

covariances of a Gaussian model has been done before:

Gaussian conditional random fields, first proposed by Tap-

pen et al. [27], have led to competitive results in image de-

noising. A recent extension we will build on are the regres-

sion tree fields (RTF) by Jancsary et al. [14, 15].

Image deblurring. Non-blind image deblurring is more

difficult than image denoising, and it might be difficult to

directly regress suitable model parameters. To illustrate

this difficulty, let us assume that fj are first-order deriva-

tive filters. Then, in the generative approach one can think

of zjc as modulating pairwise potentials: reducing smooth-

ness constraints in case of large image derivatives of the
output image x, and imposing smoothness otherwise. In

other words, in the generative approach z determines the

local model of the restored image x. Both x and z are itera-

tively refined via half-quadratic inference. In a discrimina-

tive model we have access only to the corrupted image y in

order to determine suitable local models.

But in the case of deblurring, the image content in y is

shifted and combined with other parts of the image, depend-

ing on a blur kernel that is different for each image. This

makes the choice of local models difficult. We believe this

is one of the reasons why discriminative non-blind deblur-

ring approaches had not been attempted before.

2Note that since a multivariate Gaussian distribution can always be ex-

pressed as a product of bivariate Gaussians, the final MAP estimate in

half-quadratic regularization comes from a pairwise MRF even if the cor-
responding sparse image prior models high-order interactions. This does

not mean, however, that high-order dependencies are ignored. They are

only hidden in the estimate z∗.
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Figure 2. Standard half-quadratic vs. discriminative cascade.
In a standard half-quadratic approach (top), each zjc can only be

updated via Eq. (5) based on the filter response fT
j x(c) of the pix-

els in the local clique (small white circles, only one filtered im-

age fj ⊗ x shown). In the proposed discriminative cascade (bot-
tom), one can use arbitrary features of the image over larger areas

(large white circles) to find model parameters Θ(i) and θ(i) via re-

gression. At each stage, the functions Θ(i) and θ(i) depend on y
through features, such as filter bank responses, image intensities,

and also depend on all x(i) from previous iterations (not shown).

2.2. Discriminative model cascade

To build a discriminative model for deblurring, we

draw inspiration from the iterative refinement of z in half-

quadratic regularization. We start with an educated guess

of the Gaussian model parameters, regressed from the in-

put image, to obtain a restored image x(1), which is less

corrupted than the original input image. We can then use

this as an intermediate result to help regress refined Gaus-

sian model parameters, in order to obtain a better restored

image x(2), etc., effectively obtaining a cascade of refined

models. Note that this is a general approach that is not only

applicable to image deblurring. Image denoising and other

restoration tasks may also benefit from such a model cas-

cade and repeated refinement of the auxiliary variables; we

do not consider this here, however.

A key advantage of a discriminative approach for pre-

dicting model parameters Θ(i), θ(i) at the ith stage is its

flexibility. As discussed above, a standard generative half-

quadratic approach updates each zjc only based on the lo-

cal clique of the current estimate of the restored image (cf .

Eq. (5)). In a discriminative approach, we can regress the

parameters based on arbitrary local and global properties of

the input image as well as the current estimate of the re-
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stored image (see Fig. 2 for an illustration). Consequently,

we can expect to obtain better estimates in fewer iterations,

compared to a non-discriminative approach.

Other related work. This iterative procedure can also be

linked with earlier ideas about iterative refinement. The idea

of auto-context [28] is to use the same probabilistic model

multiple times in sequence, where each model receives as

input the observed image and the output of the previous

model in the sequence. The proposed discriminative cas-

cade is also related to the active random field [2], which is

a multi-stage approach for image denoising that is trained

discriminatively. The key difference is that each stage in

[2] corresponds to a gradient descent iteration of the model

energy, whereas we use full discriminative prediction.

3. Gaussian CRF for Deblurring
As we have seen, a discriminative alternative to half-

quadratic MAP estimation is conceptually attractive, but

also challenging due to the need of regressing local im-

age models from the blurred input image y. To address

this challenge we propose a novel Gaussian CRF p(x|y,K)
for non-blind image deblurring. One challenge in devising

such a model is that we cannot train a different model for

every blur matrix K; this difficulty may in fact be the rea-

son why no such approach exists to date. To see how this

can be circumvented, we can take inspiration from gener-

ative approaches to deblurring and see how the Gaussian

blur likelihood p(y|x,K) contributes to the posterior distri-

bution when assuming a Gaussian prior:

p(x|y,K) ∝ p(y|x,K) · p(x)
∝ N (y;Kx, I/α) · N (x;Θ−1θ,Θ−1)

∝ N (
x; (αKTK)−1αKTy, (αKTK)−1

)
· N (x;Θ−1θ,Θ−1)

∝ N (
x; (Θ+ αKTK)−1(θ + αKTy), (6)

(Θ+ αKTK)−1
)
,

whereα = 1/σ2 relates to the noise level, Θ is the precision

of the Gaussian prior, and θ relates to its mean. We can now

define a Gaussian CRF in which the model parameters Θ
and θ are not fixed, but regressed from the input image, i.e.

Θ ≡ Θ(y) and θ ≡ θ(y) are functions of y. Note that the

CRF is parameterized by a fixed blur K as in Eq. (6); the

blur is not used as an input feature to the regressor.

Please note that for the problem of image denoising, i.e.

K = I, explicitly incorporating a component related to the

likelihood as described above is not necessary, since its con-

tribution can be learned by the regression function. How-

ever, for deblurring this is not feasible, and it is crucial to

incorporate a blur component into the model to adapt to ar-

bitrary blurs.

Once we have determined the parameters via regression,

we can obtain a deblurred image as the MAP estimate,

which can be derived in closed form as the mean of the

Gaussian CRF,

argmax
x

p(x|y,K) =

(Θ(y) + αKTK)−1(θ(y) + αKTy), (7)

and can be computed by solving a sparse linear system.

3.1. Regression tree field

To make our approach concrete, we need to specify the

regression functions Θ(y) and θ(y). To that end, we draw

on the recently proposed regression tree field (RTF) model

by Jancsary et al. [14, 15]. RTFs have shown excellent re-

sults in image restoration applications, such as image de-

noising, inpainting, and colorization.

In general, RTFs take the form of a Gaussian CRF in

which a non-linear regressor is used to specify the local

model parameters. Specifically, regression trees are used,

where each leaf stores an individual linear regressor that de-

termines a local potential. Since any Gaussian CRF can be

decomposed into factors relating no more than two pixels,

our posterior density attains the following form:

p(x|y,K) ∝ N (y;Kx, I/α) ·
J+1∏
j=1

∏
c∈Cj

φj(x(c),y) (8)

φj(x(c),y) ∝ exp

(
−1

2
xT
(c)Θ

j
c(y)x(c) + xT

(c)θ
j
c(y)

)
,

where Cj denotes all pairs of neighboring pixels in the jth of

J possible spatial configurations. Concretely, we use 8- and

24-neighborhoods depending on the stage in our prediction

cascade, i.e. J = 4 and J = 12, respectively (due to spa-

tial symmetries). Additionally, at each stage, we employ a

single unary potential φJ+1(x(c),y), where CJ+1 is simply

the set of all individual pixels.

We extend these previous RTF-based approaches to our

setting by (a) incorporating the blur likelihood for non-blind

image deblurring into the prediction as outlined in Eqs. (6)

and (7), and (b) by assembling multiple RTFs into a model

cascade that iteratively refines the prediction (see Sec. 3.3).

Note that the RTF generalizes the Gaussian CRF of Tap-

pen et al. [27] in two ways: First, the potentials of an

RTF are non-linearly dependent on the input image via

non-parametric regression trees. Second, the model param-

eters of arbitrary pairwise Gaussian potentials (with full

mean and covariance) are regressed from the input im-

age, whereas [27] restrict their parameterization to diagonal

weighting of filter responses.

3.2. Training

While probabilistic training is possible [15], we here fol-

low [14] and learn the regressors using loss-based train-
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Figure 3. Examples of artificially generated blur kernels.

ing, in particular, such that the peak signal-to-noise ratio

(PSNR) is maximized. All parameters of the model, includ-

ing the split functions in the tree and the linear regressors in

the leaves, are chosen to maximize PSNR.

Discriminative training necessitates a sufficient amount

of training data to ensure generalization. Since capturing

image pairs of blurred and clean images is difficult, one

possible avenue is to synthesize training data by blurring

clean images with realistic blurs. Unfortunately, existing

databases [16, 20] only supply a relatively limited num-

ber of blur kernels, and moreover serve also for testing.

Hence the model should not be trained on these. We ad-

dress this problem by generating realistic-looking blur ker-

nels by sampling random 3D trajectories using a simple lin-

ear motion model; the obtained trajectories are projected

and rasterized to random square kernel sizes in the range

from 5× 5 up to 27× 27 pixels (see Fig. 3). While it would

of course be possible to create even more realistic kernels

through more accurate models of camera shake motion3, we

find that these synthetic kernels already allow to general-

ize well to unseen real blur (cf . Sec. 4). We synthetically

generate blurred images by convolving each clean image

with an artificially generated blur kernel, and subsequently

add pixel-independent Gaussian noise (using standard devi-

ations σ = 2.55 or 0.5, see experiments in Sec. 4). We use

crops of 128 × 128 pixels from the training portion of the

Berkeley segmentation dataset [1] as ground truth images.

3.3. RTF prediction cascade

As argued in Sec. 2, it is difficult to directly regress good

local image models from the blurred input image. There-

fore, we employ a cascade of RTF models, where each sub-

sequent model stage uses the output of all previous models

as features for the regression (see Fig. 4 for an illustration).

We train the first stage of the cascade with minimal con-

ditioning on the input image to avoid overfitting. The pa-

rameters of the unary and pairwise potentials are only lin-

early regressed from the pixels in the respective cliques

(plus a constant pseudo-input); we do not use a regression

tree. We further use an 8-connected graph structure, result-

ing in one unary and four pairwise potentials (horizontal,

vertical, and two diagonals). We train this model with 200
pairs of blurred and clean images, which is ample since

there are only few model parameters. This model will be

referred to as RTF1.

3We think that on average these synthetic blur kernels may in fact be

more challenging than typical real ones.

(y,K)

RTF1 x(1) RTF2 x(2) RTF3 x(3)
Filter bank Filter bank

Figure 4. RTF prediction cascade. Only three stages are shown.

While we do not expect excellent results from RTF1, it is

able to remove the dominant blur from the input image (cf .

Sec. 4 and Fig. 6) and makes it much easier for subsequent

RTF stages to regress good potentials for the CRF. Besides

the blurred input image, the second stage, RTF2, thus uses

the output of RTF1 as input feature. Additionally, we eval-

uate a filter bank on the output of RTF1 to obtain more ex-

pressive features. In doing so we follow [14], which ob-

tained improved results in image denoising using the output

of a filter bank as input to the regressor. However, we use a

different filter bank here, the 16 generatively trained 5 × 5
filters from the recent Fields-of-Experts model of [10]; we

found these filters to outperform other filter banks we have

tried, including those used in [14]4.

We use all these features for the split tests in the regres-

sion tree (non-linear regression), as well as for the linear

potential parameter regressor that is stored in each leaf of

the tree. We choose regression trees of depth 7. All sub-

sequent model stages, i.e. RTF3, RTF4, etc., take as features

the outputs from all previous stages, where the filter bank is

always only evaluated on the directly preceding model out-

put. Please see Fig. 4 for a schematic. Starting with RTF2,

the Gaussian CRF at each layer uses a 24-connected graph

structure, i.e. each pixel is connected to all others in a 5× 5
neighborhood. Due to the increased amount of model pa-

rameters, we train RTF2 and each subsequent stage with 500
training images, randomly cropped from the training por-

tion of the Berkeley segmentation dataset [1] and blurred

with randomly chosen artificial blur kernels (different at

each stage).

An interesting property of our model cascade is that it

yields a deblurred image after every stage, not only at the

end. Even if a deep cascade was trained, at test time we

can trade off computational resources versus quality of the

deblurred image by stopping after a certain stage (cf . Fig.

6; see [9] for a similar approach applied to segmentation).

4. Experiments

To demonstrate the performance of our approach, we

apply it to three challenging datasets, specifically to high-

light individual benefits. First, we analyze the performance

in standard conditions for non-blind deblurring, i.e. when

training and testing is carried out with perfect blur kernels.

Second, we evaluate the generalization ability of our ap-

4There may be an interesting relation to generative pre-training for deep

belief networks [13]; we leave this for future work.
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σ σ
Method 2.55 7.65 Stage 2.55 7.65
Lucy-Richardson [21, 23] 25.38 21.85 RTF1 26.33 24.23

Krishnan and Fergus [17] 26.97 24.91 RTF2 28.21 25.54

Levin et al. [18] 28.03 25.36 RTF3 28.50 25.75

5× 5 FoE (MAP) [24] 28.44 25.66 RTF4 28.58 25.81

Pairw. MRF (MMSE) [25] 28.24 25.63 RTF5 28.65 25.87

3× 3 FoE (MMSE) [25] 28.66 25.68 RTF6 28.67 25.89

Table 1. Average PSNR (dB) on 64 images from [25] for two noise

levels. Left half reproduced from [25] for ease of comparison.

proach by training the model to deal with imperfect blur ker-

nels. This is important for blind deblurring, where the es-

timated blur kernels mostly contain some errors. Third, we

demonstrate the applicability to realistic higher-resolution

images. Please note that images and kernels are always kept

strictly separate for training and testing in all experiments.

Standard conditions. We trained a six-stage RTF predic-

tion cascade as described in Sec. 3 and evaluate all stages

individually on 64 test images taken from [25]. Training

images have been blurred synthetically with 1% additive

white Gaussian noise (σ = 2.55); test images with both

σ = 2.55 and a higher noise level of σ = 7.65. While we

used artifical blur kernels to generate our training data, the

test images from [25] have been created with the realistic

kernels from [20]. The blur kernels used for deblurring are

slightly perturbed from the ground truth to mimic kernel

estimation errors, but the perturbation is somewhat minor

here. We compare our average PSNR performance to all

methods that were evaluated in [25]. The results in Tab.

1 show that we achieve state-of-the-art performance that is

on par with the high-quality sampling-based approach of

Schmidt et al. [25] at σ = 2.55, and even outperforms it at

σ = 7.65 despite not being trained for this noise level (only

α was adapted, see Eq. (6)). As we shall discuss below, our

approach is many times faster, however. At the noise level

our model is trained for (2.55), we strongly outperform the

efficient half-quadratic regularization approach of Krishnan

and Fergus [17] by over 1.5dB, and the popular method of

Levin et al. [18] by 0.6dB. The clear performance gains at

the higher noise level demonstrate our model’s noise gener-

alization. We further notice that the weakly conditional first

stage (RTF1) leads only to modest performance levels here;

RTF2 and RTF3 boost the performance substantially further.

Later stages lead to additional gains, but less so. Aside from

the raw numbers, it is noteworthy that our model is able to

preserve small details, while at the same time reconstruct-

ing smooth areas well (see Fig. 5 for an example). Note that

this is not the case for the approaches tested in [25].

This demonstrates that when testing (and training) is

done with the correct (i.e. ground truth) blur kernels, as

usual for non-blind deblurring, our approach achieves ex-

cellent results. Another important point is that even though

(a) [25], PSNR = 29.05dB (b) RTF6, PSNR = 29.23dB

Figure 5. Deblurring example (cropped). Qualitative compari-

son with the high-quality approach of [25] (3 × 3 FoE, MMSE

estimation). Our approach (b) reconstructs smooth and textured

areas well, exhibits fewer artifacts, and is many times faster. Best
viewed zoomed in on screen.

our model has been trained on artificially generated blur

kernels (Fig. 3), it apparently generalizes well to real blurs.

Adaptation to kernel estimation errors. Blind deblurring

approaches often produce kernel estimates with substantial

errors, which can cause ringing artifacts in the restored im-

age [cf . 31]. Hence, it is important to evaluate and adapt

our model to this realistic scenario. To train our model for

this task, we experimented with adding noise to the ground

truth kernels and also used estimated kernels for training.

We consider the data of Levin et al. [19] as a benchmark,

which provides several kernel estimates besides blurred and

ground truth images for 32 test instances, as well as de-

blurring results with the various kernel estimates. Since

the amount of noise in these blurred images is significantly

lower than in the benchmark of [25], we only added Gaus-

sian noise with σ = 0.5 to our training images. We evaluate

average PSNR performance over all 32 images (using code

by [19] to account for translations in kernel estimates) in-

stead of error ratios as in [19], since we are not interested

in the quality of the estimated kernels itself, but rather the

final restoration performance given the estimated kernels.

The results in Tab. 2 show that training with ground

truth kernels leads to subpar performance when kernels es-

timates are used at test time. Adding noise to the ground

truth kernels for training leads to improved results of RTF1

with estimated kernels at test time, but performance of our

second stage model RTF2 already deteriorates; hence those

noisy kernels are not an ideal proxy for real kernel esti-

mates. However, we achieve superior results by training

our model with a mix of perfect and estimated kernels (ob-

tained with the method of Xu and Jia [30]), i.e. for half

of the synthetically blurred training images we use an es-

timated kernel instead of the ground truth kernel5. Com-

pared to the deblurred images from [19] (which used the

5Here, we trained RTF1 and RTF2 with the same 200 images as it was

time-consuming to obtain good enough kernel estimates for training.
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Method Kernels for training
Kernels for testing

GT Levin et al. [19] Cho and Lee [6] Fergus et al. [8] Noisy GT Xu and Jia [30]

RTF1 GT 32.76 29.41 28.29 27.86 26.67 29.04

RTF2 GT 33.81 29.52 27.76 27.84 26.52 28.29

RTF1 Noisy GT 32.08 29.73 29.36 28.49 28.69 30.25

RTF2 Noisy GT 30.51 29.03 28.75 27.58 30.34 29.56

RTF1 Mix of GT & [30] 32.90 29.90 29.33 28.63 28.10 30.30

RTF2 Mix of GT & [30] 33.97 30.40 29.73 29.10 28.07 30.84

[18] — 32.73 30.05 29.716 28.38 — —

Table 2. Average results (PSNR in dB) on 32 images from [19]. All kernels used for testing are from the benchmark set [19], except for

those in the two rightmost columns: we derived the noisy ground truth (GT) kernels from the provided GT kernels, and estimated kernels

with [30]. The last row shows the average performance of deblurring results provided by [19] (using the non-blind approach of [18]). For

the kernel estimates of [19] (4th column), we used the “free energy with diagonal covariance approximation” algorithm in the filter domain.

non-blind approach of [18]), we achieve substantial perfor-

mance improvements for deblurring with estimated kernels

of up to 0.72dB (for kernels from [8]). Furthermore, it is

interesting to note that the first stage of our model already

achieves good performance; this is presumably due to the

much reduced amount of noise in this benchmark7.

Runtime. The computational demand of our method is

comparable to the half-quadratic approach of [18], but uses

this computational budget more effectively due to its dis-

criminative nature (cf . Sec. 2 and Fig. 2). Also note that

the tree-based regressor is very efficient. As a result, we

achieve state-of-the-art performance on par with the best

result of [25], but much faster: about 2 seconds per im-

age in Tab. 1 (all six model stages combined) compared to

4 minutes for [25]. For the benchmark in Tab. 2 with larger

images, we require around 3 seconds for each model stage.

Realistic higher-resolution images. We consider the re-

cent benchmark for camera shake by Köhler et al. [16] to

demonstrate results on realistic higher-resolution images;

these images may substantially violate our model’s station-

ary blur and Gaussian noise assumptions (which can dete-

riorate performance [cf . 7, 26]). The benchmark consists

of 4 color images of size 800 × 800 pixels blurred by 12
different real camera motions, yielding 48 images in total.

The overall best performing blind deblurring approach in

this benchmark is the one by Xu and Jia [30] despite mak-

ing a stationary blur assumption, i.e. the same blur kernel is

used in all parts of the image. We use the provided kernel

estimates by [30] from the benchmark dataset, but with our

non-blind method to obtain the deblurred image (treating

color channels R, G, and B independently). Tab. 3 shows

that performance (evaluated using the provided code) can

substantially be improved by using our RTF2 model instead

of their non-blind step (which is related to [17]). While Xu

6The result might not be fully comparable, since the blur kernel esti-

mation and non-blind method from [6] may have been used.
7Theoretically, in the absence of noise non-blind deblurring can be

solved exactly without any regularization by inverting the blur matrix.

Image 1 Image 2 Image 3 Image 4

Kernel 1 +0.44 +0.54 +1.05 +0.76

Kernel 2 +0.44 +0.27 +0.38 +0.46

Kernel 3 +0.02 +0.03 +0.39 −0.26

Kernel 4 +0.31 +0.30 +0.61 +0.27

Kernel 5 +0.61 +0.44 +0.64 +0.05

Kernel 6 +0.40 +0.41 +1.03 +0.48

Kernel 7 +0.24 +0.55 +0.45 +0.31

Kernel 8 +0.76 +0.56 +2.17 +1.73

Kernel 9 +0.35 −0.09 +0.02 +0.23

Kernel 10 +0.19 −0.55 +0.25 +0.29

Kernel 11 −0.19 −0.43 +0.46 +0.09

Kernel 12 +0.76 +0.04 +0.66 +0.64

Table 3. Performance gain (PSNR in dB) over the results of Xu

and Jia [30] in the benchmark of Köhler et al. [16] for each com-

bination of 4 test images and 12 blur kernels. We use the provided

blur kernel estimates of [30] with our RTF2 model for non-blind

deblurring. We can improve the performance in 43 of 48 test in-

stances, on average about 0.41dB.

Figure 7. Deblurring example from the benchmark of [16] (cf . Tab.

3), showing the result of our RTF2 model (right) given the blurred

image (left) and the kernel estimates by [30].

and Jia’s non-blind step is inherently faster, it does lead to

substantially worse results, here on average 0.41dB. Fig. 7

shows an example of a deblurred image. Note that the RTF2

model used here is the same as in Tab. 2, i.e. trained with a

mix of ground truth and estimated kernels (using [30]), and

additive Gaussian noise with σ = 0.5.
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(a) Ground truth (b) Blurred, PSNR = 15.68dB (c) RTF1, PSNR = 25.39dB (d) RTF2, PSNR = 27.71dB (e) RTF6, PSNR = 28.20dB

Figure 6. Deblurring example at different model stages. The first stage RTF1 removes dominant blur from the image (c), but artifacts

remain. The second stage RTF2 (d) substantially improves upon this result quantitatively and qualitatively. Further model stages continue

to suppress noise and refine image details (e). The left sides of (c–e) show a closeup view of image details on the respective right sides.

The blur kernel is shown at the upper left of (b), scaled and resized for better visualization. Best viewed on screen.

5. Summary and Conclusions

From a novel analysis of common half-quadratic regu-

larization, we introduced – to the best of our knowledge –

the first discriminative non-blind deblurring method. Our

proposed cascade model is based on regression tree fields

at each stage, which are trained by loss minimization on

training data generated with synthesized blur kernels. We

demonstrated state-of-the art performance on three chal-

lenging benchmarks, including robustness to kernel estima-

tion errors in the context of blind deblurring. Our approach

is not limited to image deblurring and can readily be ex-

tended to other image restoration applications in the future.
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[5] P. Charbonnier, L. Blanc-Féraud, G. Aubert, and M. Barlaud. Two
deterministic half-quadratic regularization algorithms for computed
imaging. ICIP 1994.

[6] S. Cho and S. Lee. Fast motion deblurring. ACM T. Graphics, 28(5),
2009.

[7] S. Cho, J. Wang, and S. Lee. Handling outliers in non-blind image
deconvolution. ICCV 2011.

[8] R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. Free-
man. Removing camera shake from a single photograph. ACM T.
Graphics, 3(25), 2006.
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