
Fast Patch-based Denoising Using Approximated Patch Geodesic Paths

Xiaogang Chen1,3,4, Sing Bing Kang2, Jie Yang1,3, and Jingyi Yu4

1Shanghai Jiao Tong University, Shanghai, China. {cxg,jieyang}@sjtu.edu.cn
2Microsoft Research, Redmond, WA, USA. sbkang@microsoft.com

3Key Laboratory of System Control and Information Processing, Ministry of Education, China.
4University of Delaware, Newark, DE, USA. yu@cis.udel.edu

Abstract

Patch-based methods such as Non-Local Means (NLM)
and BM3D have become the de facto gold standard for im-
age denoising. The core of these approaches is to use simi-
lar patches within the image as cues for denoising. The op-
eration usually requires expensive pair-wise patch compar-
isons. In this paper, we present a novel fast patch-based de-
noising technique based on Patch Geodesic Paths (PatchG-
P). PatchGPs treat image patches as nodes and patch differ-
ences as edge weights for computing the shortest (geodesic)
paths. The path lengths can then be used as weights of the
smoothing/denoising kernel.

We first show that, for natural images, PatchGPs can
be effectively approximated by minimum hop paths (MHPs)
that generally correspond to Euclidean line paths connect-
ing two patch nodes. To construct the denoising kernel, we
further discretize the MHP search directions and use only
patches along the search directions. Along each MHP, we
apply a weight propagation scheme to robustly and efficient-
ly compute the path distance. To handle noise at multiple
scales, we conduct wavelet image decomposition and apply
PatchGP scheme at each scale. Comprehensive experiments
show that our approach achieves comparable quality as the
state-of-the-art methods such as NLM and BM3D but is a
few orders of magnitude faster.

1. Introduction

Image denoising is a classical inverse problem. Tradi-
tional pixel-based edge-preserving algorithms such as me-
dian filters, bilateral filters [34], total variation [33] and
anisotropic diffusion [33] have long served as workhorses in
denoising tasks. These approaches focus on computing the
(de)similarities between pixels within a local neighborhood
and are easy to implement. More recent approaches include
the simple yet elegant Gaussian scale mixture (GSM) al-

gorithm [31] and Non-Local Means (NLM) [10] that ex-
plore global image structures using patches. These power-
ful patch-based schemes can be interpreted as expectation-
maximization (EM)-based inference on stochastic factor
graphs and have shown outstanding performance.

The core of these approaches is to use patches similar
to the noisy one within the image as cues. This opera-
tion usually requires expensive pair-wise patch comparison-
s. For example, in NLM and BM3D, denoising each patch
requires computing its similarity with all other patches in
a predefined search window. The similarity scores are s-
tored as a convolution kernel for denoising. Admas et al.
[4] show that one can use the K most similar patches in-
stead of all patches within the window which is equivalent
to solving the K-nearest neighbor (K-NN) problem in the
high dimensional patch space. However, accelerating the
K-NN algorithm remains challenging in machine learning.

In this paper, we present a novel fast patch-based denois-
ing technique based on Patch Geodesic Paths (PatchGP).
PatchGP extends the pixel geodesic paths (PixelGP) [5] by
treating image patches as nodes and assigning patch differ-
ences as edge weights for computing the shortest (geodesic)
paths. The path lengths can then be used as weights of the s-
moothing/denoising kernel. Brute-force implementation of
PatchGP, however, is more expensive than NLM or BM3D.
We therefore develop a class of acceleration schemes. We
first show that for natural images, PatchGPs can be effec-
tively approximated by minimum hop paths (MHPs) that
generally correspond to Euclidean line paths connecting t-
wo patch nodes. To construct the denoising kernel, we
further discretize the MHP search directions and use on-
ly patches along the search directions. Along each MHP,
we apply a weight propagation scheme to robustly and effi-
ciently compute the path distance. Finally, to handle noise
at multiple scales, we conduct wavelet image decomposi-
tion and apply PatchGP scheme at each scale. Comprehen-
sive experiments show that our approach achieves compara-
ble quality as the state-of-the-art methods but is a few orders

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.160

1209

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.160

1209

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.160

1209

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.160

1211

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.160

1211

of magnitude faster.

2. Related work

Image denoising is a long standing problem. Classi-
cal approaches attempt to filter the noisy image in the s-
patial or frequency domain. In recent decades, spatial do-
main filters have been particularly popular since they are
easy to implement and can be accelerated on the GPUs [2].
These solutions have also been used in non-photorealistic
Rendering [37], tone mapping [14], image/video segmenta-
tion [13], etc. We refer the readers to the recent survey [13]
that compares a broad range of techniques. Most recent-
ly, Levin et al. [24] discussed the the relation between the
patch complexity of natural images, patch size, and restora-
tion errors. They also pointed out a law of diminishing re-
turn: patches that require a large increase in database size
also benefit little from a larger window.

Pixel vs. Patches. A widely used class of pixel-based
algorithms is edge-preserving filters such as anisotropic d-
iffusion [28] and bilateral filters [29]. They can be viewed
as convolving the noisy image with a special smoothing k-
ernel [29] [34]:

𝐼(𝑖) =
1

𝑍(𝑖)

∑
𝑗∈Ω𝑖

𝑤(𝑖, 𝑗)𝐼(𝑗), (1)

where 𝑤 is the smoothing kernel, Ω𝑖 is the spatial support of
𝑤 or a neighborhood of pixel 𝑖, and 𝑍(𝑖) is the normaliza-
tion factor as

∑
𝑗∈Ω𝑖

𝑤(𝑖, 𝑗). For example, in bilateral filters,

𝑤 is computed as the product of two Gaussians:

𝑤𝑏𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙(𝑖, 𝑗) = 𝐺𝜎𝑟
(∣𝐼(𝑖)− 𝐼(𝑗)∣2)𝐺𝜎𝑠

(∣𝑖− 𝑗∣2), (2)

where 𝐺𝜎𝑟
is the range kernel and 𝐺𝜎𝑠

is the spatial ker-
nel, both centered at pixel 𝑖. The range kernel can also
take color into consideration [7] as 𝐺𝜎𝑐𝑜𝑙𝑜𝑟

(∣𝑣(𝑖)−𝑣(𝑗)∣2).
Anisotropic diffusion uses similar local filters to successive-
ly produces a family of parameterized images where new
images at each iteration are computed by applying diffusion
filters to the ones from the previous iteration [29].

More recent approaches exploit the frequent occurrence
of similar patches within the image. For example, NLM us-
es patch similarity instead of pixel similarity for construct-
ing the smoothing kernel:

𝑤𝑁𝐿𝑀 (𝑖, 𝑗) = 𝐺𝜎(∣𝑁𝐼(𝑖)−𝑁𝐼(𝑗)∣2), (3)

where 𝑁𝐼(𝑖) and 𝑁𝐼(𝑗) represent patches centered at 𝑖 and 𝑗
and ∣⋅∣2 is the sum of squared differences (SSD) between the
patches. BM3D uses a similar scheme (1) except that the
weight is calculated in the 3D transform domain. Instead
of using the convolutional approach, LPG-PCA [40] ap-
plies principal component analysis (PCA) on similar patch-
es. More sophisticated schemes [32] [36] [41] further

utilize image statistics within patches to improve the de-
noising results. Compared with the pixel-based techniques,
patch-based solutions are more reliable but slower.

Acceleration Schemes. Brute-force implementations of
Eq. (1), whether pixel or patch based, are computational ex-
pensive. The original bilateral filters have computational
complexity of 𝑂(𝑟2) for each pixel, where 𝑟 is radius of the
spatial support. In the past decade, a large number of ac-
celeration schemes have been proposed for pixel-based de-
noising. Durand and Dorsey [14] applied piecewise-linear
approximations to the range (intensity) kernel. Yang et al.
[38] developed recursive Gaussian filters to handle varying
kernel sizes. Paris and Durand [27] mapped the 2D filter-
ing process onto the 3D space so that the filter can be effi-
ciently implemented by standard 3D Gaussian convolution.
Weiss [35] and Porikli [30] used the box kernel to approxi-
mate the spatial Gaussian so that Integral Histogram can be
directly used for acceleration. These acceleration schemes
can also be extended to multichannel images. Most recently,
Yang [37] proposed to utilize coherency between different
channels to achieve linear computational complexity.

Despite great advances on pixel-based denoising, accel-
erating patch-based denoising remains as an open problem.
This is mainly due to the high dimensionality of patch s-
pace. By far, the focus has been using smart data struc-
tures such as the KD trees to arrange the patches for quick
querying [23, 9, 4]. He and Sun [19] further proposed
a Propagation-Assisted KD-Tree model to further improve
the performance. However, these high-dimensional struc-
tures are storage demanding and less suitable for devices
with limited memory and computation resources. We, in
contrast, explore the problem from the perspective of natu-
ral image patch statistics.

3. Patch Geodesic Paths

The core of our approach is to accelerate patch-based
denoising by only conducting patch comparisons on the
geodesic paths.

3.1. Pixel Geodesic Distance

In a graph, the geodesic distance between two nodes is
the accumulative edge weights in a shortest path connect-
ing them. Yatziv and Sapiro [39] introduced the geodesic
distance 𝑑(𝑠, 𝑡) between two pixels 𝑠 and 𝑡 for an image 𝐼
as:

𝑑(𝑠, 𝑡) = min
Γ

∫ 1

0

∣∇𝐼 ⋅ Γ̇(𝑝)∣𝑑𝑝, (4)

where Γ denotes a path between 𝑠 to 𝑡, Γ̇(𝑝) denotes the tan-
gent of the path (curve) Γ at pixel 𝑝, and the integral mea-
sures the accumulative directional derivative at all pixels 𝑝
along the path. The pixel geodesic distance corresponds to

12101210121012121212

the shortest path in terms of image gradients, i.e., the s-
moothest curve in intensity.

The concept of pixel geodesic distance has been success-
fully applied to colorization [39], segmentation and matting
[5, 18, 12], texture removal and non-photorealistic render-
ing [13], and most recently, denoising [13, 17]. It is a
common practice to construct a graph from the image using
4-connected pixels [6] and discretize Eq. (4) to:

𝑑𝐺𝐷(𝑠, 𝑡) = min
Γ

𝑁Γ−1∑
𝑖=1

∣𝐼(Γ(𝑝𝑖+1))− 𝐼(Γ(𝑝𝑖))∣, (5)

where Γ denotes a path starting from the patch centered at
𝑠 to the patch centered at 𝑡. 𝑁Γ denotes the hops of the
path Γ. Γ(𝑝1) = 𝑠 and Γ(𝑝𝑁Γ

) = 𝑡. Dijkstra’s algorith-
m and Euclidean distance transform [39] have been used
to accelerate the search. To apply pixel geodesic distance
for image denoising, one can compute the smoothing ker-
nel with 𝑤𝐺𝐷(𝑖, 𝑗) = 𝐺𝜎(𝑑(𝑖, 𝑗)). This is often referred to
as Pixel Geodesic Path (PixelGP) denoising [17]. Howev-
er, PixelGP shares similar issues with general pixel-based
algorithms. Since PixelGP accumulates the gradients, for
images with strong noise and hence large gradients the dis-
tance measurement can be unreliable.

3.2. Patch Geodesic Distance

We extend the notion of PixelGP to patches. Specifically,
we treat each image patch as a node and define the geodesic
distance between two patches 𝑠 and 𝑡 as:

𝑑𝑝𝑎𝑡𝑐ℎ𝐺𝑃 (𝑠, 𝑡) = min
Γ

𝑁Γ−1∑
𝑖=1

∣∣𝑁𝐼(Γ(𝑝𝑖+1))−𝑁𝐼(Γ(𝑝𝑖))∣∣,
(6)

where 𝑁𝐼(𝑥) is the patch centered at 𝑥, ∣∣.∣∣ measures the
patch differences. We call the shortest path Γ between two
patches the Patch Geodesic Path (PatchGP).

Similar to PixelGP, we use PatchGP to define the s-
moothing kernel as 𝑤𝑝(𝑖, 𝑗) = 𝐺𝜎(𝑑

𝑝𝑎𝑡𝑐ℎ(𝑖, 𝑗)). As a
patch-based scheme, PatchGP generally outperforms the
pixel-based approaches (as shown in Fig. 5). However, the
brute-force implementation of PatchGP is very expensive
because weight computation requires pairwise patch com-
parisons. Our approach is to narrow down the search to a
special subset of paths.

3.3. Minimal Hop Paths (MHP)

Consider two patches centered at pixel 𝑠 and 𝑡. We define
the Minimum Hop Path (MHP) as the path with the mini-
mal number of hops connecting two nodes. An example is
illustrated in Fig. 1(a). Among all paths connecting 𝑝 and
𝑞, the diagonal red path is the corresponding MHP under 8-
connectivity. In fact, for nodes lying along the 8 directions,

p

q

(a) (b)

x1

x2

x3

x0

Figure 1. Left: The MHP between p and q (red). Right: MHPs
under 8 search directions.

0 5 10
0.75

0.8

0.85

0.9

0.95

1

fid
el

ity

window radius

clean images
sigma 5
sigma 15

(a) Patch size: 5 by 5 (b) Patch size: 7 by 7

0 5 10
0.6

0.7

0.8

0.9

1

window radius

fid
el

ity

clean images
sigma 5
sigma 15

Figure 2. Minimum Hop Paths (MHP) vs. Patch Geodesic Paths
(PatchGP). We randomly select 200 images from Berkeley image
segmentation database and add white Gaussian noise (𝜎𝑛=5 and
𝜎𝑛 = 15). For each configuration (patch size, window size, noise
variance), we find PatchGP between every pair of patches and veri-
fy if it is an MHP. The percentage of PatchGP being MHP is shown
in (a) 5×5 patch size and (b) 7×7 patch size.

the MHPs are the same as the Euclidean Line Path (ELP)
connecting the nodes.

Here is our key observation: for two relatively close
patches in a natural image, we can approximate their
PatchGP using the MHP. To illustrate this, we use
200 training images from Berkeley Image Segmentation
Database [26]. We add white Gaussian noise to the images
and test different patch sizes. For a fixed noise variance
and patch size, we first compute the ground truth PatchGPs
between all patches. We then verify if they correspond to
MHPs. In Fig 2, the Y-axis is the percentage of MHPs be-
ing PatchGPs averaged over all 200 images and the X-axis
is the spatial support (the maximum hop allowed between
the nodes).

Fig 2 illustrates that PatchGP has a high probability of
being MHP for small to medium support (window size).
The results hold for noisy images: even with noise vari-
ance 𝜎𝑛 = 15 and spatial support 7 (15×15 window), over
90% PatchGPs are MHPs, as shown in Fig 2(a) and (b).
However, this percentage goes down on clean images. This
is because PatchGP is sensitive to small perturbations. For
example, a slight inconsistency on a uniform background
may alter PatchGPs. However, that also means small we
only need to use small windows [10] where MHPs still ef-
fectively approximates PatchGPs. Nevertheless, for images
with small noise variances, the smaller window is required
for smoothing and MHP approximation is mostly reserved
(over 95% for window radius 5). we can still use them for

12111211121112131213

(a) (e) (f) (g)

(b) (c) (d)

Figure 3. Patch Geodesic Distance. (a) shows the cameraman im-
age and two central patches (5x5) we aim to denoise. For each
patch, we use a spatial support (window size) of 13×13. For each
patch within the window, we find its PatchGP to the central patch
and compute the actual path distance. (b) and (e) show the close-
up views of the two patches. (c) and (f) show the patch distance
map.(d) and (g) show the color-coded path hop maps for the cor-
responding PatchGPs.

denoising. Fig 2 also shows that patch-sizes consistent with
scene structures result in higher PatchGP-MHP consisten-
cy. In the extreme case when patch size is 1×1, PatchGP
degenerates to PixelGP where MHP is not longer consistent
with PixelGP. Since most patch-based denoising schemes
(NLM, BM3D, etc) use a large patch size, MHPs thus still
provide good approximations to PatchGPs.

Fig. 3 illustrates PatchGP between two patches in the
Cameraman image. Both patches are of size 5x5. For each
patch, we compute its PatchGP to all other patches with-
in a window of 13×13. Fig. 3 (c) and (f) show the patch
geodesic distance map with respect to (b) and (e) respective-
ly. Notice that the distance maps reflect image structures:
(c) exhibits a uniform structure where as (f) shows a verti-
cal structure. Fig. 3(d) and (g) show the number of hops in
the corresponding PatchGPs. They form concentric squares
and are nearly identical to the MHP hop maps under 4-way
connectivity.

4. Fast PatchGP Denoising

Our analysis reveals that MHPs can be used to approxi-
mate PatchGPs on noisy natural images. Finding MHPs in
a lattice graph is straightforward and the results can be pre-
computed and stored. To further reduce storage and com-
putation, we only consider MHPs along discrete directions:
if we use 8 connectivity (𝑖𝜋4 , 𝑖 ∈ {1, 2, ..., 8}), we only
compute MHPs along each direction. Consider a diagonal
MHP in Fig. 1(b), in order to denoise patch 𝑥0, we need to
compute the path distances from 𝑁(𝑥0) to patches 𝑁(𝑥1),
𝑁(𝑥2), ... 𝑁(𝑥𝑟) as:

𝑑𝑝𝑎𝑡𝑐ℎ(𝑥0, 𝑥𝑟) ≈
𝑟∑

𝑡=1

∣∣𝑁(𝑥𝑡)−𝑁(𝑥𝑡−1)∣∣. (7)

We can rewrite Eqn. (7) as:

𝑑𝑝𝑎𝑡𝑐ℎ(𝑥0, 𝑥𝑟) ≈ 𝑑𝑝(𝑥0, 𝑥𝑟−1) + ∣∣𝑁(𝑥𝑟)−𝑁(𝑥𝑟−1)∣∣.
(8)

This indicates the patch geodesic distance can be comput-
ed progressively: we can first compute 1-hop path distance
and then propagate it to 2-hop, 3-hop, and so on. Under
our direction and hop discretization, we can reformulate the
denoising filter as:

𝐼(𝑖) =
1

𝑧(𝑖)

∑
𝜃∈Θ

𝑅∑
𝑟=1

𝑤(𝑖, 𝑖𝜃,𝑟)𝐼(𝑖𝜃,𝑟), (9)

where the normalization factor 𝑧(𝑖) =
∑
𝜃∈Θ

𝑅∑
𝑟=1

𝑤(𝑖, 𝑖𝜃,𝑟).

𝑤(𝑖, 𝑖𝜃,𝑟) denotes the weight of the pixel 𝑖𝜃,𝑟.
There are two major advantages of using discretized

MHPs. First, it greatly reduces memory usage. For each
discretized direction, we only need maintain a one-hop dis-
tance value. Second, different directions can be processed
in parallel. Notice though that the downside of this ap-
proach is that it can no longer cover all patches within the
spatial support, i.e., patches that do not lie on the predefined
directions will not be used. This can potentially affect the
patch-based denoising performance as some of the missing
patches may be critical for denoising the central patch. In
reality, we use a relatively dense directional discretization
for reducing the number of missing patches. We also im-
plement a multi-scale denoising scheme to compensate for
sparse patch sampling.

Weight Threshold. The assumption that MHPs well
approximate PatchGPs generally holds as shown in Fig 3.
To properly handle the outliers, we first propose a weight
threshold scheme analogous to truncated threshold in
graph-cut. Reusing Fig 1, if 𝑁(𝑥1) is significantly differ-
ent from 𝑁(𝑥0) while 𝑁(𝑥2) is highly similar to 𝑁(𝑥0),
patch 𝑁(𝑥2) should be assigned a large weight for denois-
ing 𝑁(𝑥0). However, since we propagate the weight us-
ing Eqn. (8), our estimated 𝑑𝑝𝑎𝑡𝑐ℎ𝐺𝐷(𝑥0, 𝑥2) will be large
and 𝑁(𝑥2)’s weight will be small. In this case, the MHP
between 𝑥0 and 𝑥2 is unlikely to be the PatchGP (𝑥2 will
likely bypass 𝑥1 to connect to 𝑥0). To handle this issue, we
adopt a threshold scheme similar to the one in the graph-cut
based solutions [8]: 𝑑𝑝𝑎𝑡𝑐ℎ𝐺𝐷∗

(𝑥0, 𝑥𝑟)=

𝑚𝑎𝑥{𝑑𝑝𝑎𝑡𝑐ℎ𝐺𝐷∗
(𝑥0, 𝑥𝑟−1), ∣∣𝑁(𝑥𝑟)−𝑁(𝑥𝑟−1)∣∣}𝛼,

(10)
where we choose 𝛼=1.2 in all examples in our paper. In
Sec. 5, we show that the new distance metric is more ro-
bust in presence of strong noise. It is worth noting that B-
M3D and NLM do not suffer from this issue as they conduct
an exhaustive search although other star-shaped filters Vek-
sler [18] and Foi et al. [15] share the same issue.

To compute 1-hop patch distance ∣∣𝑁(𝑥𝑟)−𝑁(𝑥𝑟−1)∣∣,
we can either treat pixels within the patch equally or adopt
a Gaussian weighting [10]. The former (we call unifor-
m weighting) is faster as its computation is independent of
the patch size by using Integral Histogram [30]. The lat-
ter (Gaussian weighting) is more accurate but slower and

12121212121212141214

widely adopted in NLM. For all our experiments (except
for Fig. 8), we use patch size 7×7 and Gaussian weighting
with 𝜎𝑤𝑒𝑖𝑔ℎ𝑡 = 2.

Fast Multi-Scale Denoising. A common challenge
in pixel-based denoising is reducing low frequency noise:
properly handling low frequency noise requires using ultra-
large spatial support. It is not only expensive but also may
destroy image structures. Fig. 4 (c) and (e) show the de-
noising results using the PixelGP [17] vs. our fast PatchGP
respectively. Notice that the sky regions in the denoised im-
ages appear a bit splotchy.

We resolve this problem by using a coarse-to-fine de-
noising scheme. We first build a Laplacian Pyramid [11] of
the input image and denoise the top coarsest low-frequency
image in the pyramid using fast PatchGP. We then use the
result to denoise the second level image and repeat this pro-
cess until we process the original image. Specifically, we
use Haar wavelet transformation [16] to extract low- and
high- frequency components when building the Laplacian
Pyramid. The Harr wavelet transformation provides two ad-
vantages: it is faster compared with the Gaussian pyramid
and does not affect noise statistics. In all our examples, we
construct Laplacian pyramids of three levels and the overall
computational cost is slightly (1/3) higher than fast PatchG-
P.

5. Experiments

We ran comprehensive experiments for evaluating our
approaches. We first compare the performance between the
brute-force PatchGP, fast PatchGP (F-PatchGP), and fast
multi-scale PatchGP (FM-PatchGP).

Fig. 4 compares the denoising results of PixelGP [17],
PatchGP, F-PatchGP and FM-PatchGP. The noisy image (b)
is synthesized by adding Gaussian noise with variance 20.
(c, d, e, f) show the denoised results by different schemes.
We observe that all three PatchGP-based algorithms achieve
a higher PSNR than PixelGP, although PatchGP cannot re-
move noise on the sky. F-PatchGP produces a slightly more
visually pleasing result since the truncated distance metric
(10) effectively suppressed errors on uniform regions. FM-
PatchPG produces the most visually pleasing results as well
as the highest PSNR.

Next, we compare FM-PatchGP with state-of-the-art
methods, in both quality and speed. Specifically, we com-
pare FM-PatchGP against the FoE, NLM, BM3D, Pixel-
GP, and fast bilateral filters (F-BL) [38]. We use the C-
implementation of NLM [10] and F-BL [38], the Mat-
lab implementations of FOE [1] and PixelGP [17], the
BM3D kernel (already optimized using approximation s-
trategies) with Matlab wrapper [21], and finally our C-
implementation of FM-PatchGP. Notice that F-BL has two
parameters (spatial and range Gaussian variances). For each
image, we exhaust different parameters and record the result

(a) Clean image (b) Noisy image
PSNR: 20.59

(c) PixelGP
 PSNR: 27.33

(d) PatchGP
 PSNR: 27.38

(e) F-PatchGP
 PSNR: 27.96

(f) FM-PatchGP
 PSNR: 28.21

Figure 4. Quality comparison between PixelGP, PatchGP, F-
PatchGP, and FM-PatchGP. (a) and (b) show the latent and the
noisy images.

with the highest PSNR.
Fig. 5 shows the PSNR of the denoised results on eight

different images. For each image, we synthesize 6 noisy
versions by adding Gaussian noise with different variances
between 5 and 30. Each panel in Fig. 5 corresponds to a
specific image where the X-axis is the noise variance and
Y-axis the PSNR. The last panel shows the averaged PSNR
curve for all 8 images. Fig. 6 compares the visual quali-
ty, the PSNR, and the processing time of different denois-
ing algorithms on the ’man’ image (with added Gaussian
noise 𝜎𝑛=15). The last panel of Fig. 5 reveals that our
FM-PatchGP (curve in red) achieves nearly identical per-
formance to FoE and NLM but consistently outperforms F-
BL and PixelGP. BM3D is consistently a full dB better than
FM-PatchGP and the rest. However, since FM-PatchGP is
significantly faster, it can be run with multiple iterations to
achieve comparable output quality.

Fig 9 compares the processing speed (mega-pixels/sec)
w.r.t the image resolution using NLM, BM3D, F-BL and our
FM-PatchGP with uniform and Gaussian weighting. All al-
gorithms are tested on a Thinkpad X200 laptop with 2.6
GHz CPU and 2GB memory as a single-thread program.
We downsample a clean image of resolution 4032×6048
from [22] to different resolutions and then add Gaussian
noise 𝜎𝑛 = 15. FM-PatchGP, uniform or Gaussian weight-
ing, is significantly faster than BM3D and NLM at all res-

12131213121312151215

5 10 15 20 25 30
15

20

25

30

35

40

45

Noise level (Standard Deviation)

P
S

N
R

Barbara

noisy image
NLM
FOE
PixelGP
BM3D
FM−PatchGP
F−BL

5 10 15 20 25 30
15

20

25

30

35

40

45

Noise level (Standard Deviation)

P
S

N
R

Baboon

noisy image
NLM
FOE
PixelGP
BM3D
FM−PatchGP
F−BL

5 10 15 20 25 30
15

20

25

30

35

40

45

Noise level (Standard Deviation)

P
S

N
R

Man

noisy image
NLM
FOE
PixelGP
BM3D
FM−PatchGP
F−BL

5 10 15 20 25 30
15

20

25

30

35

40

45

Noise level (Standard Deviation)

P
S

N
R

Boat

noisy image
NLM
FOE
PixelGP
BM3D
FM−PatchGP
F−BL

5 10 15 20 25 30
15

20

25

30

35

40

45

Noise level (Standard Deviation)

P
S

N
R

Cameraman

noisy image
NLM
FOE
PixelGP
BM3D
FM−PatchGP
F−BL

5 10 15 20 25 30
15

20

25

30

35

40

45

Noise level (Standard Deviation)

P
S

N
R

Peppers

noisy image
NLM
FOE
PixelGP
BM3D
FM−PatchGP
F−BL

5 10 15 20 25 30
15

20

25

30

35

40

45

Noise level (Standard Deviation)

P
S

N
R

Hill

noisy image
NLM
FOE
PixelGP
BM3D
FM−PatchGP
F−BL

5 10 15 20 25 30
15

20

25

30

35

40

45

Noise level (Standard Deviation)

P
S

N
R

Lena

noisy image
NLM
FOE
PixelGP
BM3D
FM−PatchGP
F−BL

5 10 15 20 25 30

20

25

30

35

40

Noise level (Standard Deviation)

P
S

N
R

Averaged PSNR curves

noisy image
NLM
FOE
PixelGP
BM3D
FM−PatchGP
F−BL

Figure 5. Quality comparisons on denoising quality using FM-PatchGP and state-of-the-art algorithms: NLM, FOE, BM3D, PixelGP, and
F-BL. Gaussian noise at different levels (𝜎𝑛 ranges from 5 to 30) is added 8 images.

olutions and is about 10-50% faster than F-BL. Although
beyond the scope of this paper, FM-PatchGP can be further
accelerated via parallel processing. Eq. (9) shows that our
algorithm can independently compute MHPs at different di-
rections. For example, we can assign a different thread to
each direction and utilize CPU-related vector operators such
as the Intel SSE.

Fig. 7 compares FM-PatchGP, NLM, and BM3D on a
flower image of (190×190). We use 3 different noise lev-
els (𝜎𝑛 from 10 to 30) and patch size 7×7. FM-PatchGP
produces competitive results to BM3D and NLM but at a
much faster speed (0.03 sec. vs. 0.59 sec. vs. 1.60 sec.).
Our experiments suggest that FM-PatchGP can be poten-
tially used for real-time denoising on mobile devices with
relatively low computational power.

Finally, we compare FM-PatchGP with two commercial
denoising tools “Neat Image” [2] and “Noise Ninja” [3].
Both tools automatically estimate the noise profile to ac-

count for intensity-dependent noise variances [25]. We then
use their identified ’uniform’ regions to estimate noise vari-
ance 𝜎𝑛 to determine the window size and then apply FM-
PatchGP with uniform weighting. Figure 8 compares the
denoised results on an input noisy image (600×600) cap-
tured a Canon 400D with ISO 1600 in low light. Our
FM-PatchGP result achieve comparable quality as the t-
wo commercial tools. For the computational time (on s-
ingle channel), Noise Ninja takes 0.26s and FM-PatchGP
takes 0.33s. Neat Image does not report the processing
time although it performs at about the same speed. No-
tice though that FM-PatchGP is currently implemented as
a single-thread program without any acceleration whereas
Noise Ninja has been optimized by exploiting advanced fea-
tures on the Pentium 4 and G5 CPU processors as shown in
its User’s Guide. The results illustrate the significant poten-
tial of FM-PatchGP. Additional comparisons can be found
at http://graphics.cis.udel.edu/denoise.

12141214121412161216

Noisy image

PSNR: 24.92

BM3D

PSNR: 29.29

Time: 1.72s

PixelGP

PSNR: 28.24

Time: 10.2s

FOE

PSNR: 28.94

Time:13min

NLM

PSNR: 28.86

Time: 1.65s

FM-PatchGP

PSNR: 28.94

Time: 0.07s

Figure 6. Denoising results on the ’man’ image with Gaussian
noise 𝜎𝑛 =15. Our result is comparable state-of-the-art but is one
to three orders of magnitude faster.

6. Limitations and Future work

We have presented a new patch-based image denois-
ing algorithm based on the observation that patch geodesic
paths (PatchGP) can be approximated by the minimal hop
paths (MHP). Comprehensive experiments on a broad range
of natural images demonstrate that our new fast multi-scale
PatchGP or FM-PatchGP is comparable to or outperforms
state-of-the-art algorithms in terms of quality, and is orders
of magnitude faster. We plan to compare FM-PatchGP with
recent patch-based techniques [20, 41].

Similar to most denoising schemes, FM-PatchGP re-
quires using good parameters, e.g., the patch size, the win-
dow size, the discretized search directions, etc. Similar to
BM3D and NLM, we usually fix the search directions and
patch sizes and exhaust different window sizes. An impor-
tant future direction thus is to develop automatic parame-
ter tuning methods by exploring image statistics of natural
images, e.g., the noise statistics to model the Noise Lev-
el Function (NLF) [25]. In addition, our evaluations by
far have been restricted to Gaussian noise. Recent studies
have shown that patch-based schemes can potentially han-
dle Poisson noise. For example, FM-PatchGP can be used
to quickly locate similar patches for conducting PCA-based
denoising [40]. Finally, in our solution, we separately de-
noise each color channel and then combine the three chan-

noise level 10 noise level 20 noise level 30

N
LM

FM
-P

a
tc

h
G

P
B

M
3

D
N

o
is

y
im

a
g

e

 PSNR: 32.88

 PSNR: 33.14

 PSNR: 33.60 PSNR: 29.93
 Time: 1.60 sec.

 PSNR: 29.46
 Time: 0.03 sec.

 PSNR: 29.03
 Time: 0.59 sec.

 PSNR: 27.83

 PSNR: 27.24

 PSNR: 26.66

Figure 7. Quality and time comparisons between NLM, FM-
PatchGP and BM3D on a high resolution image. The noise level
𝜎𝑛 ranges from 10 to 30. The processing time, independent of the
noise level, are shown in the middle column.

Raw Image (ISO: 1600) FM-PatchGPNoise-ninjaNeat ImageRaw

Figure 8. Comparisons between FM-PatchGP and two commercial
denoising tools Noise Ninja [3] and Neat Image [2] on real images.

nels. In the future, we plan to investigate efficient multi-
channel image processing scheme as shown [37] by ex-
ploiting color correlations.

Acknowledgement. This project was partially supported by
the National Science Foundation (US) under grants IIS-CAREER-
0845268 and IIS-RI-1016395; NSFC China (No:61273258,
61105001, 61075012); Ph.D. Programs Foundation of Ministry of
Education of China (No.20120073110018) and Committee of Sci-
ence and technology, Shanghai (No:11530700200). Most of this
work was done while the first author was a visiting scholar at the
University of Delaware.

12151215121512171217

1/16 M 1/4 M 1 M 4 M 16 M

−8

−6

−4

−2

0

2

#pixels

S
pe

ed
: l

og
(M

P
ix

/S
ec

.)

BM3D
NLM
F−BL
Ours(Gaussian)
Ours(Uniform)

(a) (b)

Figure 9. Processing speed comparisons between: BM3D, NLM,
fast bilateral filter (F-BL) [38], and our FM-PatchGP with uniform
and Gaussian weighting at different image resolutions.

References

[1] http://www.gris.informatik.tudarmstadt.de/sroth/research/foe.
[2] http://www.neatimage.com.
[3] http://www.picturecode.com.
[4] A. Adams, N. Gelfand, J. Dolson, and M. Levoy. Gaus-

sian kd-trees for fast high-dimensional filtering. ACM Trans.
Graph., 28:21:1–21:12, 2009.

[5] X. Bai and G. Sapiro. A geodesic framework for fast interac-
tive image and video segmentation and matting. In ICCV’07.

[6] X. Bai and G. Sapiro. Geodesic matting: A framework for
fast interactive image and video segmentation and matting.
Int. J. Comput. Vision, 82(2):113–132, Apr. 2009.

[7] D. Barash. A fundamental relationship between bilateral fil-
tering, adaptive smoothing, and the nonlinear diffusion equa-
tion. IEEE Trans. PAMI., 24(6):844–847, 2002.

[8] Y. Y. Boykov and M.-P. Jolly. Interactive graph cuts for op-
timal boundary & region segmentation of objects in n-d im-
ages. In ICCV, 2001.

[9] T. Brox, O. Kleinschmidt, and D. Cremers. Efficient nonlo-
cal means for denoising of textural patterns. IEEE Trans. on
Imag. Proc., 17(7):1083–1092, 2008.

[10] A. Buades and B. Coll. A non-local algorithm for image
denoising. In CVPR, 2005.

[11] P. J. Burt and E. H. Adelson. Readings in computer vision:
issues, problems, principles, and paradigms. 1987.

[12] A. Criminisi, T. Sharp, and A. Blake. Geos: Geodesic image
segmentation. In ECCV, 2008.

[13] A. Criminisi, T. Sharp, C. Rother, and P. P’erez. Geodesic
image and video editing. ACM Trans. Graph., 29, 2010.

[14] F. Durand and J. Dorsey. Fast bilateral filtering for the dis-
play of high-dynamic-range images. 2002.

[15] A. Foi, V. Katkovnik, and K. Egiazarian. Pointwise shape-
adaptive dct for high-quality denoising and deblocking of
grayscale and color images, 2006.

[16] R. C. Gonzalez and R. E. Woods. Digital Image Processing.
Prentice-Hall, Inc., USA, 2006.

[17] J. Grazzini and P. Soille. Edge-preserving smoothing using
a similarity measure in adaptive geodesic neighbourhoods.
Pattern Recogn., 42(10):2306–2316, 2009.

[18] V. Gulshan, C. Rother, A. Criminisi, A. Blake, and A. Zis-
serman. Geodesic star convexity for interactive image seg-
mentation. In CVPR, 2010.

[19] K. He and J. Sun. Computing nearest-neighbor fields via
propagation-assisted kd-trees. In CVPR, 2012.

[20] J. Jancsary, S. Nowozin, and C. Rother. Loss-specific train-
ing of non-parametric image restoration models: A new state
of the art. In ECCV, pages 112–125, 2012.

[21] V. K. Kostadin Dabov, Alessandro Foi and K. Egiazarian.
Image denoising with block-matching and 3d filtering. In
Proc. SPIE 6064,606414 (2006), pages 454–467.

[22] D. Krishnan and R. Fergus. Fast image deconvolution using
hyper-laplacian priors. In NIPS. 2009.

[23] N. Kumar, L. Zhang, and S. Nayar. What is a good nearest
neighbors algorithm for finding similar patches in images?
In ECCV, 2008.

[24] A. Levin, B. Nadler, F. Durand, and W. T. Freeman. Patch
complexity, finite pixel correlations and optimal denoising.
In ECCV, 2012.

[25] C. Liu, W. T. Freeman, R. Szeliski, and S. B. Kang. Noise
estimation from a single image. In CVPR, 2006.

[26] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database
of human segmented natural images and its application to e-
valuating segmentation algorithms and measuring ecological
statistics. In ICCV, 2001.

[27] S. Paris and F. Durand. A fast approximation of the bilateral
filter using a signal processing approach. IJCV, 81, 2006.

[28] P. Perona and J. Malik. Scale-space and edge detection using
anisotropic diffusion. IEEE Trans. PAMI., 1990.

[29] G. A. Pierre Charbonnier, Laure Blanc-Feraud and M. Bar-
laud. Deterministic edge-preserving regularization in com-
puted imaging. IEEE Trans. on Imag. Proc., 6(6), 1997.

[30] F. Porikli. Constant time O(1) bilateral filtering. In CVPR,
2008.

[31] J. Portilla, V. Strela, M. J. Wainwright, and E. P. Simoncelli.
Image denoising using scale mixtures of Gaussians in the
wavelet domain. IEEE Trans. Imag. Proc., 2003.

[32] S. Roth and M. J. Black. Fields of experts: A framework for
learning image priors. In CVPR, pages 860–867, 2005.

[33] L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total varia-
tion based noise removal algorithms. Physica D: Nonlinear
Phenomena, 60:259 – 268, 1992.

[34] C. Tomasi and R. Manduchi. Bilateral filtering for gray and
color images. In ICCV, 1998.

[35] B. Weiss. Fast median and bilateral filtering. ACM Trans.
Graph., 25(3):519–526, July 2006.

[36] Y. Weiss and W. T. Freeman. What makes a good model of
natural images. In CVPR, pages 1–8, 2007.

[37] Q. Yang. Recursive bilateral filtering. In ECCV, 2012.
[38] Q. Yang, K.-H. Tan, and N. Ahuja. Real-time o(1) bilateral

filtering. In CVPR, pages 557–564, 2009.
[39] L. Yatziv, L. Yatziv, G. Sapiro, and G. Sapiro. Fast image

and video colorization using chrominance blending. IEEE
Trans. on Imag. Proc., 15, 2006.

[40] L. Zhang, W. Dong, D. Zhang, and G. Shi. Two-stage image
denoising by principal component analysis with local pixel
grouping. Pattern Recogn., 43(4):1531–1549, 2010.

[41] D. Zoran and Y. Weiss. From learning models of natural
image patches to whole image restoration. In ICCV, 2011.

12161216121612181218

