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Abstract

Spatio-temporal interest points serve as an elementary
building block in many modern action recognition algo-
rithms, and most of them exploit the local spatio-temporal
volume features using a Bag of Visual Words (BOVW) repre-
sentation. Such representation, however, ignores potentially
valuable information about the global spatio-temporal dis-
tribution of interest points. In this paper, we propose a
new global feature to capture the detailed geometrical dis-
tribution of interest points. It is calculated by using the
ℛ transform which is defined as an extended 3D discrete
Radon transform, followed by applying a two-directional
two-dimensional principal component analysis. Such ℛ
feature captures the geometrical information of the interest
points and keeps invariant to geometry transformation and
robust to noise. In addition, we propose a new fusion strat-
egy to combine the ℛ feature with the BOVW representa-
tion for further improving recognition accuracy. We utilize
a context-aware fusion method to capture both the pairwise
similarities and higher-order contextual interactions of the
videos. Experimental results on several publicly available
datasets demonstrate the effectiveness of the proposed ap-
proach for action recognition.

1. Introduction

Many modern action recognition approaches are based
on the combination of the spatio-temporal interest point fea-
ture and the Bag of Visual Words (BOVW) model [1, 2]
due to its simplicity and efficiency. When utilizing the lo-
cal texture or motion information (e.g., HOG, HOF [8]) en-
coded in spatio-temporal volumes (cuboid), however, most
BOVW based representations ignores the location informa-
tion of the interest points. In this paper, we propose a novel
method to extract a global feature from the location infor-

mation of interest points extracted from a video. We focus
on the geometrical distribution of points in the 3D space and
characterize the interest points from the perspective of ge-
ometry. We deduce the form and properties of the ℛ trans-
form, based on the 3D discrete Radon transform, and apply
the 3Dℛ transform to the problem of action recognition for
spatio-temporal interest points representation. The 3D ℛ
transform has several unique advantages: (1) It captures the
global distribution of spatio-temporal interest points; (2) It
is invariant to geometric transformations and robust against
noise, both are desirable properties of effective action repre-
sentations; (3) It is easy to compute since it avoids the non-
trivial steps such as foreground object segmentation and the
tasks involved in the BOVW method such as selecting the
optimal spatio-temporal descriptor, clustering for construct-
ing a codebook, and determining the codebook size. Given
an input video, the 3D ℛ transform produces a result in the
form of a 2D feature matrix. We then apply (2𝐷)2PCA [6]
to reduce its dimensionality to create the final presentation,
named as theℛ feature.

The ℛ feature captures the global geometrical distribu-
tion information, while the BOVW representation encodes
the discriminability of local features. The two features nat-
urally complement each other. To take this benefit, we pro-
pose a new context-aware fusion strategy to combine the
two features. Specifically, we first use one feature to decide
the context for a video. Then, using the other feature, we
design a context-aware kernel to measure the context-aware
similarity between two videos. This new context-aware ker-
nel is more robust to noise and outliers than the traditional
context-free kernels, which consider only the pairwise re-
lationships between samples. To summarize, the proposed
fusion method combines two different features and captures
the underlying contextual information from videos.

The remainder of the paper is organized as follows. Sec-
tion 2 gives a review of the improved BOVW approaches
and fusion approaches for action recognition. Section 3
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introduces the proposed ℛ feature. Section 4 discusses
the video representations based on spatio-temporal interest
points and describes the proposed fusion method. Section 5
reports experimental results on two human action datasets.
Section 6 concludes the paper.

2. Related Work

Recently, several algorithms have been proposed to in-
tegrate geometrical information into BOVW. A common
way is to use multi-scale pyramids [7] or spatio-temporal
grids [8, 9] to produce a coarse description of the feature
layout. These algorithms uniformly divide the 3D space
into a spatio-temporal grid and then compute the histogram
of local features in each sub-volume. The grid structure cap-
tures some simple location information, but richer geomet-
rical distribution information is yet discarded. Bregonzio et
al. [10] propose to treat the interest points inside a spatio-
temporal window as a point “cloud”. They perform the fore-
ground object detection and segmentation. For each frame,
ten features are extracted from the point cloud and detected
object area, including the height and width ratio, speed, and
relationship between the cloud and object area.

Usually, one kind of feature on its own is insufficient to
fully describe a video. Therefore, a number of approaches,
which propose feature fusion for improving action recog-
nition in video sequences, have recently appeared in the
literature [11, 12, 13, 14]. In [11, 12], the feature-level
fusion is employed. All the feature vectors produced by
different approaches are concatenated to form a larger fea-
ture vector. Liu et al. [13], Ye et al. [14] and Bregonzio et
al. [15] employ the kernel-level fusion approach and uti-
lize a multi-kernel classifier for combining different fea-
tures. The above fusion approaches rely only on the pair-
wise similarities of videos without considering the high-
order correlations among videos. This may cause sensitiv-
ity to noise and outliers of the data. Context-aware kernel
methods [16, 17] have been proposed since they take advan-
tage of the higher-order contextual information from sam-
ples. They are proven to achieve higher performances than
the context-free kernels for image annotation [16] and ob-
ject tracking [17]. Nevertheless, the context-aware kernel
has not been explored for action recognition.

3. 3D ℛ Transform on Spatio-Temporal Inter-
est Points

The 2D ℛ transform [4], as an improved representation
of the 2D Radon transform, has shown to be an effective
feature representation of human shape and silhouette in an
image [18]. The 3D discrete Radon transform [3, 5] has
been successfully applied to classifying objects in 3D mod-
els. However, there is little work on 3D ℛ transform based
on 3D Radon transform. In the following, we first deduce

the new form and properties of ℛ transform defined on the
3D discrete Radon transform and then use it to describe the
distribution of the spatio-temporal interest points.

3.1. 3D ℛ Transform

The definition of the 3Dℛ transform is based on the 3D
Radon transform. In other words, the 3D ℛ transform is an
extended representation of 3D Radon transform. Therefore,
we start with a brief overview of 3D Radon transform.

Let M be a 3D model and 𝑓(x) be the binary function de-
fined on 3D space, where x = (𝑥, 𝑦, 𝑡) denotes the position
of a point in the 3D space. The binary function 𝑓(x) is 1
when x lies within M, and otherwise 0. The 3D discrete
Radon transform is defined by summing the interpolated
samples of a discrete 3D array lying on planes which sat-
isfy certain constraints [3]. Given {x𝑗}𝐽𝑗=1 be all the points
in the model M, the 3D discrete Radon transform of the 3D
model 𝑓(x) is defined by [5]:

𝑇𝑓 (𝜼, 𝜌) =

𝐽∑
𝑗=1

𝑓(x𝑗)𝛿(x𝑇
𝑗 𝜼 − 𝜌) (1)

where 𝜼 is a unit vector in 3D space, 𝜌 is a real num-
ber, and 𝛿(⋅) is the Dirac delta function. The unit vec-
tor 𝜼 can be written in spherical coordinates as: 𝜼 =
[cos𝜙 sin 𝜃, sin𝜙 sin 𝜃, cos 𝜃]. Thus, Eq. (1) is rewritten as:

𝑇𝑓 (𝜌, 𝜃, 𝜙) =

𝐽∑
𝑗=1

𝑓(𝑥𝑗 , 𝑦𝑗 , 𝑡𝑗) ⋅

𝛿(𝑥𝑗 cos𝜙 sin 𝜃 + 𝑦𝑗 sin𝜙 sin 𝜃 + 𝑡𝑗 cos 𝜃 − 𝜌). (2)

It can be easily calculated, but it is not invariant to trans-
lation, scaling or rotation. To overcome this problem, we
define the ℛ Transform of 3D Radon transform, inspired
the 2D counterpart in [4]. The 2Dℛ transform is defined as
the integral of the square of the 2D Radon transform over
the parameter 𝜌. Therefore, we define the 3D ℛ transform
as follows:

ℛ𝑓 (𝜃, 𝜙) =

∫ ∞

−∞
𝑇 2
𝑓 (𝜌, 𝜃, 𝜙)𝑑𝜌 . (3)

Next, we derive the following properties of the proposed
newℛ Transform.

For a scale factor 𝛼, we have

1

𝛼2

∫ ∞

−∞
𝑇 2
𝑓 (𝛼𝜌, 𝜃, 𝜙)𝑑𝜌 =

1

𝛼3

∫ ∞

−∞
𝑇 2
𝑓 (𝜈, 𝜃, 𝜙)𝑑𝜈

=
1

𝛼3
ℛ𝑓 (𝜃, 𝜙) . (4)

For a spatio-temporal translation by (𝑥0, 𝑦0, 𝑡0), we have∫ ∞

−∞
𝑇 2
𝑓 (𝜌− 𝑥0 cos𝜙 sin 𝜃 − 𝑦0 sin𝜙 sin 𝜃 − 𝑡0 cos 𝜃,

𝜃, 𝜙)𝑑𝜌 =

∫ ∞

−∞
𝑇 2
𝑓 (𝜈, 𝜃, 𝜙)𝑑𝜈 = ℛ𝑓 (𝜃, 𝜙). (5)
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Figure 1. The 3D ℛ transform of six videos belonging to differ-
ent action classes in the KTH dataset. From left to right: interest
points, ℛ transform with (𝜃, 𝜙) = [1 : 10 : 180], and ℛ transform
with (𝜃, 𝜙) = [1 : 2 : 180].

For the rotation with angles (𝜃0, 𝜙0), we have

∫ ∞

−∞
𝑇 2
𝑓 (𝜌, 𝜃+ 𝜃0, 𝜙+𝜙0)𝑑𝜌 = ℛ𝑓 (𝜃+ 𝜃0, 𝜙+𝜙0). (6)

From Equations (4)-(6), we can see: first,ℛ transform is
invariant to translation; second, scaling leads to amplitude
scaling; and third, rotation results in phase shift. To achieve
the robustness to rotation, we normalize theℛ transform to
get the scaling invariance by the following equation:

ℛ′𝑓 (𝜃, 𝜙) =
ℛ𝑓 (𝜃, 𝜙)

max𝜃,𝜙{ℛ𝑓 (𝜃, 𝜙)} . (7)

These properties make theℛ transform useful for represent-
ing the distribution of the interest points for action recogni-
tion.

3.2. 3D ℛ Transform on Spatio-Temporal Interest
Points

We propose to apply ℛ transform to 3D video sequence
to describe the distribution structure of the spatio-temporal
interest points extracted from a video. The minimal spatio-
temporal window containing all the interest points extracted
from a video is regarded as a 3D model. The binary function
𝑓(x) on the 3D model is defined as:

𝑓(x) =
{

1 if x is an interest point
0 otherwise

(8)

where x = (𝑥, 𝑦, 𝑡) denotes the position of each point in
the 3D model. Denote {(𝑥𝑗 , 𝑦𝑗 , 𝑡𝑗)}𝐽𝑗=1 be the positions of
spatio-temporal interest points detected in a video, where 𝐽
is the number of interest points. By Eq. (2) and (3), 3D ℛ
transform of the video is given by:

ℛ𝑓 (𝜃, 𝜙)=

∫
𝜌

𝑇 2
𝑓 (𝜌, 𝜃, 𝜙)𝑑𝜌=

∫
𝜌

[ 𝐽∑
𝑗=1

𝑓(𝑥𝑗 , 𝑦𝑗 , 𝑡𝑗) ⋅

𝛿(𝑥𝑗 cos𝜙 sin 𝜃 + 𝑦𝑗 sin𝜙 sin 𝜃 + 𝑡𝑗 cos 𝜃 − 𝜌)
]2
𝑑𝜌. (9)

Observed from Eq. (9), each interest point is first pro-
jected into all planes with parameters (𝜌, 𝜃, 𝜙) and then the
ℛ feature is obtained by the integral of the square of projec-
tions over 𝜌. Therefore, the 3D ℛ transform efficiently de-
scribes the geometrical distribution of interest points. After-
wards,ℛ𝑓 (𝜃, 𝜙) is normalized by Eq. (7). For convenience,
hereafter we use ℛ𝑓 (𝜃, 𝜙) to represent the normalized ℛ
transform.

The ℛ transform uses a two dimensional variable
ℛ𝑓 (𝜃, 𝜙) to represent the distribution of the interest points.
By sampling two parameters 𝜃 and 𝜙, ℛ𝑓 (𝜃, 𝜙) turns out
to be a 2D matrix. Figure 1 shows the 3D ℛ transform of
six videos belonging to different action classes in the KTH
dataset. In the first column, all the interest points detected
in a video are superposed on a single frame. It can be seen
that the geometrical distribution of interest points varies ac-
cording to the different action classes and is very helpful for
improving the action recognition accuracy. The second col-
umn and third column respectively exhibit the 3D ℛ trans-
form with (𝜃, 𝜙) = [1 : 10 : 180] and (𝜃, 𝜙) = [1 : 2 : 180].
The more samples of 𝜃 and 𝜙, the more detailed the charac-
terization of the interest points’ distribution, but the larger
the matrix.

In order to reduce the dimension and improve the robust-
ness of the ℛ feature, we apply the 2-Directional 2DPCA,
i.e. (2𝐷)2PCA, to the matrix obtained from the ℛ trans-
form. The (2𝐷)2PCA, introduced by [6], simultaneously
calculates 2DPCA in the row and column directions and
obtains higher recognition accuracy than PCA and two-
dimensional PCA (2DPCA) [19]. Finally, by applying the
(2𝐷)2PCA on the obtained matrix ℛ𝑓 (𝜃, 𝜙), we obtain the
corresponding low-dimensional matrix as the final feature.
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4. Context-aware Feature Fusion for Action
Recognition

4.1. Video Representation based on Spatio-
temporal Interest Points

We represent each video sequence by two types of fea-
tures of spatio-temporal interest points: the globalℛ feature
and the BOVW representation of the local cuboid features.

We first perform the spatio-temporal interest point detec-
tion for a given video using the Harris3D detector [1]. Af-
terward, we employ the HOG/HOF feature [2] to describe
the cuboid extracted at each interest point. So, a video 𝑉
is denoted as (x𝑖,𝜶𝑖), 1 ≤ 𝑖 ≤ 𝑁 , where x𝑖 is the spatio-
temporal position vector of the 𝑖𝑡ℎ detected interest point,
𝜶𝑖 is the HOG/HOF feature, and 𝑁 is the total number of
interest points detected in the video.

Subsequently, we extract two different types of features
to characterize each video. The BOVW based representa-
tion only utilizes the HOG/HOF feature 𝜶𝑖 of each interest
point, while the global ℛ feature utilizes spatio-temporal
position feature x𝑖.

For the BOVW based representation, several local
HOG/HOF features {𝜶1, ⋅ ⋅ ⋅ ,𝜶𝑚} from a training set are
quantized to form a codebook (i.e. BOVW) by using the
k-means clustering method. According to the obtained
BOVW, each HOG/HOF feature is mapped into a visual
word. Then, each video is represented as a histogram with
regard to all visual words, formulated as:

𝐻 = (𝑛1, 𝑛2, ⋅ ⋅ ⋅ , 𝑛𝐾) (10)

where 𝑛𝑖 = 𝑁𝑖/𝑁 denotes the occurrence frequency of the
𝑖𝑡ℎ visual word in this video, and 𝐾 is the number of visual
words.

For the detected interest points, we use the newℛ trans-
form to characterize their spatio-temporal distribution and
then refine it by (2𝐷)2PCA, as described in Section 3. Ob-
viously, these two features complement each other. The
BOVW based representations rely on the discriminative
power of individual local cuboid features, whilst theℛ fea-
tures exploit the global spatio-temporal distribution of the
interest points. In addition, the two features are versatile
and easy to compute.

4.2. Context-aware Feature Fusion

Given the two feature representations, i.e., theℛ feature
and the BOVW one, our aim is to obtain the labels of the
test videos from the labeled training videos according to the
between-video similarity. A crucial step is to compute the
similarity between videos, and, since kernel-based classi-
fier is used in our study, to build a kernel matrix from the
similarity measure. Traditionally, a kernel matrix is com-
puted based on the pairwise comparison between videos,

but such a kernel matrix can be sensitive to noise, outliers,
etc. Addressing this issue, we propose a context-aware fea-
ture fusion method which not only combines the two feature
representations but also captures the underlying contextual
information from videos.

The proposed context-aware feature fusion method in-
cludes two steps: context selection and context-aware ker-
nel construction. In order to efficiently combine the ob-
tained two features of a video, we use one feature to com-
pute the context of each video and use the other feature to
calculate the context-aware kernel for action recognition.

The context of each video is computed using the 𝑘 near-
est neighbor method. We obtain the 𝑟 nearest neighboring
videos of each video in one feature space as its context. Let
𝑉 1
𝑖 , 𝑉 1

𝑗 , 𝑉 2
𝑖 and 𝑉 2

𝑗 denote two feature representations of
two video sequences 𝑖 and 𝑗. Let 𝒩𝑗 denote the 𝑟 nearest
neighboring videos of video 𝑗. Then𝒩𝑗 is computed by the
following equation:

𝒩𝑗 = {𝑚∣𝑆𝑜𝑟𝑡{𝑑(𝑉 1
𝑗 , 𝑉

1
𝑚)} ≤ 𝑟}, (11)

where the distance 𝑑 is computed by the first feature, and
𝑆𝑜𝑟𝑡{𝑑(𝑉 1

𝑗 , 𝑉
1
𝑚)} ≤ 𝑟 denotes that the video 𝑚 belongs to

the 𝑟 neighborhood of the video 𝑗 in the first feature space.
Secondly, the context-aware kernel is composed of three

parts, the similarity between the two videos, the similarity
between the first video and the context of the second video
and vice versa. The context-aware kernel is defined as:

𝕂(𝑖, 𝑗)= 𝑘(𝑉 2
𝑖 , 𝑉

2
𝑗 ) + 𝑘𝑁 (𝑉 2

𝑖 , 𝑉
2
𝒩𝑗

) + 𝑘𝑁 (𝑉 2
𝑗 , 𝑉

2
𝒩𝑖

), (12)

where the similarities 𝑘 and 𝑘𝑁 are based on the second
feature. The similarity between one video and the context
of the other video is defined as:

𝑘𝑁 (𝑉 2
𝑖 , 𝑉

2
𝒩𝑗

) =
1

𝑟

∑
𝑚∈𝒩𝑗

𝑘(𝑉 2
𝑖 , 𝑉

2
𝑚). (13)

Finally, we compute the context-aware similarity of two
videos by substituting Eq. (13) into Eq. (12). Moreover,
when computing the basic similarity of two single videos in
any feature space, we employ the intersection kernel [7]:

𝑘(𝑉𝑖, 𝑉𝑗) =
∑
𝑛

min(𝑉𝑖(𝑛), 𝑉𝑗(𝑛)), (14)

where 𝑉𝑖(𝑛) and 𝑉𝑗(𝑛) are the 𝑛𝑡ℎ feature elements of
videos 𝑖 and 𝑗 and 𝑘(𝑉𝑖, 𝑉𝑗) measures the “overlap” be-
tween two feature bins.

Subsequently, we incorporate the context-aware kernel
computed by Eq. (12) into SVM classifier directly. The ker-
nel 𝑘 from Eq. (14) is a positive definite kernel [7], and
therefore Eq. (12) summing several values computed by
Eq. (14) is a positive definite kernel. Thereby, Eq. (12) satis-
fies the Mercer’s condition and is directly incorporated into
the kernel function of the SVM classifier.

725725725725727727



5. Experiments

We test our approach on three human action datasets:
KTH [20], UCF sports dataset [21], and UCF films [21].
We emphasize that our approach requires no preprocessing
steps such as object segmentation and tracking.

5.1. Parameter Evaluation of the ℛ Feature

There are two parameters 𝜃 and 𝜙 inℛ transform during
the computation of the proposed ℛ feature. Therefore, we
evaluate these two parameters in our approach on the KTH
dataset. Moreover, we test if the performance is improved
by applying (2𝐷)2PCA to refine the feature obtained from
the ℛ transform. We perform leave-one-person-out cross-
validation to make the performance evaluation on the KTH
video database.

Parameters 𝜃 and 𝜙 are sampled in the range of [0, 180].
Figure 2 shows the performances of seven different numbers
of samples for 𝜃 and 𝜙, namely (𝜃, 𝜙) = [1 : 30 : 180], [1 :
25 : 180], [1 : 20 : 180], [1 : 15 : 180], [1 : 10 : 180], [1 :
5 : 180] and [1 : 3 : 180]. The blue curve is the obtained
recognition accuracy using theℛ transform feature without
(2𝐷)2PCA, and the red one is recognition accuracy using
the (2𝐷)2PCA to refine theℛ transform feature. From Fig-
ure 2, the following points are observed: i) the sampling fre-
quency has little influence on the final result, and the best
accuracy of 91.67% is obtained under (𝜃, 𝜙) = [1 : 10 :
180]; ii) the features obtained by (2𝐷)2PCA gain a higher
recognition accuracy in most cases than the ℛ transform
features on their own. The former achieves 90.31% aver-
age recognition accuracy, and the latter achieves 84.9%. It
demonstrates that ℛ transform feature is an effective de-
scriptor and the (2𝐷)2PCA further improves the discrimi-
native of the ℛ transform feature. In all other experiments
on both datasets, we set (𝜃, 𝜙) = [1 : 10 : 180] and employ
(2𝐷)2PCA onℛ transform as the finalℛ feature. The final
ℛ feature is an 18× 18 matrix.

5.2. Parameter Evaluation of the Context-aware
Feature Fusion

We evaluate the parameter 𝑟, which is the number of
neighbors for context construction in fusion method, on
the KTH dataset. In the BOVW model, the size of code-
book is set to 500. Our proposed context-aware fusion
methods include two manners. The ℛ feature can be used
for context calculation by Eq. (11) and the BOVW feature
for kernel calculation according to Eq. (12), referred to as
‘ℛ+BOVW’. Alternatively, the BOVW feature can be used
for context calculation and the ℛ feature for kernel calcu-
lation, referred to as ‘BOVW+ℛ’. Besides, we test single
feature based and context-aware kernel methods. Namely,
we employ the same type of feature for both context calcula-
tion and kernel calculation, referred to as ‘BOVW+BOVW’
or ’ℛ+ℛ’ respectively.

The above four experiments are shown in Figure 3. In
each experiment, we use the first feature of the legend to
calculate the context by Eq. (11) and the second one to
achieve the kernel for SVM according to Eq. (12). Namely,
‘BOVW+ℛ’ and ‘ℛ+BOVW’ are our proposed fusion ap-
proaches; while ‘BOVW+BOVW’ and ‘ℛ+ℛ’ are the one
feature based and context aware approaches. From Figure 3,
it can be seen that the specific value of 𝑟 is not very sensi-
tive. We set 𝑟 to 5 in other experiments to reduce compu-
tational cost. Moreover, Figure 5 shows that the ℛ feature
boosts the recognition performance by 6.91% with respect
to the ‘BOVW+BOVW’ kernel averagely.

5.3. Experiments on the KTH Database

To evaluate the two proposed fusion methods, we com-
pared our fusion approaches with two other feature fu-
sion approaches: the feature-level fusion approach [11][12]
and the similarity kernel-level fusion approach. All of
these fusion approaches combine the proposed two features.
Specifically, the feature-level fusion approach concatenates
the two normalized feature vectors to form a larger fea-
ture vector as input to the SVM classifier. For the similar-
ity kernel-level fusion approach, we separately compute the
similarity matrix by each kind of feature, and then utilize
the weighted sum of the two obtained similarity matrices as
the final kernel of the SVM, which is formulated as follows:

𝑘2(𝑉𝑖, 𝑉𝑗) = 𝛼
∑
𝑛

min(𝑉 1
𝑖 (𝑛), 𝑉

1
𝑗 (𝑛)) +

(1− 𝛼)
∑
𝑚

min(𝑉 2
𝑖 (𝑚), 𝑉 2

𝑗 (𝑚)). (15)

Table 1 lists the recognition accuracies of eight ap-
proaches on KTH dataset, including one feature based ap-
proaches (e.g., ‘BOVW’, ‘ℛ’), One feature based and con-
text aware approaches (e.g., ‘BOVW+BOVW’, ‘ℛ+ℛ’),
two other feature fusion approaches (e.g., ‘feature-level fu-
sion’, ‘kernel-level fusion’), and our proposed fusion ap-
proaches (e.g., ‘BOVW+ℛ’, ‘ℛ+BOVW’). It shows the fol-
lowing points:

∙ The ℛ feature based approach achieves 91.67% accu-
racy, which is 6.95% higher than the BOVW-based ap-
proach. This proves the powerful discrimination of the
proposedℛ feature.

∙ One feature based and context aware approaches
(e.g., ‘BOVW+ BOVW’, ‘ℛ+ℛ’) outperform the
corresponding one feature based approaches (e.g.,
‘BOVW’, ‘ℛ’). It illustrates that the extended similar-
ity kernel considering context can improve the recog-
nition performance. Namely, the proposed context
aware kernel method obtains higher performance than
the traditional context-free kernel method.
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Figure 2. Recognition accuracies obtained by the ℛ transform fea-
ture and the (2𝐷)2PCA feature with respect to seven different sam-
plings of the two parameters 𝜃 and 𝜙 on KTH dataset.
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Figure 3. Recognition accuracies of four methods with respect to
𝑟, the number of neighbors for context construction on the KTH
dataset.

Table 1. Comparison of eight methods on the KTH dataset. (%)
KTH box hand clap hand wave jog run walk Average

BOVW 90.63 87.50 92.71 76.04 69.79 91.66 84.72
BOVW+BOVW 92.71 90.63 92.71 77.08 78.13 90.63 86.98
ℛ 94.79 95.83 92.71 82.29 89.58 94.79 91.67
ℛ+ℛ 95.83 95.83 93.75 81.25 88.54 96.88 92.01
feature-fusion 98.96 97.92 95.83 86.46 90.63 95.83 94.27
kernel-fusion 98.96 98.96 95.83 87.50 86.46 96.88 94.09
ours: BOVW+ℛ 97.92 95.83 94.79 83.33 89.58 97.92 93.23
ours: ℛ+BOVW 100 98.96 96.88 87.50 89.58 100 95.49

∙ The approaches of fusing two features all achieve
higher accuracies than the one feature based ap-
proaches. It shows that the ℛ feature and the BOVW-
based feature are complementary and are feasible to be
combined for action recognition.

∙ Our fusion approach (‘ℛ+BOVW’) obtains higher
accuracy than the other two common fusion ap-
proaches, which demonstrates the effectiveness of our
proposed fusion strategy. Moreover, our fusion ap-
proach with the ℛ feature for context calculation
and the BOVW feature for kernel calculation (e.g.,
‘ℛ+BOVW’) achieves the best accuracies.

5.4. Experiments on the UCF Sports Dataset

The UCF sports database is tested in a leave-one-out
manner, cycling each example in as a test video one at a
time, following [21] [22] [23]. In the BOVW model, the
size of the codebook is set to 800. On the UCF sports
database, we perform experiments similar to those on the
KTH dataset. The results are shown in Table 2. The sim-
ilar results as in KTH are obtained in the Table 2, which
demonstrate the effectiveness of our proposed cloud feature
and fusion method on the realistic and complicated dataset.
The overall average accuracy for the UCF dataset using our

Table 3. Evaluation results on the KTH dataset and the UCF
dataset. (%)

Method KTH UCF

Our approach 95.49 87.33
Bregonzio et al. [10] 93.17 -

Sun et al. [12] 94.0 -
Yeffet et al. [23] 90.1 79.2
Wang et al. [2] 92.1 85.6

Kovashka et al. [22] 94.53 87.27
Le et al. [24] 93.9 86.5

Wang et al. [25] 94.2 88.2

approach is 87.33%, which is reported 69.2% in [21].

Besides, Table 3 presents a comparison of our results
with state-of-the-art results, which indicate that our ap-
proach achieves or even outperforms the listed approaches.
With our approach, the overall average accuracies are
87.33% for the UCF dataset and 95.49% for the KTH
dataset.
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Table 2. Evaluation results on the UCF Sports dataset. (%)
Method dive golf lift kick ride run skate swing1 swing2 walk Average

BOVW 100 66.67 100 80 58.33 53.85 58.33 95 76.92 77.27 76.67
BOVW+BOVW 100 72.22 100 80 58.33 53.85 58.33 95 76.92 77.28 77.33
ℛ 85.71 66.67 83.33 95 66.67 69.23 91.67 100 76.92 63.64 80.00
ℛ+ℛ 92.86 55.56 100 95 66.67 69.23 91.67 100 76.92 68.18 82.00
feature-fusion 100 77.78 100 100 58.33 61.54 83.33 100 76.92 86.36 85.33
kernel-fusion 100 83.33 100 85 58.33 61.54 75 100 84.62 86.36 84.00
BOVW+ℛ 92.86 72.22 100 95 83.33 76.92 100 100 76.92 72.73 86.00
ℛ+BOVW 100 88.89 100 95 58.33 69.23 83.33 100 76.92 90.91 87.33

6. Conclusion

In this paper we presented a new action recognition
framework based on spatio-temporal interest points. We
first proposed a new holistic video representation, the 3D
ℛ transform on spatio-temporal interest points, to capture
the information of the global geometrical distribution. We
then proposed a new fusion strategy to combine the local
cuboid feature and the global ℛ feature for action recogni-
tion. A context-aware kernel between two video sequences
has been designed in order to overcome the disadvantage of
the traditional pairwise context-free kernels, which is sensi-
tive to noise and outliers in the data. Experimental results
on several datasets have demonstrated the effectiveness of
our proposedℛ feature and fusion method.
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