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Abstract

Estimating geographic location from images is a chal-

lenging problem that is receiving recent attention. In con-

trast to many existing methods that primarily model dis-

criminative information corresponding to different loca-

tions, we propose joint learning of information that images

across locations share and vary upon. Starting with gener-

ative and discriminative subspaces pertaining to domains,

which are obtained by a hierarchical grouping of images

from adjacent locations, we present a top-down approach

that first models cross-domain information transfer by uti-

lizing the geometry of these subspaces, and then encodes the

model results onto individual images to infer their location.

We report competitive results for location recognition and

clustering on two public datasets, im2GPS and San Fran-

cisco, and empirically validate the utility of various design

choices involved in the approach.

1. Introduction

Image-based identification of locations is an important

high-level vision problem that augments the potential of

pervasive computing. It compliments techniques that heav-

ily rely on GPS information (eg. [15]), which could either

be noisy or missing depending on the location of interest,

and application areas such as surveillance. While prelimi-

nary work on this problem started atleast two decades ago

[20, 25], only in the recent years have we seen substantial

progress [26, 31, 23] partly due to large availability of data

and the emergence of mobile vision applications.

Most existing methods for location recognition follow

the paradigm of discriminative modeling for feature selec-

tion and classification. For instance, [11] used several low-

level features that could distinguish images across locations

and used a nearest-neighbor classifier to estimate query lo-

cations from a large data set. [21] proposed epitomic feature

analysis that captures appearance and geometric structure

of environments while allowing for variations due to mo-

(a) (b)

Figure 1. While images in (a) correspond to familiar locations that

either have distinct visual features or have good exposure amongst

the general public, the location of images in (b) is hard to infer.

One intuitive way to address such cases is to analyze how those

images are relatively similar to and different from other known lo-

cations so that a meaningful location estimate can be obtained. We

pursue such a goal in this work using tools pertaining to subspace

geometry. All figures are best viewed in color.

tion and occlusion related effects. Utility of 3D information

corresponding to locations was investigated by [7, 12, 1]. In

addition to robust feature descriptors, there have been sev-

eral studies on efficient schemes for classification and re-

trieval of location queries. [18] presented an adaptive, pri-

oritized feature matching technique that learns reliable fea-

tures with certain view independency for better localization.

Scalable vocabulary tree coding algorithms were presented

by [22, 13], while [16] modeled landmark image collections

using iconic scene graphs. Image features that are confusing

from a place recognition perspective was studied by [14],

and [5] addressed obtaining discriminative features that are

geographically informative, while occurring frequently at

the same time. There have also been efforts that provide

landmark search engines for web-scale image collections

[32] and for mobile vision applications [3]. Besides mod-

eling location specific information, some studies have ex-

amined the utility of complimentary information provided

by other data modalities. While [19] recognized locations

from consumer photos by jointly modeling contextual in-

formation conveyed by people and events in those data col-

lections, the advantage of using user-provided tags was il-

lustrated by [17, 27].
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Discriminative approaches, however, do not entirely ad-

dress an important problem in location recognition that is

illustrated in Figure 1. While images in Figure 1(a) corre-

spond to famous locations that are visually very distinct or

popular enough among the public to be recognized easily,

the location of images in Figure 1(b) is hard to be inferred

since neither are these images popular locations, nor do they

have unique distinguishing features. One feasible way to

obtain an approximate location estimate of these images is

to jointly analyze the properties they have in common to and

vary from other well known locations. An example would

be the image of a downtown in Figure 1(b) where the pres-

ence of skyscrapers suggests that it should correspond to a

urban locality and not semi-urban or rural, and the presence

of large water bodies further helps narrowing down amongst

the potential urban location possibilities (eg. it could be

somewhere in New York City, but not Phoenix). Such an

analysis should also account for the fact that the visual and

location information of images do not always correlate for

instance, one could have images that look very much alike

but correspond to vastly different geographic areas.

We address this problem by pursuing a top-down ap-

proach where given a set of training images representative

of different locations, we first group the images into dif-

ferent domains based on location adjacency. We then de-

rive generative and discriminative subspaces of same di-

mensions from these domains, and motivated by [9], we

model cross-domain transfer of similar (resp. distinct) in-

formation by pursuing a Grassmann manifold interpretation

of the space spanned by these generative (resp. discrimina-

tive) subspaces. We finally embed the effect of this trans-

formation onto images from training and query, and per-

form location inference in both recognition and clustering

settings. The motive behind this is to account for possi-

ble lack of correlation between location and visual informa-

tion of images, whereby the creation of domains offer loca-

tion-based support and the subsequent operations account

for modeling visual (dis-)similarities in a top-down fashion

(from domains to individual images).

2. Proposed Approach

Let us start with the problem setting. Assume that we

have n training images spread across m different loca-

tions; X = {(xi, yi)}
n
i=1, where xi ∈ R

d denotes the

d−dimensional feature descriptor corresponding to the ith

training image, and yi ∈ {1, 2, ...,m} denotes its location

(i.e. latitude and longitude co-ordinates). Now given a

query image xt, the goal of this work is to estimate its loca-

tion yt = f2(f1(X )) where f1 models information transfer

across domains (that are created by grouping xi based on

their location yi) and f2 denotes the subsequent classifica-

tion or clustering mechanism. More details are provided in

the following sub-sections.
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Figure 2. Assigning images from X into domains D in a three-

level hierarchical manner, and organizing the domains into groups

G for further analysis. Each group contains four domains within

which generative and discriminative subspaces are analyzed for

cross-domain information transfer. Such an analysis on groups in

all three levels convey top-down information on how visually sim-

ilar and distinct information looks like among image collections

that trend progressively from global to local.

2.1. Modeling Cross-domain Information Transfer

Creating Domains: Assuming that X correspond to

images from all over the earth, we flatten the earth and

create domains D in a three-level hierarchical fashion.

The first level domains D1 to D4 correspond to images

from four quadrants (with each quadrant covering 90

degrees in latitude and 180 degrees in longitude) of the

flattened earth, and let group G1 represent the collection

all these four domains. The second level domains D5

to D20 are obtained by splitting each first level domain

into four quadrants, and we thus obtain four groups

Gi = {Di}
4∗i
4∗(i−1)+1, i = 2 to 5. Similarly we obtain the

third level domains D21 to D84 by splitting each of the

second level domains into four quadrants, with which we

constitute 16 groups. Figure 2 provides an illustration. So

we have a total of c = 84 domains D = {Di}
84
i=1 that are

split into 21 groups G = {Gi}
21
i=1 containing four domains

each, which represents image collections pertaining to

location neighborhoods that trend progressively from

global to local. We now model how visually similar and

different information transform across domains within each

group Gi.

Subspace Representation of a Domain: We resort to

linear subspace representation of data contained within each

domain for two reasons: (i) subspaces have widely been

used to model data characteristics for many computer vi-

sion applications [29, 2], and (ii) there exist a set of an-

alytical tools that can be used to interpolate information

across subspaces [6]. Towards this end we obtain gener-

ative and discriminative subspaces (that represent holistic

and distinct information respectively), of the same inherent

dimension N(< d), corresponding to these domains by per-
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forming principal component analysis (PCA) [29] and par-

tial least squares (PLS) [30] respectively. We perform PCA

on each domain Di to obtain a d × N orthonormal matrix

whose column space denotes the generative subspace Si1.

We obtain discriminative subspace pertaining to each Di by

considering a one-vs.-remaining setting (i.e Di vs. other

three domains in the group that Di belongs to) and perform-

ing a two-class PLS to obtain a d × N orthonormal matrix

whose column space correspond to the discriminative sub-

space Si2. While one could use other methods for linear

generative and discriminative dimensionality reduction, we

chose PCA since it is one of the widely used methods to

model generative properties, and PLS since it provides flexi-

bility in choosing the subspace dimensions unlike other dis-

criminative methods such as the linear discriminant analysis

[2]. Let S = {Si1}
84
i=1 ∪{Sj2}

84
j=1 refer to the collection of

generative and discriminative subspaces obtained from G.

The problem of modeling cross-domain information

now translates into: (i) analyzing the space of these

N -dimensional subspaces in R
d to study the transfer of

visually generic (resp. distinct) information across gener-

ative (resp. discriminative) subspaces within each group

Gi, and (ii) embedding this information transfer onto each

individual training data xi to obtain a new representation

f1(xi) that is cognizant of the cross-domain variations.

Grassmann Manifold: Before starting our analysis, we

note that the space of subspaces is non-Euclidean, and it

can be characterized by the Grassmann manifold [6]. The

Grassmannian Gd,N is an analytical manifold which is the

space of all N -dimensional subspaces in R
d containing the

origin. Each subspace in the collection S is a ‘point’ on this

manifold. Analyzing the geometric and statistical properties

of this manifold has been addressed by works such as [6, 4].

We now utilize some of these results to model f1.

2.1.1 Analyzing Information Flow Between Subspaces

We first learn how information transforms across different

domains within a group. For this we consider a pair of

generative (or discriminative) subspaces in that group, al-

though the following analysis can be extended beyond a

pair of subspaces. One geometrically meaningful ‘path’ to

‘connect’ such pair of ‘points’ on the manifold, say1 S1

and S2, is the geodesic between them, which are constant

velocity curves on the manifold. By viewing Gd,N as a

1We use symbols S1 and S2 for sake of clarity. S1 and S2 could ei-

ther correspond to a pair of generative subspaces Si1 and Sj1 within a

group, or a pair of discriminative subspaces Si2 and Sj2 within a group.

In our analysis we have 6 pairs of generative and 6 pairs of discriminative

subspaces within each group (since a group has four domains), thereby

making 12∗21 subspace pairs in all. While one could consider a pair made

of a generative subspace Si1 and a discriminative subspace Sj2, we did

not pursue that since the information contained in such a pair is different.

Given two points S1 and S2 on the Grassmannian Gd,N .

• Compute the d × d orthogonal completion Q of S1.

• Compute the thin CS decomposition of QT S2 given

by QT S2=

(
XC

YC

)
=

(
V1 0

0 Ṽ2

) (
Γ(1)
−Σ(1)

)
V T

• Compute {θi} which are given by the arccos and

arcsine of the diagonal elements of Γ and Σ
respectively, i.e. γi = cos(θi), σi = sin(θi). Form the

diagonal matrix Θ with θ’s as diagonal elements.

• Compute A = Ṽ2ΘV T
1 .

Algorithm 1: Numerical computation of the velocity

matrix: The inverse exponential map [8].

quotient space of SO(d), the geodesic path in Gd,N start-

ing from S1 is given by a one-parameter exponential flow

[6]: Ψ(t′) = Q exp(t′B)J , where exp refers to the ma-

trix exponential, and Q ∈ SO(d) such that QT S1 = J

and J =

[
IN

0d−N,N

]
. IN is a N × N identity matrix,

and B is a skew-symmetric, block-diagonal matrix of the

form B =

(
0 AT

−A 0

)
, A ∈ R

(d−N)×N , where the su-

perscript T denotes matrix transpose, and the sub-matrix A

specifies the direction and the speed of geodesic flow. Now

to obtain the geodesic flow between S1 and S2, we compute

the direction matrix A such that the geodesic along that di-

rection, while starting from S1, reaches S2 in unit time. A

is generally computed using inverse exponential mapping

(Algorithm 1).

Using the information contained in A, we can ‘sample’

points along the geodesic to understand how information

transforms between different domains. This is performed

using the exponential map (Algorithm 2), by using the ex-

pression for Ψ(t′) to obtain intermediate points (subspaces)

between S1 and S2 by varying the value of t′ between 0 and

1. Let N ′ denote the number of subspaces obtained from

a geodesic, which includes S1, S2 and all intermediate sub-

spaces sampled between them. This process, when repeated

between all pairs of generative (resp. discriminative) sub-

spaces, provides a wealth of information on how visually

generic (resp. distinct) properties transform across differ-

ent domains. Since we analyze 252 geodesics (footnote 1),

we have c1 = 252∗N ′ subspaces conveying cross-domain

information transfer.

2.1.2 Embedded Data Representation

We then embed this information onto the training data by

projecting each xi on all c1 subspaces to result in a matrix

M ′

i of size N × c1. The column vectors of this matrix rep-

resent a set of instances that describe xi relative to cross-

domain variations. One way to collectively describe such

731731731731733733



• Given a point on the Grassmann manifold S1 and a

tangent vector B =

(
0 AT

−A 0

)
.

• Compute the d × d orthogonal completion Q of S1.

• Compute the compact SVD of the direction matrix

A = Ṽ2ΘV1.

• Compute the diagonal matrices Γ(t′) and Σ(t′) such that

γi(t
′) = cos(t′θi) and σi(t

′) = sin(t′θi), where

θ’s are the diagonal elements of Θ.

• Compute Ψ(t′) = Q

(
V1Γ(t′)

−Ṽ2Σ(t′)

)
, for various values

of t′ ∈ [0, 1].

Algorithm 2: Algorithm for computing the exponential

map, and sampling along the geodesic [8].

a set is to consider the subspace it spans2. We hence per-

form PCA on M ′

i to obtain an orthonormal matrix Mi of

size N × N1, with N1 < N , whose column space signifies

the new embedded data representation f1(xi). f1(xi) is a

point on the Grassmannian GN,N1
. By repeating the above

process for the entire training set X , we obtain n points on

GN,N1
having location information yi associated with them.

2.2. Performing Location Inference

We now train a classifier f2 by performing statistics

over the point cloud f1(xi)’s on GN,N1
, to recognize lo-

cation yt of the query xt. Of the many possible tech-

niques [4], we pursued the method of [10] since its util-

ity for visual recognition has been demonstrated before.

This method essentially performs kernel linear discriminant

analysis on the points on GN,N1
using the projection kernel

kP (Mi,Mj) = ‖MT
i Mj‖

2
F = trace[(MiM

T
i )(MjM

T
j )],

which is a Mercer kernel that implicitly computes the inner

product between M ′

is in the space obtained using the em-

bedding; ωP : GN,N1
→ R

N×N , span(Mi) → MiM
T
i .

To make the paper self-contained, we present the details of

this method in Algorithm 3.

However since the number of locations m is generally

much higher than the amount of data available at each lo-

cation, we discriminate between the domains instead. But

instead of using all 84 domains, we used only c′ = 64 do-

mains from third level since they provide the finest location

grouping of images xi among all the three levels of the hier-

archy (Sec 2.1). We then learn the discriminative space f2

by solving for (1) using Mi’s and their associated domain

labels, using which the reduced (c′ − 1) dimensional rep-

resentation Ftrain for training data is obtained. The query

location yt is then inferred by first computing the matrix Mt

from xt using the procedure described in Sec 2.1.2, obtain-

ing its reduced dimensional representation Ftest from (1),

2We empirically evaluate some alternatives to model the information

contained in matrix Mi in Sec 3.
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Figure 3. Overview of our approach. Step 1: Grouping n = 11
training data xi from four unique locations yi (m = 4; a specific

mountain, wetland, city, desert) into three domains D (c = 3).

These domains may contain visually dissimilar images as we do

only a coarse grouping. Assume these three domains are combined

into a single group G. Step 2: Obtaining generative (red) and dis-

criminative (green) subspaces from these domains, and sampling

points (yellow) along the geodesic between them (solid and dashed

lines, resp.) to learn cross-domain information transfer. Step 3:

Projecting each training data xi onto these subspaces to obtain

an embedded representation f1(xi) - colored ovals (based on yi):

black-city, orange-wetland, white-mountain, purple-desert. Step

4: Learning a discriminative space f2 using Algo 3 (red ellipses)

on f1(xi) grouped by their domains (c′ = c here), to infer location

yt of f1(xt) (brown oval) derived from query xt.

and finally selecting the location yi of the nearest neighbor

from Ftrain. Figure 3 presents a visualization of the pro-

posed approach.

2.2.1 Clustering

Besides location ‘recognition’, there could be cases where

the data is not labeled. In such cases we can perform

‘clustering’ on the Grassmannian to determine the group-

ing of data, and one possibility is to perform k-means [28].

From the set of points P = (f1(x1), f1(x2), ..., f1(xn)) on

GN,N1
, we seek to estimate k clusters C = (C1, C2, ..., Ck)

with cluster centers (μ1, μ2, ..., μk) so that the sum of

geodesic-distance squares,

k∑
i=1

∑
f1(xj)∈Ci

d̄2(f1(xj), μi) is

minimized. Here d̄2(f1(xj), μi) = | exp−1
μi

(f1(xj))|
2,

where exp−1
μi

is the inverse exponential map computed from

tangent plane centered at μi (Algorithm 1). As is the case

with standard Euclidean k-means, we can solve this prob-

lem using an EM-based approach. We initialize the algo-

rithm with a random selection of k points as the cluster

centers. In the E-step, we assign each of the points of the

dataset P to the nearest cluster center. Then in the M-step,

we recompute the cluster centers using the Karcher mean

algorithm described in the supplementary material.
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From the training data xi’s grouped into c′ domains, and query

images xti’s, compute their respective embedded cross-domain data

representation Mi’s and Mti’s (a collection of orthonormal

matrices).

Training:

• Compute the matrix [Ktrain]ij = kP (Mi, Mj) for all

Mi, Mj in the training set, where kP is the projection kernel

defined earlier.

• Solve maxγ L(γ) by eigen-decomposition (1), with

K� = Ktrain.

• Compute (c′-1)-dimensional coefficients, Ftrain = γT Ktrain

Testing:

• Compute the matrix [Ktest]ij = kP (Mi, Mtj) for all Mi in

training, and Mtj in testing.

• Compute (c′-1)-dimensional coefficients, Ftest = γT Ktest by

solving for (1) with K� = Ktest.

• Perform one-nearest neighbor classification from the Euclidean

distance between Ftrain and Ftest, and associate location yt

of a query in Ftest to the location yi of its nearest neighbor

in Ftrain.

The Rayleigh quotient L(γ) is given by,

L(γ) = max
γ

γT K�(V̄ − 1B′1T
B′/B′)K�γ

γT (K�(IB′ − V̄ )K� + σ2IB′ )γ
(1)

where K� is the Gram matrix (Ktrain or Ktest), 1B′ is a uniform

vector [1...1]T of length B′ corresponding to the number of gallery

images, V̄ is the block-diagonal matrix whose zth block

(z = 1 to c′) is the uniform matrix 1B′

z
1T

B′

z
/B′

z , B′

z is the number

of training images in zth class, and σ2IB′ is a regularizer to make

computations stable (σ = 0.3 in our experiments).

Algorithm 3: Grassmann Kernel Discriminant Analy-

sis [10].

3. Experiments

We evaluate the method on two datasets, im2GPS [11],

and San Francisco [3], for location recognition and cluster-

ing and present an analysis of relative merits of some design

choices involved in our approach.

Value of parameters: We chose the values of N, N1 and

N ′ by performing 5-fold cross-validation on the training

data (from each dataset) by varying subspace dimensions

N and N1 to reflect 85 − 95% of PCA variance (in steps

of 2%), and the number of samples N ′ along a geodesic

ranging from 3 to 5 (in steps of 1).

3.1. im2GPS Dataset

We first experimented with the im2GPS dataset [11].

The training set contains images obtained from Flickr col-

lections, while the test set contains 237 images representing

different locations. We first used two of the seven features

proposed in [11], tiny images and the gist descriptor with

color, and then experimented with all seven features. In

each case the selected features were concatenated into a

long vector, which denotes our xi. The reason behind this

choice is to see how well our method performs with varying

number of features, and for the trial with two features we

chose tiny images and gist since they had lesser variance

across different classification strategies studied in [11] and

at the same time had reasonably good performance. We

created domains D using the procedure outlined in Section

2.1, then modeled cross-domain information transfer using

the geometry of subspaces derived from the domains (Sec

2.1.1), embedded those results into each training data

xi to obtain f1(xi) (Sec 2.1.2) and learned the classifier

space f2 (Sec 2.2) using c′ = 64 domains with which

the query location was inferred. With the training done

offline, it takes about 10 seconds on a 2 GHz machine to

process a query. Some visualizations of nearest neighbors

corresponding to query images is given in Figure 4, and

the performance curves are reported in Figure 5. We

then repeated the above process but with the classifier f2

trained on even finer domains, by first splitting each of

the 64 domains vertically into two (c′ = 128) and then

horizontally into two (c′ = 256), to study the sensitivity of

the classifier to the number of domains. Please note that

this impacts only the classification stage (Sec 2.2) and not

any of the earlier stages.

Observations: It can be seen that our method performs

better overall, even by using only two features (out of

the original seven), which shows the utility of the joint

generative and discriminative information captured by our

model. Using all seven features results in an improved

performance. Another observation is that the recogni-

tion improves with finer grouping of domains, which

is intuitive since such domains are more representative

of finer locations. In Figure 5(c) we report the location

recognition performance on two other test sets, 2K random

and geographically uniform, that are provided as a part

of the im2GPS dataset. These two test sets are relatively

more challenging than the earlier (default) test set because,

(i) the random 2K test set contains several instances that

are not common landmarks, and (ii) the images in the

geographically uniform set may not contain equally dense

neighborhood around them that are distinct.

Utility of hierarchical formation of domains, and

creating groups from them: We now study two alternate

strategies to create and analyze domains D as opposed to

the scheme discussed in Sec 2.1. In the first setting we do

not pursue a hierarchical scheme and use just the domains

from the third level along with their grouping. So we have

64 domains {Di}
84
i=21 that are consolidated into 16 groups

{Gi}
21
i=5 (from Sec 2.1). We then create generative and

discriminative subspaces to analyze geodesics between

as described earlier. We have 12*16 subspace pairs in

this case, and let us call this setup Case-A1. We then

consider another setup, Case-A2, where we remove the

733733733733735735
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Figure 5. Results on the im2GPS data. (a) Analyzing the performance of features using our method and that of [11]. It can be seen that our

method learns more information by using only 2 features in comparison with 7 used by [11]. Finer concentration of domains (using larger

c′ for classification) improves performance. (b) Similar trends are observed in the location retrieval of query images on the default test set.

Graphs using all seven features are shown here.(c) Results on 2K and geographically uniform test sets are inferior to that on the default test

set (reproduced from (b)). Results with 64 and 128 domains on these two test sets are given in the supplementary material.

Figure 4. Sample retrieval results from our approach on the

im2GPS dataset [11]. Each row shows five nearest matches for

a query image in the first column. It can be seen that the famous

locations (top two rows) have retrievals that are both visually and

geographically similar, while the retrievals for rows 4 and 5 are

visually similar but geographically varying. Row 3 presents a case

where both the visual and geographical similarities are divergent.

group information from Case-A1 and consider generative

and discriminative subspace pairs among all 64 domains.

Discriminative subspaces in the case are obtained by a two-

class PLS in a one-vs-remaining(63 domains) setting. We

have 4032 subspace pairs in this case (64C2 each for gener-

ative pairs and discriminative pairs). We present the results

for these two cases, with c′ = 256, in Figure 6. It can be see

that Case-A1 is better than Case-A2 while both cases are

inferior to the hierarchical domain formation scheme (Sec

2.1). This suggests that a top-down mechanism of obtaining

domains is better, and for analyzing subspaces across do-

mains it is important to have some supervision (in terms of

groups Gi) in modeling visual properties across locations.

Results with c′ = 64 and 128, which follow similar trends

as that of c′ = 256, are given in the supplementary material.

� �� ,� +� '� ���
���

���

���

���

��,

�
�!
���	
�����
����
�

�

�
�
!�
���
��

�
��
���
��
$�

��
�	
��
!�


�

(����� 
������
����
���!)*��+
/��
�0���!)*��+
/��
�0���!)*��+
/��
�1���!)*��+
/��
�1���!)*��+

Figure 6. Analyzing relative merits of some design choices in-

volved in our approach. Case-A1 and A2 deal with the domain

and group creation aspect, whereas Case-B1 and B2 deal with ob-

taining the embedded representation f1(xi) using Euclidean tools

instead of geometry-driven ones. The curve corresponding to the

legend ‘Ours-default test set’ is reproduced from Figure 5.

Utility of considering column space of Mi to perform

location recognition: We then address the utility of ob-

taining the embedded cross-domain representation f1(xi)
by considering the column span of matrix Mi. We consider

two alternate possibilities. Case-B1: Performing PLS based

dimensionality reduction, which has shown to be effective

for recognition tasks [24], by concatenating the columns of

Mi into a long vector and learning a discriminative space

using the domain labels c′ of Mi. We then project matrices

from training Mi and query Mti onto this space and per-

form 1-nearest neighbor classification using the PLS pro-

jection co-efficients. We also consider Case-B2 where we

replicate the steps of Case-B1 using matrices M ′

i instead of

Mi (i.e. not performing PCA to model the projections of

xi on the c1 subspaces). We report the comparison in Fig-

ure 6 where Case-B1 is better than Case-B2 that suggests
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that doing a PCA is a good way to encompass information

contained in the matrix M ′

i , and Algorithm 3 is better than

Case-B1 which suggests that utilizing the geometry spanned

by the column space of matrices Mi has advantages over an

Euclidean treatment.

3.1.1 Clustering

We then performed a clustering experiment to account for

cases where the data xi may not have location information

yi. We used the im2GPS training set X (without yi) for this

purpose. We first created 64 random groupings of the data

into domains D. We learnt generative and discriminative

subspaces from these domains along the lines of Case-A2 as

we do not have location information to form groups G (Note

that while in Case-A2 the domains were created using loca-

tion information but the subsequent groups were not formed

deliberately, here in clustering we do not actually have lo-

cation information to construct the domains, and therefore

the groups). We then modeled cross-domain information

by projecting each data xi ∈ X onto the geodesic between

these subspaces to obtain f1(xi), and performed k-means

clustering (Sec 2.2.1) by setting k = 64 equaling the num-

ber of domains. We computed the geolocation error for each

xi by picking out four closest neighbors of f1(xi) from its

cluster (using d̄2), computing the error between the ‘ground

truth’ location yi with the ground truth location of its four

neighbors, and taking the average of those four values. The

experiment was repeated with 128 and 256 clusters (with-

out changing the number of domains), and the performance

curves are reported in Figure 7(b) along with sample clus-

tering results in Figure 7(a). While the clustering accuracy

is not very high, we are still able to infer approximate loca-

tions without any labeled data, for a problem where visually

similar images can come from vastly different locations.

3.2. San Francisco Dataset

We next experimented with the San Francisco dataset [3]

that was generated by aligning panoramic images to a 3D

model of the city. There are two sets of images, perspective

central images (PCI) and perspective frontal images (PFI),

which were subjected to histogram equalization before ex-

tracting upright SIFT feature keypoints. We then obtained a

bag-of-words histogram codebook of length 800 represent-

ing xi, for each of these two images sets separately, by per-

forming (standard Euclidean) k-means/vector quantization

on the SIFT features. We then created domains D and the

corresponding groups G by partitioning the rectangular grid

covering the city. All other parameters we retained from the

im2GPS dataset in order to study the experimental results

in a level field.

We then learnt f1 and f2 from the procedure described

before to infer the locations of the test set containing 803

query images. The results are given in Figure 8. When the

GPS option is used, we infer query location by computing

nearest neighbors (Algorithm 3) from the training data per-

taining to the domain of the query (obtained from its ground

truth) and to the four domains adjacent to it. It can be seen

that the use of GPS information does improve recognition,

and the non-GPS results in general are better when com-

pared to the im2GPS dataset, specifically in the very low

error tolerance region. One reason for this, besides the ob-

vious difference in the data, could be the finer spatial con-

centration of data X (a city vs. entire world). The results

for cases A1, A2, B1 and B2 largely follow the pattern ob-

served in the other dataset, and we present those results in

the supplementary material.

4. Conclusion

We proposed a top-down approach to jointly model gen-

erative and discriminative information portrayed by the data

and demonstrated its utility for the challenging problem of

location recognition and clustering, where the visual and lo-

cation properties of images may not always correlate. The

competitive results obtained on two public datasets, along

with an empirical analysis on the utility of certain design

choices, seems to suggest the importance of modeling tools

that are cognizant of the underlying geometric space of the

data they operate on.
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Figure 7. Clustering on im2GPS data. (a) Sample clustering results. In each row, the first column picks an image and displays its four

nearest clustered neighbors. (b) For every image, we compute the difference of its ‘ground truth’ location with the ground truth location of

its four nearest neighbors, and consider the average of these location errors. The k-means clustering and the corresponding random grouping

of data into domains D was repeated 10 times and the average location errors are plotted. While the performance slightly improves with

larger clusters, it is not as significant as in the recognition setting, which reiterates the advantage of having labels (or supervision).
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(b)

Figure 8. Precision-recall curves on the San Francisco data [3] with PCI (a) and PFI (b) images. It can be seen that the GPS information

offers a good performance improvement. Results using 64 and 128 domains are given in the supplementary material.
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