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Abstract

A novel statistical textural distinctiveness approach for
robustly detecting salient regions in natural images is pro-
posed. Rotational-invariant neighborhood-based textural
representations are extracted and used to learn a set of rep-
resentative texture atoms for defining a sparse texture model
for the image. Based on the learnt sparse texture model,
a weighted graphical model is constructed to characterize
the statistical textural distinctiveness between all represen-
tative texture atom pairs. Finally, the saliency of each pixel
in the image is computed based on the probability of occur-
rence of the representative texture atoms, their respective
statistical textural distinctiveness based on the constructed
graphical model, and general visual attentive constraints.
Experimental results using a public natural image dataset
and a variety of performance evaluation metrics show that
the proposed approach provides interesting and promising
results when compared to existing saliency detection meth-
ods.

1. Introduction
The underlying goal of saliency detection in natural im-

ages is to identify and localize objects of interest that at-
tract the visual attention of a human observer compared to
the rest of the scene. For example, Fig. 1 shows examples
of natural images, where the garden gnome or the flower
are visually unique and draw a viewer’s attention from the
surrounding environment. The research area of saliency de-
tection from natural images has gained tremendous interest
in the field of computer vision given its wide applicability
for many computer vision tasks such as image segmentation
[9], image retargeting [3], object detection [20], and object
recognition [24].

To achieve saliency detection in an automatic manner,
one must define what constitutes as a salient object based on
some quantifiable visual attributes such as intensity, color,
structure, texture, size, or shape that makes that object ap-

Figure 1: From left to right: Salient objects with texture pat-
terns that are visually significantly different from those of
the rest of the scene. Pixels associated with the correspond-
ing atom of a learned texture model. Computed saliency
map and ground truth mask.

pear visually distinct and attractive to the observer’s atten-
tion compared to the rest of the scene. A particularly inter-
esting visual attribute that deserves deeper exploration for
the purpose of automatic saliency detection in natural im-
ages is texture, which reveals significant information about
not only local spatial-color relationships, but also the global
compositional characteristics of an image given that nat-
ural images exhibit heterogeneous textural characteristics.
In the context of saliency in natural images, one can then
view salient objects of interest as objects that possess textu-
ral characteristics that are highly distinctive from a human
observer perspective when compared with that of the rest of
the scene. As such, we are interested in explicitly taking ad-
vantage of textural characteristics in a quantitative manner
to detect saliency objects of interest within a scene. Two
important challenging aspects associated with explicitly ac-
counting for textural characteristics are:

1. the choice of appropriate texture representations for
distinguishing between salient and non-salient regions,

2. the added computational complexity associated with
textural characteristics compared to simpler visual at-
tributes such as color and intensity, particularly if one
were to analyze and compare all possible texture pat-
tern pairings in the image in a direct fashion.
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Prior work that incorporated textural characteristics [25] has
attempted to address these two issues by making use of low-
level filter-based texture features and relied on image seg-
mentation to reduce computational complexity while en-
forcing feature coherence within local regions. However,
the reliance on advanced pre-processing algorithms such as
image segmentation means that the computational complex-
ity and performance of the saliency detection method de-
pends heavily on the properties of the segmentation method
used, even if oversegmentation is performed. Therefore,
an efficient method for performing saliency detection based
explicitly on descriptive textural characteristics that does
not rely on additional pre-processing would be much de-
sired.

The main contribution of this paper is the introduction of
a novel approach to saliency detection based on the concept
of statistical textural distinctiveness. Rotational-invariant
neighborhood-based texture representations are extracted
and used to learn a set of representative texture atoms for
defining a sparse texture model for the image. Based on
the learnt sparse texture model, a statistical textural distinc-
tiveness graphical model is constructed to characterize the
distinctiveness between all texture atom pairs. Finally, the
saliency of each pixel in the image is computed based on
the probability of occurrence of the representative texture
atoms within the image, their respective statistical textural
distinctiveness based on the constructed graphical model,
and general visual attentive constraints. By incorporating
sparse texture modeling within a statistical textural distinc-
tiveness framework, the proposed approach is designed to
take explicit advantage of the textural characteristics in the
image to detect salient regions in an efficient yet character-
istic manner. To the best of the authors’ knowledge, the use
of sparse texture modeling within a statistical textural dis-
tinctiveness framework to characterize and compare textural
characteristics within an image for the purpose of saliency
detection has not been previously proposed or investigated.

2. Related Work
Existing saliency are either biologically motivated, com-

putational oriented, or perform local or global analysis of
contrast using intensity only, and/or different colorspaces.
Biologically inspired techniques [13, 10] for saliency de-
tection are commonly based on the approach of Koch et al.
[16] and rely on low-level features such as edges, orienta-
tion of edges, motion and color in natural images. Itti et al.
[13] extended the approach of Koch et al. [16] by imple-
menting a Difference of Gaussian (DoG) approach to better
evaluate the features. All these approaches are designed to
identify salient regions with high visual stimuli, but tend to
blur saliency maps and to highlight local features such as
small objects. They are useful for applications in robotics,
but challenging for image-based segmentation or object de-
tection.

To better preserve the structure of salient regions, Hou et
al. [11] and Guo et al. [8] proposed to extract the residuals
of input images in either the amplitude or phase spectrum of
input images, and to use the residuals to construct saliency
maps in the spatial domain. However, these methods high-
light boundaries of salient regions rather than their entire
region. However, extracting salient regions in images with
textured background properly is challenging for these meth-
ods.

Saliency detection approaches considering colorspaces
analyze the local or global contrast. Local saliency detec-
tion methods usually evaluate saliency of input image with
respect to small neighborhoods. Examples include dissimi-
larity at pixel level [19], and the analysis of histograms [18]
and Difference of Gaussians at multiple scales [12]. As
shown in [1], these approaches do not consider global re-
lationships between regions or pixels and emphasize edges
or noise. In addition, they also tend to highlight cluttered
and textured non-salient regions in images.

Global approaches consider contrast relationships over
the entire image. Patch-based approaches determine
salient regions by computing dissimilarities between im-
ages patches, e.g., [18, 7, 26]. These methods have high
computational complexity and are applicable to images with
low resolution only. In order to make patch-based dis-
similarity approaches applicable on high resolution images,
Duan et al. [6] suggested to reduce the dimensionality of
the patches using PCA. However, down sampling or reduc-
ing the dimensionality of the patches may lead to a loss of
small salient regions. Achanta et al. [1] overcome high
computational complexity by computing color dissimilari-
ties to the mean image color on a per-pixel basis. In [2],
they extended their concept to take into account the spatial
relationship inside the image. In addition, the approach of
Cheng et al. [5] generates a color histogram of the entire
image, and compute the saliency based on the dissimilarity
between the histogram bins, and also use image segmen-
tation for improving saliency estimation. To better handle
images with cluttered or textured background, Perazzi et
al. [21] abstract input images into homogeneous elements,
and determine salient regions by applying two contrast mea-
sures based on the spatial distribution and uniqueness of el-
ements. However, both image segmentation and abstraction
remove textural information which might indicate salient
regions in images.

Finally, the approach of Shen et al. [25] (LR) explic-
itly incorporated textural characteristics obtained from low-
level filter-based texture features of segmented regions for
saliency detection. The textural characteristic of a region
is represented by a feature vector, which all together build
a feature matrix. Matrix decomposition based on a previ-
ously trained background model is then performed to iden-
tify salient regions, which have to be refined using strong
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Figure 2: Architecture for salient region detection based on sparse texture modeling and statistical textural distinctiveness.

priors such as spatial, color and semantic priors to obtain
good performance results.

However, none of these approaches explicitly consider
rotational-invariant neighborhood-based texture representa-
tions (atoms) for salient region detection. In contrast to ap-
proaches that rely on image segmentation and image ab-
straction where each region can only characterize a small
area in the image, each learnt sparse texture atom can rep-
resent large or disjoint regions without explicit spatial con-
text. Although our method and the LR [25] have compa-
rable performance based on experimental results (see Sec-
tion 4), there are some very important differences between
the two methods. The overall good performance of LR is
the result of three strong priors applied to saliency compu-
tation. Our approach makes limited use of one prior (loca-
tion) only and achieves comparable performance. In addi-
tion, the LR requires a previously trained background model
for matrix decomposition whereas our approach does not
rely on any previously trained data at all. This makes our
method more robust and suitable for applications where a
priori background information is not available.

3. Statistical Textural Distinctiveness Model
The underlying goal of the proposed statistical textural

distinctiveness approach is to explicitly take advantage of
inherent heterogenous textural characteristics in the image
in an efficient manner for quantifying the saliency of regions
within the image. The overall architecture of the proposed
approach can be broken down into four main stages – as
shown in Fig. 2: i) rotational-invariant neighborhood-based
textural representation, ii) sparse texture modeling via rep-
resentative texture atom learning, iii) statistical textural dis-
tinctiveness graphical model construction, and iv) saliency
map computation based on occurrence probabilities of rep-
resentative texture atoms, statistical textural distinctiveness,
and general visual attentive constraints. A detailed descrip-
tion of each stage is provided in the following sections.

3.1. Rotational-invariant neighborhood-based tex-
tural representations

In order to learn a texture model for natural images with
heterogeneous textural characteristics, we must first define
a texture feature model to represent the underlying textu-
ral characteristics of the image in a local manner to account
for this heterogeneity. In this work, a compact rotational-
invariant neighborhood-based texture feature model is uti-

Figure 3: Sorted textural representation of a 5 × 5 pixel
neighborhood centered at pixel x.

lized in the form of a sparsified radially-sorted textural rep-
resentation based upon the work by Li et al. [17]. This form
of textural representation has been found to be beneficial in
striking a balance between robustness to distortional varia-
tions and preservation of spatial-intensity context, making it
well-suited for local textural representation in the proposed
work (see Section 4, Fig. 5c and Fig. 6a for a comparison
with unsorted textural representations).

The sparsified radially-sorted textural representation can
be described as follows. Let I(x) be the M ×N image that
we wish to analyze. Given a neighborhood ℵ centered at
pixel location x in the image I(x), the corresponding local
textural representation hc(x) for each color channel c can
be defined as:

hc(x) = 〈Ic(x) sort↑{Ic(x1,j)} sort↑{Ic(x2,j)}
. . . sort↑{Ic(xn,j)}〉

(1)

where xi,j denote the pixel in the jth position of the ith

radial layer about pixel location x, and sort↑ denotes sort-
ing in ascending order. An illustration of this local textural
representation for single channel images is shown in Fig. 3.
Internal experiments with different square neighborhoods
showed that a 5 × 5 square neighborhood is a good choice
for sparse texture model learning. Given the local textural
representation h(x), e.g., h(x) = 〈 hL(x) ha(x) hb(x) 〉
with 75 element for Lab images, we wish to produce a com-
pact version of this local textural representation to increase
the variance between the elements of the texture descriptor
and to improve the efficiency of the subsequent sparse tex-
ture model and statistical textural distinctive model stages.
In this work, a sparsified textural representation t(x) is pro-
duced by taking the u principal components of the local
textural representation h(x) with the highest variance using
PCA:

t(x) = 〈Φi(h(x)) | 1 ≤ i ≤ u 〉, (2)

where Φi is the ith principal component of h(x). The choice
of u is based on a selection criteria related to a variance
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compaction. We selected the u principal components of
h(x) that represent 95% of the variance of all textural rep-
resentations – as suggested for many machine learning ap-
proaches [4].

3.2. Sparse texture model via texture learning

Given the set of M ×N local texture feature representa-
tions extracted from the image f(x):

T = {t1, t2, t3, . . . , tM×N} , (3)

let us now define a global texture model to represent the
heterogeneous textural characteristics for the entire image
f(x). One simple strategy to construct such a global texture
model is to simply utilize the entire set of extracted local
textural representations. However, this strategy to global
texture modeling is highly computational- and memory-
intensive for the purpose of texture-based saliency detection
given the use of pair-wise textural representation analysis
to establish a quantitative relationship between the different
texture patterns within the image.

To address this issue, we first generalize a natural image
as being composed of a set of areas where a particular tex-
ture pattern is repeated over each area, where the number of
areas with unique texture patterns is much smaller than the
total number of pixels within the image. Based on this gen-
eralization of a natural image, we can then establish a textu-
ral sparsity assumption for natural images, where the global
textural characteristics of an image can be well-represented
by a small set of distinctive local textural representations.
This compact, sparse representation of the global, heteroge-
neous textural characteristics of an image motivates the use
of a sparse texture model. In this work, the sparse texture
model can be defined as a set of m << M ×N represen-
tative texture atoms:

T r = {tri |1 ≤ i ≤ m} , (4)

where the Lp-norm between the first u principal compo-
nents of each of the representative texture atom tri and that
of its corresponding set of local textural representations (de-
noted by Si) is minimized:

T r = argmin

m∑
i=1

∑
trj∈Si

‖trj − tri ‖p. (5)

Given the aforementioned model, a simple and efficient
strategy employed in the proposed method to learning the
sparse texture model of an image is to assert a L2-norm cri-
teria and solve for Tr using the k-means algorithm [15]. By
employing a sparse texture model for representing the het-
erogeneous textural characteristics of the entire image, the
computational and memory requirements for representing
and quantifying the relationships between each texture pair

Figure 4: Example image containing salient objects, and
the learned texture model with pixels associated with the
corresponding atoms (six for illustrative purposes).

is significantly reduced since only the representative texture
atoms need to be analyzed (e.g., 1/2 ·m(m − 1) relation-
ships as opposed to 1/2 ·M ·N(M ·N − 1) relationships).
As later presented in Section 4, a set of m = 20 representa-
tive texture atoms is an appropriate choice to represent the
global textural characteristics of natural images.

3.3. Statistical textural distinctiveness graphical
model construction

In natural images, salient regions of interest can be char-
acterized as regions that are visually distinct from the rest of
the scene in terms of their visual attributes. In this work, we
first consider a salient region of interest as regions that have
highly unique and distinctive textural characteristics when
compared to the rest of the scene (see Fig. 4). As such,
we are motivated to introduce a metric for quantifying the
uniqueness and distinctiveness of texture patterns within an
image relative to each other. Here, we introduce the con-
cept of statistical textural distinctiveness, where an area of
interest is salient if it has low textural pattern commonality
compared to the rest of the scene. As such, the concept of
statistical textural distinctiveness takes explicit advantage of
the statistical relationships between texture patterns within
an image to discern underlying saliency.

Given the learnt sparse texture model, let us first define
the statistical textural distinctiveness between two texture
patterns. Let tri and trj denote a pair of representative texture
atoms in the sparse texture model. Suppose that tri can be
seen as a realization of trj in the presence of noise:

trj = tri + ηi,j , (6)

where ηi,j is a noise process between the representative tex-
ture atoms tri and trj following some distribution P (ηi,j).
If the noise process ηi,j is assumed to be independent and
identically distributed, the probability of tri being a realiza-
tion of trj can be written as:

P (tri |trj) =
∏
k

P (tri,k|trj,k), (7)

where tri,k is the kth element in the texture atom tri . As
such, P (tri |trj) can be viewed as the statistical commonality
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between the two representative texture atoms. In this work,
P (ηij) is modeled as an independent and identically dis-
tributed zero-mean noise Gaussian process with a variance
corresponding to the variance of the Lp-norm between the
representative texture atoms, i.e., var(‖trj − tri‖p), as it was
found to provide strong saliency detection performance.

Given that we are interested in the distinctiveness of a
texture atom relative to the other texture atoms in the sparse
texture model for the purpose of saliency detection, a more
meaningful metric for quantifying textural distinctiveness is
the probability of tri not being a realization of trj :

βi,j = 1− P (tri |trj)
= 1−

∏
k P (tri,k|trj,k)

(8)

Based on this definition, βi,j increases as the two texture
atoms becomes more distinct from each other.

Given the aforementioned definition of statistical textu-
ral distinctiveness, one can then construct a weighted graph-
ical model to characterize all pair-wise statistical textural
distinctiveness within the sparse texture model of the im-
age, which can be described as follows. LetG be a weighted
complete graph defined by G = {V,E}, where V is the set
of m vertices representing the representative texture atoms
and E is the set of m(m−1)

2 edges representing every pair
of representative texture atoms in the sparse texture model.
Each edge ei,j is associated with a weight equal to the sta-
tistical textural distinctiveness (βi,j) between a pair of rep-
resentative texture atoms tri and trj .

3.4. Saliency map computation

Using the aforementioned statistical textural distinctive-
ness graphical model, and complimented by general visual
attentive constraints, the saliency map for an image I(x)
can now be computed based on the following extended as-
sumptions:

1. Salient objects are associated with texture patterns that
are highly distinct from that of the rest of the scene
(statistical textural distinctiveness).

2. Salient objects are associated with texture patterns that
are in closer spatial proximity to the center of the scene
(visual attentive constraints).

Given these two key assumptions, the saliency of a repre-
sentative texture atom tri (which we will denote as αi) can
be computed as the product of:

1. the expected statistical textural distinctiveness of tri
given the image I(x), and

2. the weighted spatial proximity of pixels whose texture
patterns represented in the sparse texture model by tri
(i.e., Si) to the center of the image (denoted by xc) as
suggested by [14],

As such, the saliency αi can be defined in the context of the
proposed work:

αi =

(
m∑

j=1

βi,jP (tri |I(x))

)exp

− 1

ntri

∑
x∈Si

(x− xc)2

σ2


(9)

where P (tri |I(x)) is the occurrence probability of tri in
the image I(x), and ntri is the number of pixels associated
with tri in the image I(x). Given the saliency α computed
for each of the m representative texture atoms in the sparse
texture model, one can easily compute the saliency for each
pixel x in the image I(x) (denoted here by Ψ(x)) based on
the representative texture atom in the sparse texture model
that the pixel maps to:

Ψ(x) = αi, if x ∈ Si (10)

There are two key benefits to this approach to computing
the saliency map based on the constructed statistical textural
distinctiveness model:

1. Only m saliency computations are needed, one for
each representative texture atom in the sparse texture
model. As such, the computational complexity of the
saliency computations is independent of the size of
the image and thus scales linearly (i.e., O(m)) as the
number of texture atom in the sparse texture model in-
creases, not as the image size increases.

2. The occurrence probability of texture atoms
P (tri |I(x)) used to compute the saliency of each
representative texture atom only needs to be computed
once per image.

4. Experimental Results
To investigate the potential of our proposed statistical

texture distinctiveness approach (TD) for robustly detect-
ing salient regions, we evaluated our method based on the
public EPFL database [1]. It contains 1000 natural im-
ages with accurate human-marked labels as ground truth,
and is widely used as a benchmark for comparing saliency
approaches, e.g., in [1, 2, 5, 25, 21]. In this paper, we
compared our approach with 12 state-of-the-art saliency
detection methods. These methods have been selected
based on the following criteria [1, 5]: number of citations
(spectral-residual (SR [11]), visual attention (IT [13])),
recency (luminance-contrast (LC [27]), frequency-tuned
(FT [1]), saliency-measure (SM [22]), metric-surround
(MS [2]), context-aware (CA [7], histogram and region
contrast (HC, RC [5])), and being related to our approach
(graph-based (GB [10]), low-rank (LR [25]), and saliency-
filters (SF [21])).

For a fair comparison with other approaches, we used
the two different objective comparison measures as sug-
gested by Achanta et al. [1] for performance evaluation.
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Figure 5: a) and b) Precision and recall rates for all approaches based on the public EPFL database [1]. Our textural
distinctiveness approach (TD, dashed line) achieves the state-of-the-art precision and recall rates. c) Precision and recall rates
(zoomed) without selecting u principal component (w/o PCA) and for two PCA coefficients, representing 95% (V = 0.95) or
98% (V = 0.98) of the variance of all textural representations, for sorted (SRT) and unsorted (UTR) textural representations.

These measures are based on two experiments, the fixed
and adaptive threshold experiment. Following this scheme,
we performed binary segmentation of saliency maps using
each possible fixed threshold ∆ to compute precision-recall
curves in a first experiment. We also used precision-recall
curves to determine an optimal parameter configuration for
our approach. In the second experiment, we compare the
performance of our approach with other approaches, with
segmenting salient objects using both adaptive thresholds
and GrabCut [23].

Fixed threshold experiment. In a first experiment,
we segmented the saliency maps using a fixed threshold
∆fix ∈ [0, 255] to obtain binary images, with highlighting
regions with saliency values larger than ∆fix as foreground.
We compare the resulting images to ground truth mask to
determine recall and precision. By varying ∆ from 0 to
255, we get precision and recall pairs used for both draw-
ing precision-recall curves and evaluation. Fig. 5 shows the
resulting precision-recall curves which were averaged over
1000 images from the EPFL database [1], and Fig. 8 the vi-
sual comparison of our and other approaches with ground-
truth data.

As shown in Fig. 5, our approach outperforms HC and
RC, and has similar performance as the LR and SF ap-
proaches. It also has to be noticed that the low-rank saliency
approach (LR) requires a variety of additional constraints
(such as color, spatial and semantic priors) to achieve ex-
cellent precision-recall curves, whereas our method relies
on the saliency values obtained from the sparse texture
model, weighted by the spatial proximity of pixels. Our ap-
proach also benefits from the rotational-invariant sorted tex-
tural representations (STR) which help to better reduce the
influence of cluttered or textured background on saliency
computation, as compared to an implementation with un-
sorted textural representations (UTR) as shown in Fig. 5c
and Fig. 6a. Fig. 5c and Fig. 6a also illustrate the preci-
sion and recall curves obtained for several parameter con-

figurations. It can also be seen that selecting u principal
components using PCA further improves precision and re-
call, and that TD consistently performs over a wide range
of parameter settings. However, the best configuration can
be found for the use of: 1) radially-sorted textural repre-
sentations over 5 × 5 square neighborhoods, 2) the use of
PCA coefficients representing 95% of the variance, and 3)
20 representative texture atoms in the sparse texture model.
Increasing the number of atoms to 50 does not improve re-
call and precision, whereas 5 atoms might be to few for rep-
resenting the texture characteristic of natural images.

Adaptive threshold and GrabCut experiment. In
the second experiment, we applied an image dependent
threshold on the saliency maps to segment salient regions.
Achanta et al. [1] defined this threshold as twice the mean
of saliency maps S(x), i.e., ∆ada = 2 ·E(S(x)). However,
a closer analysis of the saliency maps obtained showed that
the distribution of saliency values follows a Gaussian mix-
ture model, with non-salient values having larger probabili-
ties than salient values. To better appreciate this model, we
define the adaptive threshold ∆ada as follows:

∆ada = E(S(x)) + STD(S(x)) , (11)

taking into account the mean E(S(x)) and standard devi-
ation STD(S(x)). After generating object images using
∆ada, we computed precision (P ), recall (R), and their har-
monic mean measure Fβ-measure for evaluation as follows:

Fβ =
(β2 + 1)P ·R
β2 · P +R

(12)

Similar to [1, 5], we use β2 = 0.3 to weight precision more
than recall. The resulting curves show that our method (TD)
achieves the best F-measure and recall (see Fig. 6b). In
comparison to other approaches, the textural distinctiveness
scheme can detect more salient regions with high precision.
Except for the SF approach [21], TD achieves the similar
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Figure 6: a) Precision and recall (zoomed) for different numbers of texture atoms (#AT), using a 5× 5 square neighborhood
and sorted (STR) and unsorted textural representation (UTR). b) Precision, recall and F-measure for adaptive thresholding. c)
Precision, recall and F-measure for cut-based (GrabCut [23]) segmentation of salient objects, initialized with saliency maps
from all tested saliency approaches.

Figure 7: GrabCut segmentation [23] based on statistical
textural distinctiveness. From left to right: Input image,
saliency map computed with our approach, segmented im-
age after adaptive thresholding, and GrabCut segmentation.

precision such as the region contrast (RC) saliency approach
[5] and low-rank (LR) saliency approach [25].

However, performing simple adaptive thresholding pro-
cedures on images containing differently colored and tex-
tured objects is challenging and might result in noisy seg-
mentations (see Fig. 7, 3rd column). To increase the robust-
ness of segmenting salient regions, Cheng et al. [5] sug-
gested to perform GrabCut [23] as a post processing step
on thresholded saliency maps. They use empirically chosen
thresholds that give 95% recall rate. However, this depends
on the chosen saliency appraoch, and requires prior knowl-
egde which is difficult to extract from unknown images.
Hence, we used the adaptive threshold ∆ada (see Eq. 11) to
produce binary images, and refined the results obtained us-
ing GrabCut. Fig. 7, 4th column illustrates that the saliency-
guided GrabCut approach produces good masks even for
challenging images, and significantly improves precision,
f-measure and recall of all approaches (see Fig. 6c). Fig. 6c
also shows that our method (TD) achieves the best preci-
sion and F-measure due to the consideration of texture and
the sparse texture model for saliency computation, which
can help to reduce the influence of cluttered background on
saliency computation.

5. Conclusions
In this paper, a novel saliency detection approach for

natural images based on the concept of statistical texture
distinctiveness was presented. Experimental results using a
public natural image dataset demonstrated strong potential
for identifying salient regions in images in an efficient man-
ner, thus illustrating the usefulness of explicitly incorporat-
ing textural characteristics. Future work involves investi-
gating alternative sparse textural representation and textural
models to evaluate whether improvements in saliency de-
tection can be achieved. This also involves investigating
schemes for automatically determining the optimal num-
ber of textural representations, i.e., number of atoms, which
explicitly take into account textural relationships between
individual representations for better sparse texture model
learning. Furthermore, it would also be of great interest in
exploring the extension of the proposed statistical textural
distinctiveness approach to higher-dimensional data such as
volumetric data as well as video data.
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