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Abstract

In this paper we propose a new technique for learn-
ing a discriminative codebook for local feature descriptors,
specifically designed for scalable landmark classification.
The key contribution lies in exploiting the knowledge of cor-
respondences within sets of feature descriptors during code-
book learning. Feature correspondences are obtained using
structure from motion (SfM) computation on Internet photo
collections which serve as the training data. Our codebook
is defined by a random forest that is trained to map corre-
sponding feature descriptors into identical codes. Unlike
prior forest-based codebook learning methods, we utilize
fine-grained descriptor labels and address the challenge of
training a forest with an extremely large number of labels.
Our codebook is used with various existing feature encod-
ing schemes and also a variant we propose for importance-
weighted aggregation of local features. We evaluate our
approach on a public dataset of 25 landmarks and our new
dataset of 620 landmarks (614K images). Our approach
significantly outperforms the state of the art in landmark
classification. Furthermore, our method is memory efficient
and scalable.

1. Introduction

Given a pre-defined set of locations and landmarks, we

address the problem of recognizing the landmark (or loca-

tion) from a single image. We are specifically interested in

designing an approach that can scale to classify a very large

number of different landmarks and that can perform recog-

nition efficiently. With billions of tagged Internet photo

publicly available on the Internet, addressing this problem

at a large scale is of fundamental importance, as evidenced

by the increasing interest in this topic by the computer vi-

sion community [12, 17, 18].

The main challenge in landmark recognition arises from

the great diversity of camera viewpoints as well as varia-

tions in scale and appearance due to illumination changes

from time-of-day, weather, seasons etc. Although the in-

trinsic scene appearance does not change a lot, the visibility

of scenes covering a wide area can change dramatically with

viewpoints, producing a diverse set of images (see the Pi-
azza Navona reconstruction in Figure 1). In addition, scene

appearance at locations such as Times Square change with

time, making them very challenging to recognize.

Broadly speaking, most existing methods for landmark

classification build upon scalable image retrieval techniques

[28, 22, 13, 3, 26, 12]. Although this enables fast querying

against a database of many millions of images, constant ac-

cess to this huge database is necessary with consequent high

storage and memory costs. For high precision, an expensive

re-ranking step is often used for geometric post-verification

of feature matches over image pairs. Recently proposed

alternatives include direct image matching to sparse SfM

point clouds [27, 17, 18]. Despite bringing some compres-

sion, these methods still have high storage and computa-

tional requirements.

Image categorization methods, on the other hand, use la-

beled data to train classifiers that are typically efficient to

evaluate at query time and that have much lower feature

storage costs [6, 24, 25]. However, most of these techniques

have traditionally focused on categorization tasks involv-

ing a small number of classes [2]. Large-scale and fine-

grained classification has recently gained interest amongst

researchers, however, with the exception of [16, 8], we are

not aware of much work focusing on landmark or location

classification within this framework.

In this paper, we pose landmark recognition as a catego-

rization task, by treating each landmark as a class. We focus

on discovering a compact yet exhaustive set of discrimina-

tive features and using them within a standard classifica-

tion pipeline. Within this setting, our objective is to learn a

compact, discriminative codebook from training data and

use it with existing feature encoding schemes and some

variants that we propose. Building upon recent advances

in viewpoint invariant feature matching and structure from
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Figure 1: [TOP]: Examples of SfM reconstructions from LANDMARK-620 our Internet photo collection dataset (the largest

component is shown and the number of cameras and 3D points are listed). [BOTTOM]: Six out of approx. 8 million tracks i.e.

sets of matching keypoints recovered from running SfM on LANDMARK-620 (patches are visualized at their original scales).

motion [29], we construct a database of millions of feature

descriptors with automatically-established scene correspon-

dences, i.e., we know which descriptors (from different im-

ages) correspond to the same 3D scene point, with geomet-

ric consistency guaranteed.

Figure 1 shows a few such reconstructions and examples

of discovered feature correspondences which we refer to as

tracks. We propose to exploit such feature correspondences

in the training data to learn a compact codebook that maps

matching descriptors into the same code. Large codebooks

learned in an unsupervised setting can also be discrimina-

tive [22, 26], but they are only suitable for large-scale im-

age retrieval [22, 26, 20]. In classification tasks, compact

codebooks provide computational efficiency, as larger code-

books typically increase the dimensionality of feature vec-

tors used by the classifiers. Recently, feature correspon-

dences were exploited to learn spatial co-occurrence statis-

tics [34, 36]. However, these methods tackle the retrieval

problem, and cannot be directly applied to large-scale mul-

ticlass classification, which is the problem we address.

Our codebook is expressed by a random forest that we

learn in a supervised fashion, using the training descriptors

and their fine-grained track labels. We use the codebook

as a tree quantizer for bag of words histogram encoding

and also with other advanced schemes [13]. The super-

vised training of the codebook using track labels reduces

quantization error on these repeatable and discriminative

features. Unlike prior discriminative methods to codebook

learning [21, 15] which use descriptors labeled by landmark
categories, our descriptors have fine-grained labels. This

is beneficial as it forces the codebook learning method to

predict the same label only for descriptors that truly corre-

spond to the same physical scene point. However, this also

implies that we must train a codebook with 3–4 orders of

magnitude more labels (∼ 105). To address this issue, we

propose to learn the codebook using a random forest [5]

which is efficient to train and it enables fast quantization. In

order to help dealing with the large number of class labels

we exploit two ideas: (1) we adopt the splitting rule used

in random projection trees [7] originally proposed for un-

supervised tasks, and (2) we use an improved information

gain estimator proposed in [23] to select the best split.

We evaluate our approach on a public landmark dataset

from [11], and our own dataset of 620 landmarks (614K

images). Our proposed technique significantly outper-

forms [16], which is the approach closest to our work. It

is also worth noting that just using SfM to remove outliers

from a collection of more than 2 million web images, sig-

nificantly boosted the accuracy of the baseline [16].
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2. Related work
Most existing location classification methods are based

on an instance recognition framework [3], that builds upon

earlier work in efficient and scalable image retrieval tech-

niques [28, 22, 26]. However, recently Li et al. [16] treated

landmarks as visual categories and proposed a generic im-

age classification pipeline [6, 24] based on Kmeans code-

books and bag of words encoding used with multi-class

SVMs. While their goal is similar to our objective in this

paper, they did not exploit 3D scene structure in their work.

Meanwhile, better SfM algorithms have led to direct

2d-3d matching approaches [17, 18, 27], where known

3D scene structure is utilized to create a structured

database [18] – these methods can in addition compute a

precise camera pose for the query image. SfM techniques

have also been used indirectly by Mikulik et al. [20], who

exploit feature correspondences to reduce quantization er-

rors in nearest neighbor quantizer codebooks. An improved

similarity measures to compare bag of words histograms

is proposed for image retrieval with very large codebooks

in [20].

Better aggregation techniques such as VLAD [13] was

shown to improve upon bag of words methods for retrieval

as well as classification tasks [2]. Other aggregation strate-

gies such as learning feature weights have also been pro-

posed to handle background clutter [1, 14]

Although unsupervised codebooks continue to be pop-

ular, discriminative codebooks are known to be supe-

rior [32] as they aim to encode the differences between

categories [24]. Our work is related to supervised learn-

ing of nearest neighbor quantizers [15] that optimize an ob-

jective based on minimizing information loss, and to tree-

based quantizers such as Extremely Randomized Cluster-

ing (ERC) forests proposed by Moosmann et al. [21, 21].

However, these discriminative codebooks were learnt using

image category labels in a setting where the number of cate-

gories i.e. the number of labels were quite small. Our code-

books are based on random forests [21] also, but are trained

on many thousands of fine-grained descriptor labels. Like

in [21], each tree in our forest serves as an independent ran-

domized codebook, assigning each descriptor efficiently to

one codevector per tree. This differs from soft quantization

approaches [26, 10], where a descriptor is assigned multiple

codevectors using a single codebook. Multi-tree quantizers

have been used for retrieval previously but were trained in

an unsupervised setting [33].

Recently Doersch et al. [8] proposed a method to dis-

cover discriminative mid-level patches from urban imagery,

but rely on discovering them from random patches sampled

from the training data. In contrast, our method exploits ro-

bust matching in image collections and exploits SfM where

after the first phase of pairwise image matching is per-

formed, pairwise feature correspondences are linked over

multiple images to produce long tracks i.e. larger sets of

matched descriptors. The main focus of our paper however,

is not on discovering the discriminative features but rather

on learning a compact codebook from them in a way that

retains their discriminative power.

3. Technical Approach
In this section, we give an overview of our method which

is related to image categorization [6, 24], and is similar to

the approach proposed in [16]. For training, we are given

labeled images where each label represents a landmark.

We first perform SfM computation [29] independently

for each landmark to obtain sparse reconstructions of 3D

points {Rk}Lk=1 for the L landmarks1. Each 3D point in

Rk is associated with a set of 2D keypoints extracted from

different input images. We refer to the set of feature de-

scriptors corresponding to these keypoints as a track. Thus,

the i-th 3D point in Rk gives us a set of matching descrip-

tors, T (i,k) = {x(i,k)
j }m(i,k)

j=1 where x
(i,k)
j ∈ R

d and these

m(i,k) descriptors share the same label (i, k). Considering

all the tracks together, we define a training set of labeled

descriptors DT = {(xj , yj)}nj=1, where yj ∈ {1, ..., N} is

the track label of the j-th descriptor xj and N is the total

number of unique tracks in all the reconstructions consid-

ered together. A codebook is then learnt from DT and sub-

sequently used to encode the training images for learning a

linear SVM. In Section 3.1, we describe our method to learn

a discriminative random forest codebook that exploits track

labels. In Section 3.2, we discuss how this codebook is used

with popular encoding schemes and our proposed variants.

To classify an image, we extract local keypoints and

compute feature descriptors which are then aggregated into

a high-dimensional global image descriptor f by means of

the learned codebook. The linear SVM is then used to pre-

dict the class label i.e. the landmark-id.

Track Selection. In practice, for hundreds of landmarks,

the total number of 3D points in {Rk}Lk=1 can easily ex-

ceed several millions. Hence, in practice we decimate DT ,

and learn our vocabulary on a subset Ds. We prefer select-

ing longer tracks, since these features tend to be more re-

peatable and often more visually salient within the scene2.

However, short tracks can contain discriminative visual fea-

tures too, especially in images with rare viewpoints. To

deal with potentially uneven viewpoint distributions com-

mon with landmark images, we adopt a randomized strat-

egy to sample tracks from DT . We randomly select a user

specified number of tracks η per landmark, where the se-

lection probability is proportional to the track length, which

must be greater than a threshold τ ; we set τ=10.

1if multiple connected components exist, we consider all of them
2the ratio test heuristic [19] in SfM [29] prunes ambiguous feature

matches and retains distinctive ones.
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3.1. Track-based Random Forest Codebook

Random forests have been used for a wide variety of

tasks in the past, such as classification, regression, density

estimation etc. [5]. Given the training set Ds with track la-

bels, our approach to learn a random forest codebook from

tracks (denoted as RFT) is now described. Unlike nearest

neighbor quantizer codebooks, which are composed of a

discrete set of codevectors ∈ R
d, the RFT codebook con-

tains one or more binary trees each of which represents a

partition of feature space based on recursive binary splits.

Each internal tree node has a binary split function denoted

h(π,x), where π represents a d-dimensional hyperplane

and h(π,x) tests which side of it, x lies on. The leaf nodes

correspond to the actual codes in the RFT codebook.

We train each tree using bagging on a subset of Ds,

built by random sampling κ% of the data without re-

placement. Each decision tree is learnt independently in

greedy fashion. The hyperplane parameters π at each tree

node j are obtained by solving for the optimal π∗j =
argmaxπ∈Π Ij , where Π is a finite set of hyperplane hy-

potheses (splits) that are tested and Ij is the information

gain defined in terms of the distribution of labels: Ij =

H(Sj) −
∑

i∈{L,R}
|Si

j |
|Sj |H(Si

j). Here, Sj denotes the set

of training points associated with node j, and SR
j and SL

j

denote the binary partition of Sj induced by a particular

hyperplane at node j. H(S) denotes an empirical entropy

estimate given a certain distribution of labels in S.

The tree count T and maximum tree height h are

parameters that determine the codebook size (T2h−1).

For a target size, the optimal (h, T ) pair is found using

grid search. We now present two crucial aspects for

training random forests with a very large set of labels – (1)

generating the split hypotheses Π and (2) choice of H(S).

Spatial Partitioning with Random Projection trees [7]:
Decision trees are often trained with binary split functions

that correspond to Axis-Aligned hyperplanes – a single co-

ordinate of x is compared to a threshold. Although ex-

tremely efficient, axis aligned RFT codebooks require larger

tree height and tree count to match the accuracy possible

with fewer trees, when general hyperplanes or nonlinear

split functions are used [5]. Larger tree count or tree height

both increase codebook size which is undesirable.

Dasgupta et al. [7] proposed Random Projection (RP)

trees, a data structure for spatial partitioning of high dimen-

sional data that adapts to the intrinsic dimensions of the data

without explicit learning, and applied it successfully to sev-

eral unsupervised tasks on unlabeled data. RP trees are built

using a special rule for recursive binary splits on the data.

First, a random direction v in R
d is selected. Then, the me-

dian is computed for the set of points projected along v i.e.

the set {z�v : z ∈ R
d}. Adding a small perturbation to the

median based on the data distribution [7], gives the offset

that partitions the points about equally using a hyperplane

orthogonal to v. To train our random forest, we use this al-

gorithm to generate the set Π, using ρ random projections

and medians.

Improved Information Gain estimator: The Information

Gain Ij is typically used with the standard entropy estima-

tor, HS(S) = −∑|C|
c=1 p(c) log p(c) where p(c) is the em-

pirical probability distribution given the set of labels C. As

already noted in [23], HS is a biased estimator, particularly

when the number of classes is very large. In a such situa-

tion, the training of a Random Forest does not learn accurate

models for the training data. A new unbiased estimator HG

was proposed in [23] that has been shown to produce bet-

ter results in cases involving many labels (see [23] for the

details). Note that in our scenario the number of tracks is

also very large. Therefore we used the improved unbiased

estimator HG for all our experiments.

3.2. Feature encoding

Given a codebook that partitions feature space into re-

gions called visual words, a local descriptor can be quan-

tized into words and a histogram of all word occurrences

in the image serves as its global descriptor. This is the bag

of words histogram BoW encoding [6, 28, 22]. Codebooks

such as K-means use nearest neighbor search to assign a

code to a descriptor. Random forest codebooks (ERC, RFT)

on the other hand, use tree traversal which takes time log-

arithmic in the number of codes. These codebooks assign

multiple codes to a descriptor, one per tree, but then com-

putes histograms similar to BoW methods.

An alternative encoding called VLAD [13] used

with K-means, encodes the difference between the K cen-

troids and the descriptors assigned to them. The assignment

step is identical to BoW, but now, an average difference

vector from each centroid to all its associated descriptors

is computed. These K vectors are concatenated to obtain

the global descriptor. An extra step is required during train-

ing, to use RFT codebooks with VLAD encoding. A cen-

troid is estimated as the mean of all the examples assigned

to the leaf. RFT codebooks with VLAD encoding allow fast

assignment of descriptors to leaves via tree traversal and

provides the benefit of multiple codes (one per tree).

We also tried a variant of VLAD using soft-assignment

weights, which can be viewed as a combination of VLAD
with kernel codebook encoding [10]. Given a RFT code-

book forest with K leaves, for each leaf, we compute the

mean difference vector between its centroid and all the de-

scriptors, weighting each difference vector using a Gaus-

sian kernel. More formally, we define K vectors {vk =
∑N

i=1(xi − ck)e
−γ‖x−ck‖2}Kk=1. The parameter γ is set to

the mean of all per-component variance of all the training

data assigned to all the leaves in our forest. As with VLAD,

764764764764766766



the global descriptor is a concatenation of all K vectors.

We use L2-normalization with all BoW encodings [2],

and square-root normalization followed by L2 normaliza-

tion for VLAD.

3.3. Importance-weighted Aggregation

Most existing feature encoding schemes treat each lo-

cal descriptor with equal importance. However, descriptors

from parts of the image that contain background or irrele-

vant objects add noise to the global image descriptor which

can hurt classification accuracy. In this section, we pro-

pose a technique that given a descriptor x, predicts an im-
portance weight ω(x) that will determine its contribution

towards the global image descriptor. The idea is to learn

a classifier that distinguishes track data (i.e our discrim-

inative features on landmarks) from the rest, and use the

predicted confidence value to derive this weighting. We im-

plement this using a second random forest, trained using all

the track descriptorsDs as positive examples and a large set

of descriptors extracted from generic images without land-

marks as negatives. Given a descriptor x, this forest pre-

dicts the posterior probability p(x) that x is a track (i.e. is

similar to a landmark feature), by using the empirical dis-

tribution of the labels of the training examples assigned to

the predicted leaf. We finally threshold this probability in

a soft manner using a sigmoid. More formally, the impor-

tance weight is defined as ω(x) = 1/(1 + e−αp(x)+β). We

call this Importance-Weighted Aggregation (IWA). The im-

portance weighted BoW aggregation quantizes x as before,

but now computes the histogram by accumulating the ω(x)
contributions. Similarly, VLAD is modified to aggregate the

scaled difference vector for a descriptor x, obtained using

the scale factor ω(x).

4. Experiments
We evaluated our approach on the public LANDMARK-

3D benchmark [11] and a new large-scale dataset that we

created and refer to as LANDMARK-620. These datasets

will be described in detail in Sec. 4.3 and 4.4 respectively.

4.1. Methods

We have compared our novel codebook learning ap-

proach to the supervised and unsupervised codebook learn-

ing techniques listed below.

• RFT: Our random forest codebooks trained on de-

scriptor tracks obtained from SfM (see Sec. 3).

• KM (K-means clustering): We vary the number of de-

sired clusters K, to obtain codebooks of different sizes.

• HKM (Hierarchical K-means [22]): K-means cluster-

ing is done recursively to hierarchically partition fea-

ture space. HKM is faster than KM at quantizing fea-

tures, as code assignment takes time logarithmic in tree

depth. We tried several tree depth and branch factor

combinations, and kept the best configurations.

• ERC (Extremely Randomized Clustering forests [21]).

As mentioned earlier, this codebook learns a random

forest using image category labels.

• IL (Info-Loss [15]): These codebooks are also trained

discriminatively with image category labels, using em-

pirical information loss minimization for learning a

better nearest neighbor quantizer.

Some of these codebooks were used with bag of words

histogram (BoW) and VLAD encoding methods. Differ-

ent combinations of codebooks and encodings are denoted

as A-B, where A and B refer to the codebook and encoding

method respectively. In addition, our RFT codebook was

used with VLADsa, the soft-assignment version of VLAD
described in Sec. 3.2. The suffix IWA indicates that

importance-weighted aggregation is used (e.g., RFT-BoW-
IWA refers to the RFT codebook used with importance-

weighted BoW encoding).

4.2. Experimental setup

Feature descriptors. In our experiments, all images ex-

ceeding 2 MPixels are resized to this maximum size.

Scale-invariant DoG keypoints [19] are extracted and 32-

dimensional DAISY descriptors [31] are computed for these

keypoints. We also compute SIFT descriptors [19], using

VlFeat [30]. In preliminary experiments on LANDMARK-

3D, we found the classification accuracy using DAISY to

be higher than SIFT by 10%. Hence, DAISY was used in all

subsequent experiments (including all baseline methods).

Structure from Motion pipeline: We have implemented

a state of the art incremental SfM algorithm similar to [29].

During the first phase of pairwise image matching, the

local descriptors extracted from the images are geometri-

cally verified, and pairwise feature matches are computed;

this involves feature descriptor matching [19] followed by

RANSAC-based robust epipolar geometry estimation be-

tween camera pairs. Given multi-view correspondences, a

seed camera pair is first reconstructed and new cameras and

3d points are incrementally added to it by alternating be-

tween camera pose estimation and 3D point triangulation.

Multiple rounds of sparse bundle adjustment is performed

to refine the 3D structure and all camera parameters.

Learning model. We used one-vs-all linear SVMs as our

multi-class classifier, using LIBLINEAR [9], performing

the prediction with a winner-take-all strategy. We used

hyper-parameter C = 50, found by using 5-fold cross vali-

dation in preliminary experiments. Finally, we calculate the

classification accuracy as the mean of the diagonal of the

confusion matrix. We tried the SVM formulation proposed

in [4], also used by [16], but did not see much difference in

performance. In our experiments, we assess the quality of
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all the methods by comparing the classification accuracy as

a function of the codebook size.

Parameters. We set κ = 75% and ρ = 1000 in all the

experiments. The tree height h and tree count T is var-

ied and best settings are kept for a given codebook size.

For LANDMARK-3D, we tried setting η from 200 to 2000

and obtained best results with η = 400. Similarly, best re-

sults with IWA were obtained with α = 15.0 and β = 0.5.

For LANDMARK-620, the following settings were used;

η = 400, α = 10, β = 0.1.

4.3. Experiments on Landmark-3D

Dataset. LANDMARK-3D was introduced by Hao et
al. [11] and contains 45K images of 25 landmarks. The im-

ages were gathered from Flickr and then manually filtered.

We perform all our evaluation on a test set created by ran-

domly sampling 200 images per landmark, and using the

rest of the images as training set for the codebook. A subset

of the latter set, consisting of 100 examples per category, is

used to train the final landmark classifier.

Random Forest implementation. We performed prelim-

inary experiments on LANDMARK-3D to assess the effect

of the new extensions proposed in Sec. 3 for training ran-

dom forest-based codebooks. We learned our RFT and the

proposed ERC first using conventional axis-aligned splits,

and then with the random projections-median splits [7]. As

shown in Fig. 2c, the latter consistently outperforms the

conventional method. Therefore, in all subsequent exper-

iments, RFT codebooks were trained using this method.

We also empirically found that the improved entropy es-

timator HG proposed in [23] provides some boost in accu-

racy over the standard entropy estimator HS normally used

to train Random Forests. Therefore, we use the HG estima-

tor for all the experiments involving RFT .

The number of trees and the tree depth affects the code-

book size, and for a target size, various combinations were

tested and the one with the best classification performance

was retained. Finally, we found that the number of splits

and the number of tracks used to train RFT, have only a

moderate effect on the quality of the classifier. Again we

tried different combinations and we keep the best perform-

ing one. Note that the training and testing of our codebook

is very efficient and is easy to parallelize, as the trees can be

trained and traversed at test time independently.

Recall from Sec. 4.1 that while using a RF codebook we

perform the encoding by traversing the trees to determine

the region of the feature space a given local descriptor be-

longs to, and then using the associated centroid. Note that

we also tried a more traditional approach, that consists of

calculating the L2 distance from the descriptor to all the

centroids of the leafs, picking the closest one. However we

empirically found that the performance of the latter method

was ∼ 1% lower in accuracy.

Landmark recognition. We first perform SfM recon-

struction, then we randomly sample a variable range 200−
1200 tracks per landmark, and finally learn our codebook

RFT and the Random Forest for the IWA as described above.

We train the vocabularies based on KM and HKM using 2M

local descriptors randomly sampled from 10K images; note

that we tried to increase the quantity of training data but

we did not see any additional boost in performance. ERC
has been trained using 1M descriptors, sampled from 5K

images. IL has been trained using only 100K descriptors,

sampled from 1K images: we were not able to increase fur-

ther the training set size and descriptor dimensionality D
due to the high computational cost of this method, which is

quadratic in D. Note that it has already been shown in[15]

that IL outperforms KM, which is used as initialization for

the training of IL. We perform evaluations using the encod-

ing methods BoW and VLAD; the results of the experiments

are shown respectively in Fig. 2a and 2b.

With a BoW encoding, the RFT codebook produces more

accurate results compared to discriminative codebooks ERC
and IL, as well as as unsupervised HKM. Moreover our

method is considerably faster to train compared to IL, and

the feature encoding step using our codebook is more effi-

cient. With the VLAD encoding, all the results that make

use of our codebook RFT are better then or equal to all

the other comparisons, showing the effectiveness of our ap-

proach even in this scenario.

4.4. Experiments on Landmark-620

Dataset. LANDMARK-620 is a new dataset that we cre-

ated for large-scale landmark recognition. We built the

database by first manually listing 720 landmarks, each de-

scribed with text phrases (e.g. “eiffel tower paris”). The

landmarks we selected based on the rankings from [16, 37].

We downloaded up to 4000 images per landmark using mul-

tiple text queries on Flickr and web search engines. Un-

like [16, 37, 12], we did not use geo-tags, since we found

that geo-tags are not always representative of the image con-

tents, which was also observed by [12]. A visual inspection

of the images used by [16] (built using geo-tags) reveals the

presence of many irrelevant images of people or other ob-

jects in the dataset, confirming that geo-tag queries did not

yield a particular advantage over text queries.

Since our images are also downloaded using text search,

they were also contaminated with outliers. Thus, we found

that it was crucial to filter out the irrelevant images from the

database, as the unfiltered collection is simply too noisy to

be used as ground truth and would provide unreliable train-

ing data and estimates of accuracy. Therefore we used state

of the art SfM [29] to automatically remove outlier images

from our contaminated dataset. We view this SfM filtering

method as a surrogate for human labeling. Starting from an

initial collection of 2.1M images, approximately 614K im-
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(a) LANDMARK-3D (BOW)
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(b) LANDMARK-3D (VLAD)
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(c) RFT+RP vs RFT+AA
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(d) LANDMARK-620 (BOW)
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(e) LANDMARK-620 (VLAD)

best 5 & worst 5 10 popular landmarks

Golden Gate Bridge (97%) Trevi Fountain (77%)

Laocoonte Statue (97%) Tyn Church (82%)

German-Fntn Istanbul (96%) Piazza Navona (55%)

BowBridge CentralPark (95%) Chichen Itza (71%)

Buland Darwaza (95%) Arc de Triomphe (75%)

Brussels Grotemarkt (32%) Taj Mahal (89%)

Bologna Duomo (31%) Times Square (47%)

Catedral Cordoba (27%) Pike Place Market (88%)

Capitolio la Havana (27%) Trafalgar Square (51%)

Palma Cathedral (21%) Pantheon (83%)

(f) PER-CLASS ACCURACY

Figure 2: (a-b): Experiments on LANDMARK-3D, using various encodings. (c): Classification accuracy with RF-based

codebooks trained using different weak learners. (d-e): Experiments on LANDMARK-620, using various encodings. (f):
Accuracies using RFT+VLADSa and dimensionality 8K on the top/worst five landmarks and a few popular landmarks.

ages were selected. Images that failed to match either other

images or the 3D structure were discarded. We eliminated

100 landmarks for which we had fewer than 350 images

after the filtering step. Finally, the filtered images were di-

vided into training and test sets, that were used for all the

comparisons (with the only exception of ”HKM-Bow raw

data” as described below). Although filtering was neces-

sary for this dataset, it could seem to potentially introduce

a bias in favor of our method, as the vocabulary construc-

tion relies on feature correspondences. However, even our

experiments on Landmark3D, where no such filtering was

applied and thus bias is certainly not present, show that our

method outperforms all the baselines.

In summary, LANDMARK-620 has 620 landmarks and

614,315 images. We created a test set of 62,000 images,

by randomly selecting 100 images per landmark, and used

the remaining to train the codebook and the classifier that is

trained using 100-200 images per category.

Landmark recognition. We now present the recognition

results obtained on this challenging dataset. We first per-

form SfM again, this time only on the codebook training

sets, obtaining a 3D reconstruction for each landmark. Note

that each of them contains on average 172K 3D points; any

landmark recognition system that requires to store the local

descriptors of the models (e.g. [11]) would need 4.3 GB of

memory using DAISY and 14.3 GB with SIFT (assuming a

single feature vector for each 3D point), making these ap-

proaches not scalable to a large number of categories. We

sample 400 tracks per category to learn our RFT codebook

and the IWA random forest. We compare our codebook to

HKM as its computational cost of aggregating local descrip-

tor is comparable to ours. The method denoted as [HKM-
BoW (raw data)] in Fig. 2d is our implementation of Li et
al. [16], where the raw images downloaded from the Web,

without SfM filtering, were used for training the classifier.

Both versions of these HKM codebooks are trained using

5M local descriptors randomly sampled from 20K images.

The results from experiments using the BoW and VLAD en-

codings, are shown in Figures 2d and 2e respectively.

We can see from the figures that we considerably outper-

form the HKM-BoW (raw data) baseline, showing the effec-

tiveness of filtering the data by means of SfM, which cre-

ates a better training set for the recognition system. For both
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BoW and VLAD we can see that our vocabulary outperforms

all the other comparisons. In particular, with a descrip-

tor of 15360 dimensions, RFT+BoW yields an accuracy of

63.25%, producing a +12.48% improvement over the base-

line HKM-BoW. Increasing the size of the classifier train-

ing set from 100 examples per class to 200 we were able

to further increase the accuracy of RFT+BoW to 68.76%.

Using a more effective encoding method like VLAD, and a

descriptor dimensionality of 8192, our method RFT+VLAD
achieves an accuracy of 61.09%, and with RFT+VLADSa
66.10%. We provide 200 examples per class for the classi-

fier, RFT+VLADSa achieves an accuracy of 71.26%, that

represents the best result we provide.

5. Conclusions

We proposed a new, efficient algorithm to learn a ran-

dom forest codebook from local feature descriptors, where

feature correspondence information is given. It is appli-

cable to large-scale landmark classification, where our ap-

proach uses discriminative feature tracks discovered using

SfM. Our learned codebook outperforms existing discrimi-

native codebooks. We believe this is due to our use of dis-

criminative tracks obtained using SfM as well as our abil-

ity to exploit fine-grained descriptor labels during codebook

learning. For memory-efficient landmark classification, our

accuracy rates are much higher than previously reported in

the literature [16]. Our codebook can be used with several

feature encoding schemes, and the aggregation step is com-

putationally efficient. While in this paper we have applied

our codebook learning method to landmark classification,

we expect that our approach can be used successfully in

other scenarios where a set of correspondences among im-

ages is available. In the future, we will investigate this re-

search direction by learning codebooks for image retrieval.
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