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Abstract

In this paper, we propose a novel approach to extract
primary object segments in videos in the ‘object proposal’
domain. The extracted primary object regions are then used
to build object models for optimized video segmentation.
The proposed approach has several contributions: First, a
novel layered Directed Acyclic Graph (DAG) based frame-
work is presented for detection and segmentation of the pri-
mary object in video. We exploit the fact that, in general,
objects are spatially cohesive and characterized by locally
smooth motion trajectories, to extract the primary objec-
t from the set of all available proposals based on motion,
appearance and predicted-shape similarity across frames.
Second, the DAG is initialized with an enhanced object pro-
posal set where motion based proposal predictions (from
adjacent frames) are used to expand the set of object pro-
posals for a particular frame. Last, the paper presents a
motion scoring function for selection of object proposal-
s that emphasizes high optical flow gradients at proposal
boundaries to discriminate between moving objects and the
background. The proposed approach is evaluated using sev-
eral challenging benchmark videos and it outperforms both
unsupervised and supervised state-of-the-art methods.

1. Introduction & Related Work

In this paper, our goal is to detect the primary objec-

t in videos and to delineate it from the background in al-

l frames. Video object segmentation is a well-researched

problem in the computer vision community and is a prereq-

uisite for a variety of high-level vision applications, includ-

ing content based video retrieval, video summarization, ac-

tivity understanding and targeted content replacement. Both

fully automatic methods and methods requiring manual ini-

tialization have been proposed for video object segmenta-

tion. In the latter class of approaches, [2, 15, 23] need an-

notations of object segments in key frames for initialization.

Video Frames 

Key-frame Object Regions [13] 

? ? 

#38 #39 #61 #62 Frame 

Primary Object Regions Extracted by Proposed Method 

Figure 1. Primary object region selection in the object proposal do-

main. The first row shows frames from a video. The second row

shows key object proposals (in red boundaries) extracted by [13].

“?” indicates that no proposal related to the primary object was

found by the method. The third row shows primary object pro-

posals selected by the proposed method. Note that the proposed

method was able to find primary object proposals in all frames.

The results in row 2 and 3 are prior to per-pixel segmentation. In

this paper we demonstrate that temporally dense extraction of pri-

mary object proposals results in significant improvement in object

segmentation performance. Please see Table 1 for quantitative re-

sults and comparisons to state of the art.[Please Print in Color]

Optimization techniques employing motion and appearance

constraints are then used to propagate the segments to al-

l frames. Other methods ([16, 20]) only require accurate

object region annotation for the first frame, then employ

region tracking to segment the rest of frames into objec-

t and background regions. Note that, the aforementioned

semi-automatic techniques generally give good segmenta-
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Figure 2. Object proposals from a video frame employing the

method in [7]. The left side image is one of the video frames.

Note that the monkey is the object of interest in the frame. Images

on the right show some of the top ranked object proposals from the

frame. Most of the proposals do not correspond to an actual ob-

ject. The goal of the proposed work is to generate an enhanced set

of object proposals and extract the segments related to the primary

object from the video.

tion results. However, most computer vision applications

involve processing of large amounts of video data, which

makes manual initialization cost prohibitive. Consequent-

ly, a large number of automatic methods have also been

proposed for video object segmentation. A subset of these

methods employs motion grouping ([19, 18, 4]) for object

segmentation. Other methods ([10, 3, 21]) use appearance

cues to segment each frame first and then use both appear-

ance and motion constraints for a bottom-up final segmenta-

tion. Methods like [9, 3, 11, 22] present efficient optimiza-

tion frameworks for spatiotemporal grouping of pixels for

video segmentation. However, all of these automatic meth-

ods do not have an explicit model of how an object looks

or moves, and therefore, the segments usually don’t corre-

spond to a particular object but only to image regions that

exhibit coherent appearance or motion.

Recently, several methods ([7, 5, 1]) were proposed that

provided an explicit notion of how a generic object looks

like. Specifically, the method [7] could extract object-like

regions or ‘object proposals’ from images. This work was

built upon by Lee et al. [13] and Ma and Latecki [14] to em-

ploy object proposals for object video segmentation. Lee

et al. [13] proposed to detect the primary object by col-

lecting a pool of object proposals from the video, and then

applying spectral graph clustering to obtain multiple binary

inlier/outlier partitions. Each inlier cluster corresponds to

a particular object’s regions. Both motion and appearance

based cues are used to measure the ‘objectness’ of a propos-

al in the cluster. The cluster with the largest average ‘object-

ness’ is likely to contain the primary object in video. One

shortcoming of this approach is that the clustering process

ignores the order of the proposals in the video, and there-

fore, cannot model the evolution of object’s shape and loca-

tion with time. The work by Ma and Latecki [14] attempts

Object Proposal Generation & 
Expansion 

Layered DAG Optimization for Primary 
Object Selection 

GMMs and MRF based Optimization 

Generate object 
proposals, and then 

enhance the proposal set 
using motion based 

prediction 

Use discriminative 
motion, shape similarity 
across frames and other 

cues for object extraction 

Refine the segmentation 
results. 

Input Videos 

Object Segmentation 

Figure 3. The Video Object Segmentation Framework

to mitigate this issue by utilizing relationships between ob-

ject proposals in adjacent frames. The object region selec-

tion problem is modeled as a constrained Maximum Weight

Cliques problem in order to find the true object region from

all the video frames simultaneously. However, this problem

is NP-hard ([14]) and an approximate optimization tech-

nique is used to obtain the solution. The object proposal

based segmentation approaches [13, 14] have two addition-

al limitations compared to the proposed method. First, in

both approaches, object proposal generation for a particular

frame doesn’t directly depend on object proposals generated

for adjacent frames. Second, both approaches do not actu-

ally predict the shape of the object in adjacent frames when

computing region similarity, which degrades segmentation

performance for fast moving objects.

In this paper, we present an approach that though in-

spired from aforementioned approaches, attempts to remove

their shortcomings. Note that, in general, an object’s shape

and appearance varies slowly from frame to frame. There-

fore, the intuition is that the object proposal sequence in

a video with high ‘objectness’, and high similarity across

frames is likely to be the primary object. To this end, we

use optical flow to track the evolution of object shape, and

compute the difference between predicted and actual shape

(along with appearance) to measure similarity of object pro-

posals across frames. The ‘objectness’ is measured using

appearance and a motion based criterion that emphasizes

high optical flow gradients at the boundaries between ob-

jects proposals and the background. Moreover, the prima-

ry object proposal selection problem is formulated as the

longest path problem for Directed Acyclic Graph (DAG),

for which (unlike [14]) an optimal solution exists in lin-

ear time. Note that, if the temporal order of object pro-

posals locations (across frames) is not used ([13], then it

can result in no proposals being associated with the prima-
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ry object for many frames (please see Figure 1). The pro-

posed method not only uses object proposals from a par-

ticular frame (please see Figure 2), but also expands the

proposal set using predictions from proposals of neighbor-

ing frame. The combination of proposal expansion, and the

predicted shape based similarity criteria results in tempo-

rally dense and spatially accurate primary object proposal

extraction. We have evaluated the proposed approach using

several challenging benchmark videos and it outperforms

both unsupervised and supervised state-of-the-art methods

In Section 2, the proposed layered DAG based objec-

t selection approach is introduced and discussed in detail;

In Section 3, both qualitative and quantitative experiments

results for two publicly available datasets and some other

challenging videos are shown; The paper is concluded in

Section 4.

2. Layered DAG based Video Object Segmen-
tation

2.1. The Framework

The proposed framework consists of 3 stages (as shown

in Figure 3): 1. Generation of object proposals per-frame

and then expansion of the proposal set for each frame based

on object proposals in adjacent frames. 2. Generation of a

layered DAG from all the object proposals in the video. The

longest path in the graph fulfills the goal of maximizing ob-

jectness and similarity scores, and represents the most like-

ly set of proposals denoting the primary object in the video.

3. The primary object proposals are used to build objec-

t and background models using Gaussian mixtures, and a

graph-cuts based optimization method is used to obtain re-

fined per-pixel segmentation. Since the proposed approach

is centered around layered DAG framework for selection of

primary object regions, we will start with its description.

2.2. Layered DAG Structure

We want to extract object proposals with high object-

ness likelihood, high appearance similarity and smoothly

varying shape from the set of all proposals obtained from

the video. Also since we want to extract the primary ob-

ject only, we want to extract at most a single proposal per

frame. Keeping these objectives in mind, the layered DAG

is formed as follows. Each object proposal is represent-

ed by two nodes: a ‘beginning node’ and an ‘ending node’

and there are two types of edges: unary edges and binary

edges. The unary edges have weights which measure the

objectness of a proposal. The details of the function for u-

nary weight assignments (measuring objectness) are given

in section 2.2.1. All the beginning nodes in the same frame

form a layer, so as the ending nodes. A directed unary edge

is built from beginning node to ending node. Thus, each

video frame is represented by two layers in the graph. Di-

…… …… 
…… …… 

Frame i-1 Frame i Frame i+1 

s t 

…… …… 
Layer 
2i-3 

Layer 
2i-2 

Layer 
2i-1 

Layer 
2i 

Layer 
2i+1 

Layer 
2i+2 

Figure 4. Layered Directed Acyclic Graph (DAG) Structure. Node

“s” and “t” are source and sink nodes respectively, which have zero

weights for edges with other nodes in the graph. The yellow nodes

and the green nodes are “beginning nodes” and “ending nodes”

respectively and they are paired such that each yellow-green pair

represents an object proposal. All the beginning nodes in the same

frame are arranged in a layer and the same as the ending nodes.

The green edges are the unary edges and red edges are the binary

edges.

rected binary edges are built from any ending node to all

the beginning nodes in latter layers. The binary edges have

weights which measure the appearance and shape similarity

between the corresponding object proposals across frames.

The binary weight assignment functions are introduced in

Section 2.2.2.

Figure 4 is an illustration of the graph structure. It shows

frame i − 1, i and i + 1 of the graph, with corresponding

layers of 2i−3, 2i−2, 2i−1, 2i, 2i+1 and 2i+2. Note that,

only 3 object proposals are shown for each layer for simplic-

ity, however, there are usually hundreds of object proposals

for each frame and the number of object proposals for dif-

ferent frames are not necessary the same. The yellow nodes

are “beginning nodes”, the green nodes are “ending nodes”,

the green edges are unary edges with weights indicating ob-

jectness and the red edges are binary edges with weight-

s indicating appearance and shape similarity (note that the

graph only shows some of the binary edges for simplicity).

There is also a virtual source node s and a sink node t with

0 weighted edges (black edges) to the graph. Note that, it

is not necessary to build binary edges from an ending node

to all the beginning nodes in latter layers. In practice, only

building binary edges to the next three subsequent frames is

enough for most of the videos.

2.2.1 Unary Edges

Unary edges measure the objectness of the proposals. Both

appearance and motion are important to infer the object-

ness, so the scoring function for object proposals is defined

as Sunary(r) = A(r) + M(r), in which r is any object

proposal, A(r) is the appearance score and M(r) is the mo-

tion score. We define M(r) as the average Frobenius norm

of optical flow gradient around the boundary of object pro-
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Figure 5. Optical Flow Gradient Magnitude Motion Scoring. In

row 1, column 1 shows the original video frame, column 2 is one

of the object proposals and column 3 shows dilated boundary of

the object proposal. In row 2, column 1 shows the forward optical

flow of the frame, column 2 shows the optical flow gradient mag-

nitude map and column 3 shows the optical flow gradient magni-

tude response for the specific object proposal around the boundary.

[Please Print in Color]

posal r. The Frobenius norm of optical flow gradients is

defined as:

∥∥UX

∥∥
F
=

∥∥∥∥
[

ux uy

vx vy

]∥∥∥∥
F

=
√
u2
x + u2

y + v2x + v2y,

(1)

in which U = (u, v) is the forward optical flow of the

frame, ux, vx and uy, vy are optical flow gradients in x and

y directions respectively.

The intuition behind this motion scoring function is that,

the motions of foreground object and background are usu-

ally distinct, so boundary of moving objects usually implies

discontinuity in motion. Therefore, ideally, the gradient of

optical flow should have high magnitude around foreground

object boundary (this phenomenon could be easily observed

from Figure 5). In equation 1, we use the Frobenius norm to

measure the optical flow gradient magnitude, the higher the

value, the more likely the region is from a moving object.

In practice, usually the maximum of optical flow gradient

magnitude does not coincide exactly with the moving ob-

ject boundary due to underlying approximation of optical

flow calculation. Therefore, we dilate the object proposal

boundary and get the average optical flow gradient magni-

tude as the motion score. Figure 5 is an illustration of this

process. The appearance scoring function A(r) is measured

by the objectness ([7]).

2.2.2 Binary Edges

Binary edges measure the similarity between object propos-

als across frames. For measuring the similarity of regions,

color, location, size and shape are the properties to be con-

sidered. We define the similarity between regions as the

weight of binary edges as follows:

Sbinary(rm, rn) = λ · Scolor(rm, rn) · Soverlap(rm, rn),
(2)

in which rm and rn are regions from frame m and n, λ is

a constant value for adjusting the ratio between unary and

binary edges, Soverlap is the overlap similarity between re-

gions and Scolor is the color histogram similarity:

Scolor(rm, rn) = hist(rm) · hist(rn)T , (3)

in which hist(r) is the normalized color histogram for a

region r.

Soverlap(rm, rn) =
|rm ∩ warpmn(rn)|
|rm ∪ warpmn(rn)| , (4)

in which warpmn(rn) is the warped region from rn by op-

tical flow to frame m. It is clear that Scolor encodes the col-

or similarity between regions and Soverlap encodes the size

and location similarity between regions. If two regions are

close, and the sizes and shapes are similar, the value would

be higher, and vice versa. Note that, unlike prior approach-

es [13, 14], we use optical flow to predict the region (i.e.

encoding location and shape), and therefore we are better

able to compute similarity for fast moving objects.

2.2.3 Dynamic Programming Solution

Until now, we have built the layered DAG and the objec-

tive is clear: to find the highest weighted path in the DAG.

Assume the graph contains 2F + 2 layers (F is the frame

number), the source node is in layer 0 and the sink node

is in layer 2F + 2. Let Nij denotes the jth node in ith
layer and E(Nij , Nkl) denotes the edge from Nij to Nkl.

Layer i has Mi nodes. Let P = (p1, p2, ..., pm+1) =
(N01, Nj1j2 , ..., Njm−1jm , N(2n+2)1) be a path from source

to sink node. Therefore,

Pmax = argmax
P

m∑
i=1

E(pi, pi+1). (5)

Pmax forms a Longest (simple) Path Problem for DAG.

Let OPT (i, j) be the maximum path value for Nij from

source node. The maximum path value satisfies the follow-

ing recurrence for i ≥ 1 and j ≥ 1:

OPT (i, j) = max
k=0...i−1,l=1...Mk

[OPT (k, l) + E(Nkl, Nij)].

(6)

This problem could be solved by dynamic programming

in linear time [12]. The computational complexity for the

algorithm is O(n +m), in which n is the number of nodes
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and m is the number of edges. The most important param-

eter for the layered DAG is the ratio λ between unary edges

and binary edges. However, in practice, the results are not

sensitive to it, and in the experiments λ is simply set to be

1.

2.3. Per-pixel Video Object Segmentation

Once the primary object proposals are obtained in a

video, the results are further refined by a graph-based

method to get per-pixel segmentation results. We define a

spatiotemporal graph by connecting frames temporally with

optical flow displacement. Each of the nodes in the graph is

a pixel in a frame, and edges are set to be the 8-neighbors

within one frame and the forward-backward 18 neighbors in

adjacent frames. We define the energy function for labeling

f = [f1, f2, ..., fn] of n pixels with prior knowledge of h:

E(f, h) =
∑
i∈S

Dh
i (fi) + λ

∑
(i,j)∈N

Vi,j(fi, fj), (7)

where S = {pi, ..., pn} is the set of n pixels in the video, N
consists of neighboring pixels, and i,j index the pixels. pi
could be set to 0 or 1 which represents background or fore-

ground respectively. The unary term Dh
i defines the cost of

labeling pixel i with label fi which we get from the Gaus-

sian Mixture Models (GMM) for both color and location.

Dh
i (fi) = −log(αU c

i (fi, h) + (1− α)U l
i (fi, h)), (8)

where U c
i (.) is the color-induced cost and U l

i (.) is the loca-

tion cost.

For the binary term Vi,j(fi, fj), we follow the definitions

in [17]:

Vi,j(fi, fj) = [fi �= fj ]exp
−β(Ci−Cj)

2

, (9)

where [.] denotes the indicator function taking values

0 and 1, (Ci − Cj)
2 is the Euclidean distance be-

tween two adjacent nodes in RGB space, and β =
(2

∑
(Ci − Cj)

2)−1|(i,j)∈N
We use the graph-cuts based minimization method in [8]

to obtain the optimal solution for equation 7, and thus get

the final segmentation results. Next, we describe the method

for object proposal generation that is used to initialize the

video object segmentation process.

2.4. Object Proposal Generation & Expansion

In order to achieve our goal of identifying image regions

belonging to the primary object in the video, it is prefer-

able (though not necessary) to have an object proposal cor-

responding to the actual object for each frame in which ob-

ject is present. Using only appearance or optical flow based

Object 
proposal  

(frame i-1) 

Optical 
flow 

Predicted 
proposal for  

frame i 
(warped) 

…… 

…… 

Set of Object proposals from frame i 

Overlap Test with i-1 Prediction 

Selected Regions 

Expanded (additional) 
object proposal for 
frame i  

Summation 

Set o

Over

Video 
Frame  

(frame i) 

Figure 6. Object Proposal Expansion. For each optical flow

warped object proposal in frame i − 1, we look for object pro-

posals in frame i which have high overlap ratios with the warped

one. If some object proposals all have high overlap ratios with

the warped one, they are merged into a new large object propos-

al. This process will produce the right object proposal if it is not

discovered by [7] from frame i, but frame i− 1.

cues to generate object proposals is usually not enough for

this purpose. This phenomenon could be observed in the

example shown in Figure 6. For frame i in this figure, hun-

dreds of object proposals were generated using method in

[7], however, no proposal is consistent with the true object,

and the object is fragmented between different proposals.

We assume that an object’s shape and location changes

smoothly across frames and propose to enhance the set of

object proposals for a frame by using the proposals gener-

ated for its adjacent frames. The object proposal expansion

method works by the guidance of optical flow (see Figure

6). For the forward version of object proposal expansion,

each object proposal rki−1 in frame i − 1 is warped by the

forward optical flow to frame i, then a check is made if any

proposal rji in frame i has a large overlap ratio with the
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warped object proposal, i.e.,

o =
|warpi−1,i(r

k
i−1) ∩ rji |

|rji |
. (10)

The contiguous overlapped areas, for regions in i+1 with

o greater than 0.5, are merged into a single region, and are

used as additional proposals. Note that, the old original pro-

posals are also kept, so this is an ‘expansion’ of the proposal

set, and not a replacement. In practice, this process is car-

ried out both forward and backward in time. Since it is an

iterative process, even if suitable object proposals are miss-

ing in consecutive frames, they could potentially be pro-

duced by this expansion process. Figure 6 shows an exam-

ple image sequence where the expansion process resulted in

generation of a suitable proposal.

3. Experiments
The proposed method was evaluated using two well-

known segmentation datasets: SegTrack dataset [20] and

GaTech video segmentation dataset [9]. Quantitative com-

parisons are shown for SegTrack dataset since ground-truth

is available for this dataset. Qualitative results are shown

for GaTech video segmentation dataset. We also evaluated

the proposed approach on additional challenging videos, for

which we will share the ground-truth to aid future evalua-

tions.

3.1. SegTrack Dataset

We first evaluate our method on Segtrack dataset [20].

There are 6 videos in this dataset, and also a pixel-level seg-

mentation ground-truth for each video is available. We fol-

low the setup in the literature ([13, 14]), and use 5 (birdfall,

cheetah, girl, monkeydog and parachute) of the videos for

evaluation (since the ground-truth for the other one (pen-

guin) is not useable). We use an optical flow magnitude

based model selection method to infer the camera motion:

for static cameras, a background subtraction cue is also used

for moving object extraction; for all the results shown in

this section, the static camera model was only selected (au-

tomatically) for the “birdfall” video.

We compare our method with 4 state-of-the-art method-

s [14], [13], [20] and [6] shown in Table 1. Note that our

method is a unsupervised method, and it outperforms all the

other unsupervised methods except for the parachute video

where it is a close second. Note that [20] and [6] are super-

vised methods which need an initial annotation for the first

frame. The results in Table 1 are the average per-frame pix-

el error rate compared to the ground-truth. The definition is

[20]:

error =
XOR(f,GT )

F
, (11)

where f is the segmentation labeling results of the method,

GT is the ground-truth labeling of the video, and F is the

(a) Birdfall 

(b) Cheetah 

(c) Girl 

(d) Monkeydog 

(e) Parachute 

Figure 7. SegTrack dataset results. The regions within the red

boundaries are the segmented primary objects. [Please Print in

Color]

Video Ours [14] [13] [20] [6]

birdfall 155 189 288 252 454

cheetah 633 806 905 1142 1217

girl 1488 1698 1785 1304 1755

monkeydog 365 472 521 563 683

parachute 220 221 201 235 502

Avg. 452 542 592 594 791

supervised? N N N Y Y
Table 1. Quantitative results and comparison with the state of the

art on SegTrack dataset

number of frames in the video. Figure 7 shows qualitative

results for the videos of SegTrack dataset.

Figure 8 is an example that shows the effectiveness of

the proposed layered DAG approach for temporally dense

extraction of primary object regions. The figure shows con-

secutive frames (frame 38 to frame 43) from “monkeydog”

video. The top 2 rows show the results of key-frame objec-

t extraction method [13], and the bottom 2 rows show our

object region selection results. As one can see, [13] detects

the primary object proposal in only one of the frames, how-

ever, by using the proposed approach, we can extract the
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Frame #38 #39 #40 

? ? 
#41 #42 #43 

? ? ? 
(a) Key-frame Object Region Selection 

(b) Layered DAG Object Region Selection 

Frame #38 #39 #40 

#41 #42 #43 

Figure 8. Comparison of object region selection methods. The re-

gions within the red boundaries are the selected object regions. “?”

means there is no object region selected by the method. Numbers

above are the frame indices.[Please Print in Color]

primary object region from all the frames. This is the main

reason that the segmentation results of the proposed method

are better than prior methods.

3.2. GaTech Segmentation Dataset

We also evaluated the proposed method on GaTech video

segmentation dataset. We show qualitative comparison of

results between the proposed approach and the original

bottom-up method for the dataset in Figure 9. As one can

observe, our results could segment the true foreground ob-

ject from the background. The method [9] doesn’t use an

object model which induces over-segmentation (although

the results are very good for the general segmentation prob-

lem).

3.3. Persons and Cars Segmentation Dataset

We have built a new dataset for video object segmenta-

tion. The dataset is challenging: persons are in a variety

of poses; cars have different speeds, and when they are s-

low, it is very hard to do motion segmentation. We generate

ground truth for those videos. Figure 10 shows some sample

results from this dataset, and Table 2 shows the quantitative

(a) waterski 

(b) yunakim 

Figure 9. Object Segmentation Results on GaTech Video Segmen-

tation Dataset. Row 1: orignial frame, Row 2: Segmentation re-

sults by the bottom-up segmentation method [9]. Row 3: Video

object segmentation by the proposed method. The regions with-

in the red or green boundaries are the segmented primary objects.

[Please Print in Color]

Video Average per-frame pixel error

Surfing 1209
Jumping 835
Skiing 817
Sliding 2228
Big car 1129
Small car 272

Table 2. Quantitative Results on Persons and Cars dataset

results for this dataset (the average per-frame pixel error is

defined as the same as SegTrack dataset [20]). Please go to

http://crcv.ucf.edu for more details.

4. Conclusions

We have proposed a novel and efficient layered DAG

based approach to segment the primary object in videos.

This approach also uses innovative mechanisms to compute

the ‘objectness’ of a region and to compute similarity be-

tween object proposals across frames. The proposed ap-

proach outperforms the state of the art on the well-known

SegTrack dataset. We also demonstrate good segmentation

performance on additional challenging data sets.

632632634



(a) Surfing 

(b) Jumping 

(e) Big car 

(f) Small car 

(c) Skiing 

(d) Sliding 

Figure 10. Sample Results on Persons and Cars Dataset. Please go

to http://crcv.ucf.edu for more details.
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