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Abstract

With the wide-spread of consumer 3D-TV technol-
ogy, stereoscopic videoconferencing systems are emerging.
However, the special glasses participants wear to see 3D
can create distracting images. This paper presents a com-
putational framework to reduce undesirable artifacts in the
eye regions caused by these 3D glasses. More specifically,
we add polarized filters to the stereo camera so that par-
tial images of reflection can be captured. A novel Bayesian
model is then developed to describe the imaging process
of the eye regions including darkening and reflection, and
infer the eye regions based on Classification Expectation-
Maximization (EM). The recovered eye regions under the
glasses are brighter and with little reflections, leading to
a more nature videoconferencing experience. Qualitative
evaluations and user studies are conducted to demonstrate
the substantial improvement our approach can achieve.

1. Introduction

Three-dimensional videoconferencing aims to capture,

transmit and display people and their environments in 3D,

thus creating an illusion that the remote participants are in

the same room with you. Thanks to efforts in standard-

izing 3D-TV technologies, many of the technical compo-

nents for capturing and transmitting 3D videos have become

mature [19]. However, there is one significant difference

between 3D videoconferencing and 3D-TV. In 3D-TV, the

user only needs to consume the broadcasted content on a

3D display, which is often based on polarization or shutter

glasses. In 3D videoconferencing, the user’s 3D video will

also be captured and sent to remote parties. If the user still

wears polarized glasses or shutter glasses, the eye region

will be too dark for the remote parties to tell his/her gaze

orientations (Fig. 1(c)), which subsequently leads to poor

communication efficiency [1].

One solution to the above issue is to develop autostereo-

scopic 3D displays, where no glasses is needed to perceive

3D. Such displays may include those based on lenticular

screens [18], parallax barrier [11], projector arrays [2], ro-

tating mirrors [13], eye tracking [27], etc. However, many

of these solutions are still in the experimental stage, and

are either too expensive, or too restrictive in users’ head

motion, or too limited to accommodate multiple viewers si-

multaneously. Currently, the majority of the 3D displays on

the market are polarization or shutter glasses based. Moti-

vated by the emerging trend of using polarized glasses for

3D viewing, in this paper, we study algorithms to enhance

videos of people wearing polarized glasses for 3D video-

conferencing. The algorithm could be extended to shutter

glasses, which have very similar light transmission rate as

polarized glasses when their shutters are in “transparency”

state.

There are two main challenges that need to be addressed.

First, when lights are shone on a pair of polarized glasses,

only about 40% of the lights actually go through. This

causes the eye region to be darkened, which is unpleas-

ant in videoconferencing. Second, for almost every pair

of polarized 3D glasses we could buy from the shelf, it

is strongly reflective (Fig. 1(c)). Since the eye region has

already been darkened, such reflection further deteriorates

the video quality. Adding anti-glare coating to the glasses

may partially resolve this issue, although it could easily cost

much more than the glasses themselves.

In this paper, we present a solution that computationally

perform darkening reversal and reflection reduction simul-

taneously. A stereo camera that also “wears” a pair of polar-

ized glasses is adopted (Fig. 1(a)), which allows us to obtain

partial images of the reflection. We then propose a novel

Bayesian model to describe the imaging process of the eye

region including darkening and reflection, and infer the eye

region based on Classification Expectation-Maximization

(EM) [4]. Qualitative evaluations and user studies are con-

ducted to demonstrate the substantial improvement in im-

age quality inside the eye region. To the best of our knowl-

edge, our work is the first to investigate such practical is-

sues for 3D videoconferencing applications. Besides, our

approach can potentially be adapted to deal with more gen-
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Figure 1. (a) Our setup. (b) The light loss due to polarization and

our linear models (Sec. 4.2). (c) A sample image captured using

regular camera without polarization filter. (d) A pair of images

acquired by our stereo cameras mounted with polarization filters.

Note that T−1
g (Sec. 4.2) is applied to the entire images to achieve

comparative global brightness as (c).

eral layer decomposition problems, where one of the layer

is partially observed and noisy. One particular example is

reflection layer extraction from composite images, for in-

stance to build an environment map, where the underlying

layer maybe be observed by applying a polarizer to partially

filter out the reflection.

The rest of the paper is organized as follows. Related

work is discussed in Sec. 2. The hardware setup is presented

in Sec 3. The Bayesian model for the imaging process of

the eye region is described in Sec. 4, and its inference in

Sec. 5. Experimental results and conclusions are given in

Sec. 6 and 7, respectively.

2. Related Work
There has been very limited amount of work that handles

eyeglasses in images/videos. One interesting study is by Wu

et al. [28], which aimed to automatically remove eyeglasses

in face images. It detects eyeglasses using a boosting based

detector, and then adopts a statistical analysis and synthe-

sis approach to remove eyeglasses based on training data.

Since reflection is difficult to model with a set of training

examples, the algorithm does not perform well under strong

reflections.

Reflection layer separation has in fact attracted a lot of

research recently. However, most of the approaches focus

on mirror-like wall-size objects, and are not directly appli-

cable to our problem. We briefly review them here to pro-

vide some background and to stress the new challenges we

face in our application.

The existing approaches can be grouped into three cate-

gories: physics-based, motion-based, and prior-based.

Physics-based approaches usually rely on linear polar-

ization of the reflected images. Kong et al. [14] captured

multiple polarized images from a single view point with dif-

ferent polarization angles. Under the assumption that vari-

ance of gradients of the input images is proportional to the

magnitude of gradient of the reflection layer, a constrained

minimization problem was formulated and solved to sep-

arate the reflection layer. Their more recent work [15]

captured only three polarized images with polarizer angles

separated by 45 degrees. The special relationship between

images can then be utilized to extract the reflection layer.

Since most 3D glasses are circularly polarized, these exist-

ing methods cannot be applied to our scenario.

Motion cues have also been used for layer extractions,

some in the intensity domain [25, 24, 12, 3], while others

in the gradient domain [9, 10]. Notably, the recent work

by Sudipta et al. [24] produced visually appealing results

for image-based rendering. Temporal information is crucial

for motion-based approaches. However, for polarized 3D

glasses, small head movement can cause large changes in

reflection, making temporal information difficult to extract.

The last group of approaches incorporates various kinds

of prior information about the scene in order to extract the

reflection layer. For instance, Sarel and Irani [21] handled

scenes with repetitive dynamic behaviors. Levin et al. [17]

minimized the total number of edges and corners when ex-

tracting two layers. While it requires only one image, it

could fail for some images. In [6], edges in the composite

image were assumed to be from either layer. In some works,

user assists were required for good results [16]. The statis-

tics between the background and the reflection layers can

also be assumed to be independent. Independent Compo-

nent Analysis (ICA) [7] has been adopted to extract the two

layers with maximal mutual information, such as [8, 5, 23].

Sarel and Irani also presented solutions for a slightly weaker

assumption that the two layers are uncorrelated [20]. These

methods typically still require multiple images from the

same viewpoint, or object motion tracking, which will be

difficult to meet in our application.

3. System Setup
We adopt a stereo camera pair to capture the user for 3D

videoconferencing, as shown in Fig. 1(a). Since temporal

information is unreliable in our scenario, our goal is to re-

verse the darkening effect and reduce the reflection solely

from the spatial redundancy. To this end, we mount a pair

of polarized 3D glasses on the cameras, which allows us

to capture a partial reflection image directly due to polar-

ization. As shown in Fig. 1(d), consider the camera with

left-handed circular polarization filter on it. It will not see

the user’s eye with opposite polarization. Only the reflec-

tion may be seen. In contrast, the camera with right-handed

circular polarization will see both the eye region and the

reflection for the same eye.

In the following sections, we build a Bayesian model for

the imaging process of the above setup, and present an op-

timization framework to enhance the eye region for our ap-

plication.
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4. Bayesian Imaging Model
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Figure 2. The Bayesian imaging model.

Let us consider the user’s right eye region in Fig. 2,

where the two images from the stereo cameras are shown.

The top image is from one of the stereo cameras, and it

contains mostly reflection, which we denote Ir. The bot-

tom image is from another camera, and it contains both the

background eye region and the reflection, which we denote

Ic. Our goal is to recover the right eye region without po-

larized glasses for the same camera view of Ic, which we

denote as Ib. In general, independence can be assumed be-

tween Ir and Ib. From a probabilistic point of view, we

would like to find the Maximum-a-Posteriori probability of

Ib, that is:
Ib = argmax

Ib
P (Ib|Ic, Ir)

= argmax
Ib

P (Ic|Ib, Ir)P (Ib) (1)

By examining the imaging process of the setup, we fur-

ther build a graphical relationship between Ib, Ir and Ic, as

shown in Fig. 2. A few hidden variables are introduced as

follows:
• Icb: the transmission layer of the composite image Ic;
• Icr: the reflection layer of the composite image Ic;
• Tr: the mapping between the reflection layer Icr and

the observed reflection in alternative view Ir.
With the set of hidden variablesH = {Icb, Icr, Tr}, Eq. (1)

can be re-written as:

Ib = argmax
Ib

∫
H
P (Ic|Icb, Icr, Tr, Ib, Ir)

×P (Icb, Icr, Tr|Ib, Ir)P (Ib)

= argmax
Ib

∫
H
P (Ic|Icb, Icr)P (Icb|Ib)P (Ib)

×P (Icr|Tr, Ir)P (Tr) (2)

where the last step arises from the conditional independence

assumed in Fig. 2. We next describe each component in-

volved in the probabilistic model. Inferring Ib from the

model will be explained in Sec. 5.

4.1. Image Composition

The first term on the right side of Eq. (2), P (Ic|Icb, Icr),
involves the composition of two layers : the transmission

layer (background layer) Icb and the reflection layer Icr.

We apply a simple additive model for the process:
Ic = Icb + Icr + ηc (3)

where ηc ∼ N (0,Σc) is modeled as Gaussian noise.

4.2. Imaging Through Polarized Glasses

The second term, P (Icb|Ib), corresponds to the upper-

left part of Fig. 2, and encodes the light loss due to polar-

ization. For a single polarization glass, a linear color trans-

form can model the process with acceptable performance.

As shown in Fig. 1(b), we assume I1 = Tg · I0, where Tg

is a 3 × 3 matrix. However, due to the polarization filters

on our stereo cameras, the transformation between Icb and

Ib, named Tb, is slightly different from Tg , as illustrated in

Fig. 1(b). With our setup, the rest of the scene is recorded

through a single polarization filter, while the eye regions

behind the polarized eye-glasses are recorded through two

filters. For the eye regions that can be seen, thanks to the

same polarization direction of the glasses, the relative light

loss with respect to the rest of the scene is smaller compared

with Tg . Nevertheless, a linear model is also used:
Icb = Tb · Ib + ηcb, (4)

where ηcb ∼ N (0,Σcb) is a Gaussian noise that we use to

model the imperfection of the linear transform assumption.

Note for a particular pair of glasses, the linear transforms

Tg and Tb can be obtained through pre-calibration with a

color calibration card.

4.3. Skin Color Prior

The probability P (Ib) encodes prior information regard-

ing the region to be recovered. It is possible to build a prior

model for each user using many examples. In this paper,

we resort to a simple skin color distribution to represent the

prior probability, which can be computed from the face re-

gion in the images. For simplicity, a Gaussian distribution

is assumed, i.e. Ib ∼ N (μb,Σb).

4.4. Reflection Model

The last two terms describe the upper-right subgraph of

Fig. 2, which associates the observed reflection Ir in the

alternative view with the reflection layer Icr of the com-

posite image Ic. Due to view differences, spatially there is

a non-linear warping between these two reflection images.

Moreover, since the glasses area is relatively small, part of

the reflection in one view is not observable from the other,

as shown in Fig. 3. Therefore, we partition the reflection

layer Icr into two parts: Iocr represents the part of reflection

observed from the alternative view, which may be estimated

from the observed reflection Ir through spatial warping. INcr
represents the part of reflection that is not observed (e.g., the

region inside the yellow circle in Fig. 3(a)).

We assume that given Iocr, INcr is independent of Ir and

Tr. That is:

P (Icr|Tr, Ir)P (Tr) = P (Iocr, I
N
cr |Tr, Ir)P (Tr)

= P (INcr |Iocr)P (Iocr|Tr, Ir)P (Tr) (5)

The mapping between Ir and Iocr is modeled as follows.

Spatially, a warping can be applied to Ir in order to match
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Figure 3. Reflection Model. (a) The spatial mapping between the

stereo image pair. Red and yellow circles mark examples of ob-

servable and non-observable parts of the reflection layer. (b) The

intensity scaling between the reflections across views.

against Iocr. Denote the warping result as Iωr . We have:

Iωr (p) = Ir(x+ d(p), y)⇒ Iωr = ω(Ir) (6)

where d(p) is the disparity of pixel p � (x, y) in the reflec-

tion image Ir; and ω abstracts the non-linear warping.

Furthermore, we introduce a per-pixel, per-channel scale

factor s = {sl}l∈{r,g,b} (l ∈ {r, g, b} denotes image chan-

nels here), such that

Iocr = S · ω(Ir) + ηcr, (7)

where S = diag(sr, sg, sb). (8)

Note Tr � {s, ω} with s and ω assumed independent

to each other, and ηcr ∼ N (0,Σcr) is a Gaussian noise

term. The notation s and its diagonal matrix form S will be

used interchangeably in the remainder of the paper wher-

ever convenient. The scale factor s is introduced for two

reasons. First, the two stereo cameras may behave slightly

differently, resulting in different color outputs. Second, as

pointed out in [15], the light reflected off glass surfaces is

partially polarized, which depends on the angle between in-

cident light and surface normal, as illustrated in Fig 3(b).

When either the scene point or the glasses moves, the scal-

ing factor s for a single point on the glasses also changes

(due to changes in
α(θ1)
α(θ2)

in Fig. 3(b)).

Regarding the terms P (INcr |Iocr) and P (Tr), we will use

them as regularization terms during the inference. More

discussions about their probabilistic models will be given

in Section 5.3 and 5.2, respectively.

5. Inference
The objective function in Eq. (2) involves a set of

continuous hidden variables and a nonlinear mapping,

which is difficult to solve. We adopt a variant of the

Expectation-Maximization (EM) approach, namely Classi-

fication EM [4], to find an approximate solution. In Clas-

sification EM, the summation in the E-step is replaced with

estimation of the modes of the hidden variables. The target

variables are then estimated with the modes in the M-step.

Such a process is iterated until convergence, as sketched in

Table 1 for our application.

Since the reflection model involves non-linear spatial

mapping ω, it is error-prone to estimate the modes of all

Initialization: Îb
Iterate until convergence:

E-step:

{Îcb, Îcr, T̂r} = argmax
H

log(P (Icb, Icr, Tr|Ic, Ir, Îb))

= argmax
H

log
(
P (Ic|Icb, Icr)P (Icb|Îb)

× P (INcr |Iocr)P (Iocr|Ir, s, ω)P (s)P (ω)
)

(9)

M-step:

Îb = argmax
Ib

log
(
P (Ib|Ic, Ir, Îcb, Îcr, T̂r)

)

= argmax
Ib

log
(
P (Îcb|Ib)P (Ib)

)
(10)

Table 1. The Classification EM framework.

� � � � � � � � �

Initialization
�� � �	� � �	
� ��� � �

Reflection�
Warping:�� � � �

Scale�Estimation:�
� � �	
 �

Target�Image:
��

Figure 4. The flow of our inference. The three block colors indi-

cate the three EM components: initialization, E-step and M-step.

the hidden variables simultaneously. Instead, we optimize

them in turn. The spatial warping ω is the only variable

that cannot be appropriately initialized; and is therefore es-

timated first. The other variables are initialized as follows:

Îb = 0; ŝ = {1, 1, 1}; Îcb = Tb · Îb = 0;

Îocr = Îc − Îcb = Ic; ÎNcr = 0; (11)

The overall flow of the inference process is given in Fig. 4.

5.1. Reflection Image Warping

By dropping the terms in Eq. (9) that are unrelated to ω,

we obtain:

ω̂ = argmax
ω

(
logP (Îocr|Ir, ŝ, ω)

)
+ log

(
P (ω)

)
≡ argmin

ω

(
Eω

D(d) + Eω
R(d)

)
, (12)

where the relationship between ω and d has been defined

in Eq. (6). The problem above is equivalent to the tradi-

tional disparity estimation problem with stereo images [22].

The first term denotes the data cost, and the second term

represents a smoothness constraint. We use graph cut as a

global optimization scheme to solve the warping. Consider-

ing the specific characteristics of the data in our application,

we propose to use the following data energy function based

on image gradient (denoted as ∇, we use gradient of gray

scale images in this work):

Eω
D(d) =

∑
(x,y)

(
u(x, y)

[∇Ir(x, y)−∇Icr(x+ d, y)
]2)

where u(x, y) = log
[(∇Ir(x, y)

)2
+ 1

]
(13)
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The per pixel weight u(x, y) represents relative impor-

tance of the pixels. The reasons for choosing this particular

cost function and weighting scheme are:
(1) Human beings sense reflection mainly due to high

frequency region of the reflection layer, e.g. edges.

Therefore the pixels of the reflection layer with higher

gradients are assigned with higher weight as encoded

in u(x, y). The logarithm is empirically designed to

avoid bias arising from unexpected edges (e.g. eye-

glasses frames).
(2) The initialization of Ib = 0 makes pixel intensities less

reliable than gradients for distance measure.

In terms of smoothness constraints Eω
R(d), the contrast-

sensitive Potts model is adopted [24].

With the estimated disparities, the reflection image Ir
can be spatially warped to align with the reflection layer Icr,

denoted as Iωr . In order to further improve the matching for

sub-pixel alignment, we apply a filtering process as follows:

Iωr
′(p) =

∑
q∈L(p)

C(Iωr (q), Icr(p)) · Iωr (q) (14)

where L(·) denotes a local neighborhood (3 × 3 in this

work); and C(Iωr (q), Icr(p)) is the normalized cross corre-

lation (NCC) between the local patch of Iωr at pixel q and

that of Icr at pixel p. 5×5 patches are used in our approach.

Fig. 5 shows an example of the Iωr and Iωr
′ ((c) and (d) re-

spectively). In the rest of the paper, we denote the filtered

reflection as Îωr for simplicity.

5.2. Scale Factors Estimation

The scale factors s � {sl} (l denotes image color chan-

nel) can be estimated by combining Eq. (3) and (7) with the

first and fifth terms in Eq. (9):

ŝ = argmax
s

log
(
P (Ic|Icb, Ir, s, ω̂) + logP (s)

)
≡ argmin

s

(
Es

D(s) + Es
R(s)

)
(15)

Due to the same considerations in Sec. 5.1, image gradients

instead of intensities are used to define the energy terms.

We focus on the gradient difference between the compos-

ite image Ic and the estimated reflection layer Îcr, since

the estimated transmission layer Îcb may contain reflection

residue. More specifically, we define:

Es
D(s) =

∑
l∈{r,g,b}

∑
p

(
v(p)

[
∇(

I lc(p)− sl(p)Îω,l
r (p)

)]2)
,

and v(p) =
u(p)

(
1 + C(Îωr (p), Îcb(p))

)

1 + maxp{C
(
Îωr (p), Îcb(p)}

,

where u(p) = log
[(∇Îωr (x, y)

)2
+ 1

]
. (16)

The new weight v(p) also measures the similarity between

the transmission layer Îcb and the warped reflection im-

age Îωr . If the similarity is high, there could be reflection

(a)

(e)

(b) (c) (d)

(h)(g)(f)

Figure 5. Recovery of the reflection layer ((b),(c),(d),(g),(h) are

scaled up 3 times from raw data for visualization purpose). (a)

and (e) are input image pair. (b) and (f) are the reflection image

Ir and composite image Ic. (b)→(c): spatial warping (Sec. 5.1).

(c)→(d): filtering (Eq. 14). (d)→(h): scale factor (Sec. 5.2).

(h)→(g): hallucination of non-observable part encompassed by

the green curve (Sec. 5.3).

residues in Îcb, thus the gradient difference between the

composite image and the estimated reflection shall be fur-

ther reduced.

The regularization term is formulated as follows to pre-

vent over-fitting:

Es
R(s) = λs

R

(∑
l

∑
p

∑
q∈L(p)

(F(p, q)|sl(p)− sl(q)|2)

+ λl

∑
p

∑
l1,l2∈{r,g,b}

|sl1 − sl2 |2
)
, (17)

where F(p, q) = exp
(‖Îr(p)− Îr(q)‖2

2σ2

)
. (18)

where λs
R and λl balance the relative importance of the

terms. Empirically we find λs
R = 10 and λl = 0.5 are

good choices.The first term forces spatial smoothness, with

the function F designed to be the adaptive weighting ker-

nel to partially handle the camera difference mentioned in

Sec. 4.4. The second term in Eq. (17) favors consistency of

the scales across channels.

5.3. Reflection Layer

The reflection layer, including both the observable and

non-observable part, is updated as follows:
Îcr = argmaxIcr={IN

cr,I
o
cr}

(
logP (Ic|Îcb, Icr)

+ logP (INcr |Iocr) + logP (Iocr|Ir, ŝ, ω̂)
)

≡ argmin
Icr

(Ecr
Dc

(Icr) + Ecr
S (Icr) + Ecr

Dr
(Icr))(19)

The second term assumes dependence of the non-

observable part on the observable part as discussed in

Sec. 4.4. In practice, we can only enforce constraints along

the boundary across these two regions, i.e.:

Ecr
S (Icr) = λcr

S

∑
p∈Ω(Io

cr)

∑
q∈L(p)

⋂
Ω(IN

cr)

‖Îocr(p)− INcr(q)‖2

(20)

where Ω(·) denotes the boundary region and the weight λcr
S

is set to 10 in this work.

One consequence that follows is that only the first term

in Eq. 19 takes effect for the inner region of the non-

observable part. The fact that INcb is initialized as zero and

11811181118111831183



updated based on the hallucinated INcr (Eq. 23) results in

non-informative and unstable update via first term without

additional information. We thereby assume that this small
region contains no critical skin details, i.e. ∇INcb ≈ 0, and

use penalty function in gradient domain for INcr , while in

intensity domain for Iocr:

Ecr
Dc

(Icr) =
∑
p∈Io

cr

∥∥Ic(p)− Îcb(p)− Icr(p)
∥∥2

Σc

+
∑
p∈IN

cr

∣∣∇(Ic(p)− Icr(p))
∣∣2 (21)

where the notation ‖v‖Σv
means vTΣ−1

v v in this paper.

Plugging in Eq. (7), the third term in Eq. (19) can be

written as:
Ecr

Dr
(Icr) =

∑
p∈Io

cr

∥∥Icr(p)− Ŝ(p) · Îωr (p)
∥∥2

Σcr
(22)

Fig. 5 shows the procedure of reflection layer recovery, in

which (g) shows the hallucinated non-observable part.

5.4. Transmission Layer

Combining Eq. (4) with the first two terms in Eq. (9), the

transmission layer can be obtained as:

Îcb = argmax
Icb

(
logP (Ic|Icb, Îcr) + logP (Icb|Îb)

)

= argmin
Icb

(∥∥Ic − Îcr − Icb
∥∥2

Σc
+

∥∥Tb · Ib − Icb
∥∥2

Σcb

)
(23)

which is effectively an interpolation between Ic − Îcr and

Tb · Îb. Minimizing the above objective function is equiva-

lent to solving a linear equation. Note that during the first

iteration, the second term of Eq. (23) is ignored since Ib is

initialized to zero.

5.5. M-Step

With the modes of hidden variables estimated, we can

proceed to recover our ultimate goal: the background image

behind the glasses, by performing the M-step in Table 1:

Îb = argmin
Ib

(∥∥Tb · Ib − Îcb
∥∥2

Σcb
+

∥∥Ib − μb

∥∥2

Σb

)
(24)

This optimization is similar to that of Eq. (23). The EM

process is iterated until the change of Îb is small. Normally

three iterations are sufficient in our experiments.

6. Experiments
In order to demonstrate the effectiveness of our ap-

proach, we experiment on a collection of image sequences

captured using the setup shown in Fig. 1(a) for qualitative

evaluation. However, it is impractical to perform pixel-

wise quantitative evaluation with images of subject with and

without the polarized eyeglasses. Therefore, we conduct

user studies instead as described in Sec. 6.3. Before de-

scribing the actual evaluation, we first present the pre- and

post-processing step as follows.

(a) (b)

Color�Markers �

Right�
View

���

Left
View

Figure 6. Pre-processing (a) and Post-processing (b). See Sec. 6.1

for details.

6.1. Pre- and Post-Processing

Eyeglasses tracking is required in order to process video

data. However, tracking is not the focus of our work. We at-

tach physical color markers on the glass frames for tracking,

as shown in Fig. 6(a). The eye regions are manually defined

for the first frame, and are then warped for all the rest im-

ages according to a 2D Homography calculated from the

tracked markers (Fig. 6(b)). A neighborhood region around

eyeglasses frame, as shown by the rectangle in Fig. 6(a),

is then defined for skin detection with the eye regions ex-

cluded. Skin color pixels are identified in the HSV color

space [26]; and the skin color prior (Sec. 4.3) is built upon

those pixels by fitting a 3D Gaussian distribution.

Note that in the images captured with our camera setup,

one of the eye regions for each view has only reflection.

They are therefore not suitable for stereoscopic videocon-

ferencing directly. As a post-processing step, we perform

cross-view warping between each pair of images using 2D

Homography, as illustrated in Fig. 6(b).

6.2. Real Scene Data Evaluation

Our approach is applied to a collection of real world im-

age sequences of human subjects, with diversity in the fol-

lowing aspects:

• Subject gender: male and female;

• Subject skin color: yellow, white and black;

• Reflection: weak, moderate and strong, for example:

table, monitor and sky, respectively;

• Global illumination: from relatively dark to bright.

The test data set consists of both static and dynamic scenes

as detailed below.

Static Scenes: Two groups of images are acquired with

regular stereo cameras (without polarization filters) and

with our setup respectively. Fig. 7(a) shows the first group,

in which the dark eye regions as well as the reflection sub-

stantially compromise the visual quality. Fig. 7(c) are im-

ages captured with our setup and transformed with T−1
g

(Sec. 4.2) in order to achieve similar overall brightness as

(a) for fair comparison. Together with the noisy reflec-

tion layers, they are used as input to our algorithm. When

capturing (a) and (c) with the polarization filters on and

off the cameras respectively, the subjects are asked to re-

main as still as possible. Small movement is acceptable
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(a) (b) (c)

Figure 8. Image simulation for user studies: (a) captured with our

setup; (b) simulated dark eye regions; (c) captured by a camera.

for visual comparison. In Fig. 7(b), the eye regions are

enhanced through T−1
g from (a) to achieve darkness re-

versal. Nonetheless, the reflection, especially the relative

strong monitor reflection, still largely deteriorates the im-

age quality. By contrast, our approach performs both re-

flection reduction and darkness reversal, and achieves sig-

nificant improvement as demonstrated in Fig. 7(d). Note the

large differences of global illumination as well as the range

of reflection strengths across images.

Dynamic Scenes: In dynamic data set, the subjects gen-

erally move freely with various head motion and eye blink-

ing. Our results are presented in the supplemental materials.

Again the substantial improvement of visual quality demon-

strates the effectiveness of our approach. And the diversity

in the data set validates its robustness.

Our system is currently implemented in Matlab; and the

processing time for each frame is around 4s on average.

Note that the computation in our approach mainly involves

pixel-wise operations and linear equation solving. There-

fore, GPU acceleration can be naturally implemented for

real time applications.

6.3. User Studies
The dynamic data set is also used for user studies in order

to evaluate the applicability of our approach to 3D video-

conferencing. Ideally one would conduct the same visual

comparison as in Fig. 7. However, in dynamic scenes one

cannot capture two sequences of images with the subject

performing exactly the same motion. Therefore, we simu-

late the traditional setup through the transformation Tg ·T−1
b

from data captured with our setup (see Sec. 4.2). As demon-

strated in Fig. 8, the simulated image (b) achieves very sim-

ilar brightness in eye regions as that captured by a regular

stereo camera pair (image (c)). However, as a side effect,

the reflection is also weakened, which makes the user study

more favorable to the traditional setup.

There are 20 college students in their 20’s participated in

our study. Six of the subjects are female. Each subject is

presented with 9 videos. Each video consists of three sub-

videos: the simulated ”dark-eye” video, the one enhanced

with T−1
b from data captured with our setup, and the en-

hanced video from our method. The users are asked to rank

the three sub-videos according to their preference. They are

instructed to imagine that they are videoconferencing with

the subject in the video. Two groups of studies are con-

ducted: 2D videos (from one of the stereo images) and 3D

anaglyph videos. The results are summarized in Table. 2.

Overall the results are very positive. Over 70% of

2D�Videos 3D�Videos
Simulated
Dark�Images

Darkness
Reversed�Only

Our�
Results

Simulated
Dark�Images

Darkness
Reversed�Only

Our�
Results

Worst 101�(56.1%) 60�(33.3%) 19�(10.6%) 107�(59.5%) 51�(28.3%) 22�(12.2%)

Medium 62�(34.5%) 85�(47.2%) 33�(18.3%) 54�(30.0%) 99�(55.0%) 27 (15.0%)

Best 17�(9.4%) 35�(19.5%) 128�(71.1%) 19�(10.5%) 30�(16.7%) 131�(72.8%)

Table 2. Summary of our user studies.

the subjects chose results from the proposed method as

the “best”, for both 2D and 3D viewing. The results do

show, however, in some cases the participants do prefer the

darkness-reversed-only image, or even the original image.

The main reason is the small amount of flickering in our

results which we will discuss next.

6.4. Limitations and Future Work
There are several limitations in our current approach. It

can not be directly applied to polarized eyeglasses made

with cheap plastic filters, because the deformation in the

plastic film causes large difference in the reflection across

views (see supplemental materials). Consequently, their

spatial relationship can not be correctly estimated. A pre-

cise 3D modeling of the reflection surface may help here.

Our current implementation estimates the reflection param-

eters frame by frame. The fluctuation in the estimated pa-

rameters sometime leads to flickering in the final video se-

quence, which causes discomfort for a small number of user

study participants. In future work, we plan to model the

temporal relationship of the transmission layers Icb or the

eye region image Ib explicitly to resolve this issue. We are

also interested in applying our approach to shutter glasses,

however the engineering hurdle to sync cameras with shut-

ter glasses must be overcomed first.

7. Conclusion
We proposed a probabilistic approach for reflection re-

duction of polarized eyeglasses for the purpose of 3D video-

conferencing, with our adapted hardware design. Our algo-

rithm performs darkness reversal and reflection reduction

effectively as demonstrated by the experiments, and sub-

stantially improves the visual quality of the images that are

then used for 3D videoconferencing.

Acknowledgements We would first like to thank the

anonymous reviewers for their valuable feedback. Majority

of the work was conducted during the first author’s intern-

ship at Microsoft Research. This work is supported in part

by US NSF grant IIS-0448185, CCF-0811647, and CNS-

0923131.

References
[1] M. Argyle and M. Cook. Gaze and Mutual Gaze. Cambridge

University Press, 1976.

[2] T. Balogh. Method and apparatus for producing 3-D picture.

U.S. Patent 5 801 761, 1998.

11831183118311851185



(a)

(b)

(c)

(d)

Figure 7. Images of various real-life scenes. See Sec. 6.2 for detail explanation. Note that cross-view warping is applied to the images in

(c) and (d) only.

[3] J. Bergen, P. Burt, R. Hingorani, and S. Peleg. A three-

frame algorithm for estimating two-component image mo-

tion. PAMI, 14(9):886 –896, sep 1992.

[4] C. M. Bishop. Pattern Recognition and Machine Learning.

Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[5] A. M. Bronstein, M. M. Bronstein, M. Zibulevsky, and Y. Y.

Zeevi. Sparse ICA for blind separation of transmitted and re-

flected images. INTL. J. IMAGING SCIENCE AND TECH-
NOLOGY, 15:84–91, 2005.

[6] Y.-C. Chung, S.-L. Chang, J.-M. Wang, and S.-W. Chen.

Interference reflection separation from a single image. In

WACV, pages 1 –6, dec. 2009.

[7] P. Comon. Independent component analysis, a new concept?

Signal Processing, 36(3):287 – 314, 1994.

[8] H. Farid and E. H. Adelson. Separating reflections from im-

ages using independent components analysis. Journal of the
Optical Society of America, 16:2136–2145, 1998.

[9] K. Gai, Z. Shi, and C. Zhang. Blindly separating mixtures of

multiple layers with spatial shifts. In CVPR, june 2008.

[10] K. Gai, Z. Shi, and C. Zhang. Blind separation of superim-

posed images with unknown motions. In CVPR, 2009.

[11] J. Hamasaki. Aberration theories of lenticular and related

screens. In Proc. Int. Workshop Stereoscop. 3-D Imaging,

1995.

[12] M. Irani, B. Rousso, and S. Peleg. Computing occluding and

transparent motions. IJCV, 12(1):5–16, Feb. 1994.

[13] A. Jones, M. Lang, G. Fyffe, X. Yu, J. Busch, I. McDowall,

M. Bolas, and P. Debevec. Achieving eye contact in a one-

to-many 3D video teleconferencing system. In SIGGRAPH
Emerging Technologies, 2009.

[14] N. Kong, Y.-W. Tai, and S. Y. Shin. High-quality reflection

separation using polarized images. TIP, dec. 2011.

[15] N. Kong, Y.-W. Tai, and S. Y. Shin. A physically-based ap-

proach to reflection separation. In CVPR, june 2012.

[16] A. Levin and Y. Weiss. User assisted separation of reflections

from a single image using a sparsity prior. PAMI, 2007.

[17] A. Levin, A. Zomet, and Y. Weiss. Separating reflections

from a single image using local features. In CVPR, 2004.

[18] W. Matusik and H. Pfister. 3D TV: A scalable system for

real-time acquistion, transmission and autostereoscopic dis-

play of dynamic scenes. TOG, Aug. 2004.

[19] H. Ozaktas and L. Onural. Three-Dimensional Television:
Capture, Transmission, Display. Springer, 2007.

[20] B. Sarel and M. Irani. Separating transparent layers through

layer information exchange. In T. Pajdla and J. Matas, edi-

tors, ECCV. Springer Berlin Heidelberg, 2004.

[21] B. Sarel and M. Irani. Separating transparent layers of repet-

itive dynamic behaviors. In ICCV, oct. 2005.

[22] D. Scharstein and R. Szeliski. A taxonomy and evaluation of

dense two-frame stereo correspondence algorithms. IJCV,

47(1-3):7–42, Apr. 2002.

[23] Y. Y. Schechner, J. Shamir, and N. Kiryati. Polarization-

based decorrelation of transparent layers: The inclination an-

gle of an invisible surface. ICCV, 2:814, 1999.

[24] S. N. Sinha, J. Kopf, M. Goesele, D. Scharstein, and

R. Szeliski. Image-based rendering for scenes with reflec-

tions. Proc. of SIGGRAPH, 31(4), July 2012.

[25] R. Szeliski, S. Avidan, and P. Anandan. Layer extrac-

tion from multiple images containing reflections and trans-

parency. In CVPR, pages 1246–, 2000.

[26] V. Vezhnevets, V. Sazonov, and A. Andreeva. A survey on

pixel-based skin color detection techniques. In IN PROC.
GRAPHICON-2003, pages 85–92, 2003.

[27] G. J. Woodgate, D. Ezra, J. Harrold, N. S. Holliman, G. R.

Jones, and R. R. Moseley. Observer tracking autostereo-

scopic 3D display systems. In Proc. SPIE, 1997.

[28] C. Wu, C. Liu, H.-Y. Shum, Y.-Q. Xu, and Z. Zhang.

Automatic eyeglasses removal from face images. PAMI,
26(3):322–336, Mar. 2004.

11841184118411861186


