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1.1. GelSight Overview 
The GelSight sensor is a novel tactile sensor to capture 

surface geometry through the use of a gel and a camera that 
gives a “sight” with computer vision algorithms. It consists 
of a piece of clear elastomer coated with a reflective 
membrane. When an object is pressed against the 
membrane, the membrane deforms to take the shape of the 
object’s surface, which is then recorded by a camera under 
illumination from LEDs located in different directions. A 
3-dimensional (3D) height map of the surface can then be 
reconstructed with a photometric stereo algorithm [1]. Fig. 
2 illustrates the GelSight principle.  

 

 
   (a)        (b)       (c) 

         
   (d)       (e)        (f) 
 
Figure 2 [1]: GelSight illustration. (a) A cookie is pressed against 
the membrane of an elastomer block. (b) The membrane is 
deformed to the shape of the cookie surface. (c) The shape of the 
cookie surface is measured using photometric stereo and rendered 
at a novel viewpoint. (d), (e), and (f) are the box, portable and 
finger configurations of the GelSight devices.  
 

The GelSight sensor has many important properties that 
make it attractive for use in tactile sensing. The sensor is 
made with inexpensive materials, and it can give spatial 
resolution as small as 2 microns. In addition, the sensor is 
not affected by the optical characteristics of the materials 
being measured as the membrane supplies its own 
bidirectional reflectance distribution function (BRDF). 
This allows us to capture a wide range of material surfaces 
no matter whether they are matte, glossy, or transparent 
(see Fig. 1). Last but not least, with compliant properties of 
the gel sensor, GelSight may be used to measure the 
roughness and texture of a touched surface, the pressure 
distribution across the contact region, as well as shear and 
slip between the sensor and object in contact. All these 
properties make GelSight a very promising candidate to be 
used in robotic fingertips for tactile sensing.  

Height maps obtained using GelSight have some special 
characteristics. To some extent, GelSight images are 
sensitive to the amount of force applied. Even for the same 
surface, with slightly different forces, the gray-scale 
images can have different gray levels due to different levels 
of deformations of the gel and/or texture surface. 

Furthermore, the relative orientation between the gel and 
the texture can be different for each measurement. Those 
two characteristics make it desirable to have a texture 
classification algorithm that is invariant to both gray scales 
and rotation.  We next give an overview of texture 
classification techniques and discuss what may be used in 
recognizing tactile textures with the use of GelSight. 

1.2. Texture Classification Overview 
Texture images are generally spatially homogeneous and 

consist of repeated elements, often with some random 
variations (e.g., random positions, orientations, and/or 
colors). There are generally three types of methods adopted 
for rotation invariant texture classification: statistical, 
model-based and structural methods. This work focuses on 
the statistical methods due to the statistical properties of 
textures. In statistical methods, the feature distribution 
method is among the most popular. Pietikainen et al. [10] 
described texture images using features like 
center-symmetric auto-correlation, local binary pattern 
(LBP), and gray-level difference, which are locally 
invariant to rotation. They propose a feature distribution 
method based on the G statistics to test those features for 
rotation-invariant texture analysis. Ojala et al. [2] extended 
the work by using multiresolution gray-scale and rotation 
invariant LBP at circular neighborhoods of different radius 
and neighbor density, and achieved a relatively high 
classification rate. This had then become the 
state-of-the-art method, based on which a number of 
improved texture classification algorithms were developed. 
Among those are LBP histogram Fourier features 
(LBP-HF) [6], LBP variance (LBPV) with global matching 
[7], dominant LBP (DLBP) [8]. Yet one common issue of 
all these LBP-based methods is that they mostly deal with 
microstructures of texture images by considering patterns 
within a small neighborhood (e.g., up to 3 pixels away) but 
not macrostructures with a large neighborhood.  

In this work, we propose a multi-scale local binary 
pattern (MLBP) operator that can capture both micro- and 
macrostructures with the use of pyramid levels. Also, we 
discuss the Hellinger similarity metric for classification. 
Section 2 describes the traditional LBP, followed by MLBP 
in Section 3. Section 4 presents the experiment results on 
Outex databases and GelSight texture images. Section 5 is 
the conclusion and future work. 

2. Local Binary Pattern 
LBP [2] is a texture operator for gray-scale and rotation 

invariant texture classification. It characterizes local 
structure of the texture image by considering a small 
circularly symmetric neighbor set of P members on a circle 
of radius R. The neighborhood is thresholded at the gray 
value of the center pixel into a binary pattern, which is then 
weighted by a binomial factor and summed to obtain the 
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LBP value: 
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������ is the LBP value, �� is the gray value of the center 
pixel of the local neighborhood, ���� � �� � � � �� 
correspond to the gray values of the P equally spaced pixels 
on a circle of radius !��! " �� [2]. If the coordinates of �� 
are (0,0), then the coordinates of �  are #! $ %&
 '()� * �
! $ 
+, '()� *-. The gray values of neighbors that do not fall 
exactly in the center of pixels are estimated by 
interpolation. Fig. 3 shows the neighborhoods with 
different P and R values.  
 

� � �
(a)          (b) 

 
Figure 3 [2]: Illustration of local binary patterns with P equally 
distributed members on a circular neighborhood of radius R. (a) P 
= 4, R = 1.  ��  is the gray value of the center pixel of the local 
neighborhood, ���� � �� � � � ��  correspond to the gray 
values of the P equally spaced pixels on a circle of radius 
!��! " ��. (b) P = 8, R = 1.  
  

Signed differences � � �� are not affected by changes 
in monotonic changes in gray values of pixels; hence LBP 
is invariant to monotonic gray-scale shifts.  

Rotation invariance is achieved by assigning a unique 
identifier ������./  to each rotation-invariant local binary 
pattern, i.e., 

 
������./ � 0123!4!�������� +����5���+ � ����  � � � �6� 

where ROR(x,i) performs a circular bit-wise right shift on 
the P-bit number x i times. The superscript ri denotes 
rotation invariance. 
 Furthermore, Ojala et al. [2] defined uniformity measure 
U as the number of spatial transitions (bitwise 0/1 or 1/0 
changes) in the pattern, and designated “uniform” patterns 
as those with U not more than 2. The rotation invariant 

“uniform” LBP operator ������./7( is defined as: 
 

 ������./7( � 89 
�� � �������� ���+:�;�������� < �
� = ��������������&>?@AB+
@�  

  (4)
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��� � ���5

=	C
�� � ��� � 
���� � ���C
���
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  (5)
and the superscript riu2 reflects the rotation invariance 
“uniform” pattern with U not more than 2. In practice, 
������./7(  has P + 2 distinct output values. The texture 
feature employed is the histogram of the operator outputs 
accumulated over a texture sample. ������./7( is invariant to 
gray scales and rotation, making it a potentially good 
candidate for classifying GelSight texture images.  

3. Multi-scale Local Binary Pattern  
The “uniform” patterns in LBP are indications for 

structures such as spots, flat areas, and edges of varying 
positive and negative curvatures. The choice of P and R 
affects directly the size of the structures under 
investigation. Intuitively, the larger the R is, the larger the 
size of the patterns examined; a small R corresponds to 
microstructures and a large R macrostructures. As 
discussed in [2], however, P and R are closely related and 
practically limited by requirements of efficient 
implementations. Firstly, on one hand, for a given R, we 
want a large P to reduce the quantization level of the 
neighborhood circle which is determined by DE�FG�. On 
the other hand, circular neighborhood for a given R 
contains a limited number of pixels (e.g., 8 for R = 1), 
which sets an upper limit for P in order to avoid redundancy 
in calculating the LBP value. A sensible relationship 
between P and R is that P = 8R. Secondly, an efficient 
implementation with a lookup table of �� elements sets an 
upper limit to P for real-time applications [2]. For example, 
with (P,R) = (32,4), the size of the lookup table for ������./7( 
can be up to 4 Gigabytes which is quite big and it becomes 
slow to find a particular match of the LBP value in the 
lookup table. This may limit the potential application of the 
algorithm for real-time implementations. For the above two 
reasons, Ojala et al. [2] only considered (P,R) values of 
(8,1), (16,2) and (24,3). However, this limits the 
capabilities of using macrostructures with R > 3 as texture 
features with larger P and R. In fact, many texture images in 
the real world may contain similar microstructures but 
different macrostructures. Fig. 4 shows an example of two 
visually very different textures that have similar 
microstructures but very different macrostructures.  

  (3)
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(a)           
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Figure 4: Illustration of two textures with si
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3.2. Similarity Metric 
For histogram features, Arandjelovic et al. [4] recently 

proposed that the Euclidean distance measure often yields 
inferior performance compared to using measures such as 
Hellinger. In this work, we used Hellinger distance as the 
similarity metric. The Hellinger kernel, or Bhattacharyya 
coefficient [5], for two L1 normalized histograms, x and y, 
is defined as: 

 �R�S� T� � 	U�/V/
I

/��
 (8)

where 9 �/ � �I/��  with �/ � � , and 9 V/ � �I/��  with 
V/ � �.  

It was shown in [4] that after the following two steps, 
comparing Euclidean distances of the resulting vectors is 
equivalent to comparing Hellinger distances of the original 
vectors: (i) L1 normalize the feature vector so that 
9 �/ � �I/��  with �/ � �; (ii) square root each element �/. 
This is because the Euclidean distance can then be 
expressed as: 

 
WX�YS�UT�( � ZYS � UTZ(

(
 (9)

 
�������������������������� � � ��R�S� T�  
 
�������������������������� �[�S� T�( (10)

 
where [�S� T� � U� � �R�S� T� is the Hellinger distance. 
In this way, we have the flexibility to apply many readily 
available built-in functions in various image processing 
software such as MATLAB. The smaller the Hellinger 
distance, the more similar the two histograms or feature 
vectors are. 

4. Experiments 
Experiments were done on both Outex databases [5] and 

GelSight images to test the performance of the MLBP 
operator. The Outex databases contain 2D texture images 
that are used to compare performance of MLBP with that of 
other methods. The GelSight images are of real interest for 
tactile sensing and are used to validate the performance of 
MLBP. Here we convert GelSight 3D height maps to 2D 
gray images by using brightness levels to represent the 
height information. While there is a clear distinction 
between 2D visual textures such as those in the Outex 
databases and the 3D surface textures in GelSight, the basic 
principle of texture classification remains the same.  

4.1. Experiment on Outex Databases 
The Outex database is a publicly available framework for 

experimental evaluation of texture analysis algorithms [5]. 
There are a number of test suites available. We are 

particularly interested in the following two that are most 
popular for evaluating texture classification algorithms in 
terms of invariance to gray scales and rotation: 

1. Test suite Outex_TC_00010 (TC10): There are 24 
textures in total, and each texture contains 180 samples at 
nine rotation angles (�F, \F, ��F, �\F, D�F, O\F, E�F, ]\F, 
and ^�F). Each sample has dimension ��P� _ ���P pixels. 
Fig. 5 shows the 24 textures at angle �F. The classifier is 
trained with the reference textures (20 samples of 
illuminant “inca” and angle �F in each class), while the 
other 160 samples of the same illuminant but the other eight 
rotation angles in each texture class, are used for testing the 
classifier. In this suite, there are 480 training samples and 
3,840 testing samples in total.  

 

 
Figure 5: ��P� _ ���P  samples of the 24 textures in 
Outex_TC_00010 and Outex_TC_00012. 

 
2. Test suite Outex_TC_00012 (TC12): The classifier 

is trained with the reference textures (20 samples of 
illuminant “inca” and angle �F in each class) and tested 
with all samples captured using illuminant “tl84” and 
“horizon”. In each problem, there are 480 training samples 
and 4,320 testing samples.  

Our goal is to maximize the classification rate, defined as 
the ratio of the number of correctly classified samples to the 
total number of samples for classification. First, we find the 
MLBP feature vector as in Eqn. (6) for each training 
sample, L1 normalize it and square root each element. For a 
given testing sample, we do the same operation and find its 
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3 nearest neighbors among the training samples using 
Euclidean distance measure. Remember from Eqn. (10) 
that equivalently we are using Hellinger distance metric on 
the MLBP. Among the 3 nearest neighbors found, if at least 
two of them belong to the same class, we output that class 
as the class of the testing sample. If the 3 nearest neighbors 
belong to 3 different classes, then we output the class of the 
nearest neighbor as the class of the testing sample. We use 
the same pair of (P,R) = (16,2) at n = 4 different pyramid 
levels for this experiment. 
 
Table 1: Correct classification rates (%) of different methods, with 
the highest rate of each column highlighted in bold. Note that 
(P,R) = (16,2), and n = 4.  
 

 TC10 
“inca” 

TC12 
“tl84” 

TC12 
“horizon” 

`abc�defg( 96.10 88.80 83.40 
`abc�defg(Ghijc�d 97.70 87.30 86.40 

LBP-HF 97.97 91.50 87.66 
`abhc�dg( klmn 97.76 95.39 95.57 

o`ab 99.10 93.20 90.40 
ljP 92.50 90.90 91.10 

MLBP 99.17 98.91 98.22 
 

Table 1 shows the correct classification rate using 
different methods by comparing MLBP with 6 other 
classical texture classification algorithms: `abc�defg( [2], 
`abc�defg(Ghijc�d [2], LBP-HF [6], LBPV with global 
matching (`abhc�dg(klmn) [7], dominant LBP (DLBP) [8], 
and ljP  [9]. LBP-HF, `abhc�dg( klmn , and DLBP are 
improved versions of LBP, and their best performances 
among all (P,R) pairs used by the authors are listed here for 
comparison. MR8 is the state-of-the-art statistical 
algorithm for texture classification.  

From Table 1 it can be seen that for all TC10 and TC12 
databases under different illuminations, MLBP achieves 
the best classification rates among all 7 methods compared 
and is most invariant to different illuminations.  In 
particular, for the TC10 database, MLBP increases the rate 
to 99.17% from 96.10% of `abc�defg(. For the TC12 “tl84” 
and “horizon” databases, MLBP increases the rate by 
10.11% and 14.82% respectively, compared to `abc�defg( . 
This shows that the MLBP operator is most invariant to 
rotations under the same illuminant. Furthermore, when we 
compare the performance of MLBP for TC10 and TC12 
under 3 different illuminants, we see that the classification 
rate is very stable (98.22% ~ 99.17%) as compared to other 
methods such as DLBP. This means that MLBP is also 
invariant to gray scales to a large extent. Nevertheless, 
when the illumination is not uniform, which is often the 
case in real-world conditions, all the above methods may 
not perform well simply due to the fact that shadows or 

illuminants now become part of the textures. Hence it 
becomes beneficial for us to use GelSight height images 
combined with MLBP to classify those textures.  

4.2. Experiment on GelSight Images 
We obtained 40 classes of GelSight texture images from 

the GelSight portable device (Fig. 2(e)) using the 
techniques described in [1]. Each class consists of 6 texture 
images at random orientations and with dimensions 
OP� _ EO�  pixels. Each image is then cropped to 4 
non-overlapping samples of dimension ��� _ ��� pixels 
at the center of the image, with 960 samples in total.  

 

 
Figure 6: GelSight texture database with 40 different texture 
classes, comprised of, from left to right and up to down, 14 
fabrics, 13 foams, 3 tissue papers, 7 sandpapers, 1 plastic and 2 
wood textures.  

 
The actual images obtained from GelSight are height 

maps. We convert them to 2D images with brightness of 
pixels indicating the height levels: the brighter the pixel in 
the corresponding 2D image, the larger the height is. Fig. 6 
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shows samples of the 40 texture classes. Numbered from 
left to right and up to down, the surfaces are 14 fabrics, 13 
foams, 3 napkins, 7 sandpapers, 1 plastic and 2 woods. 
Note that the database contains some really similar 
textures, such as textures 1 and 2, 17 and 19, 15, 16, 18, and 
25, etc., which makes the classification task challenging. 
Among the 24 samples for each texture class, some are used 
as the training samples and the rest as testing samples. 
Table 2 shows the correct classification rate for different 
numbers of training and testing samples. Here we use n = 4 
pyramid levels.  
 
Table 2: Correct classification rate (%) of MLBP for different 
numbers of training samples with the highest rate highlighted in 
bold.  
 

Number of 
training samples 

per texture 

MLBP 
(P,R) = (16,2) 

MLBP 
(P,R) = (8,1) 

8 99.22 98.12 
12 99.79 98.96 
16 99.69 99.38 

 
It can be seen that among all the different settings, 

MLBP with (P,R) = (16,2) and 12 training samples can give 
the best performance of 99.79% with only one sample 
misclassified out of 480 testing samples. As the number of 
training samples increases, the correct classification rate is 
expected to increase as well, as there are more samples to 
be compared with. But the classification speed may become 
to decrease. In practice, we will find a compromise between 
the number of training samples used and speed especially 
when the classification is performed in real time, such as in 
the case of robotic tactile sensing. Also, we may use 
different (P,R) pairs for different tasks.  

5. Conclusion 
Tactile sensing is an important but challenging area 

for robotics. With the compliant properties of gel 
elastomers that mimic human fingers, GelSight is 
a promising candidate for tactile sensing and 
material perception. This work focuses on the classification 
of surface textures, where the texture data is based on 
height maps attained by touching a surface with a GelSight 
sensor. We adopted techniques based on local binary 
patterns (LBP). Conventional LBP and improved versions 
such as LBP-HF and DLBP mainly look at microstructures 
of textures and overlook the macrostructures that may 
be important distinguishing features for different textures. 
In this work, we presented a novel multi-scale 
operator, MLBP, that takes into consideration both 
microstructures and macrostructures for feature extraction. 
We also adopted the Hellinger distance as a similarity 
metric. To compare our algorithm with current techniques 
in the visual texture literature, we used the Outex 

databases. MLBP performed the best among several 
classical methods for texture classification. We also built a 
database of GelSight surface textures, with 40 classes of 
different materials, and achieved a classification rate as 
high as 99.79%. Although the database is small, the high 
classification rate indicates that our system is well suited to 
the task of recognizing high-resolution surface textures, 
and may help to deliver a rich form of information for 
robotics. 
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