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Abstract

In this paper we revisit diffusion processes on affinity
graphs for capturing the intrinsic manifold structure de-
fined by pairwise affinity matrices. Such diffusion processes
have already proved the ability to significantly improve sub-
sequent applications like retrieval. We give a thorough
overview of the state-of-the-art in this field and discuss ob-
vious similarities and differences. Based on our observa-
tions, we are then able to derive a generic framework for
diffusion processes in the scope of retrieval applications,
where the related work represents specific instances of our
generic formulation. We evaluate our framework on sev-
eral retrieval tasks and are able to derive algorithms that
e. g. achieve a 100% bullseye score on the popular MPEG7
shape retrieval data set.

1. Introduction
Retrieving the most similar instances to a provided query

element, from a potentially large database, is an important

field of research in computer vision with many applications

like image search or database retrieval. Traditionally, this is

based on analyzing pairwise affinity values, which measure

the similarity between two elements. The affinity values are

then used to rank the most similar elements first, where ob-

viously performance is mainly defined by the provided pair-

wise measures. Such a basic retrieval approach has the main

limitation that the structure of the underlying data manifold

is completely ignored. For this reason, recently there was a

growing interest in providing context sensitive similarities,

where the derived measures exploit the context between all

elements of the database to improve retrieval scores. In gen-

eral, all these methods have in common, that they aim at

capturing the geometry of the underlying manifold.

Most methods in this field follow the same principle.

First, the manifold, defined by the provided affinity matrix,

is interpreted as a weighted graph, where each element is

represented by a node, and edges connect all nodes with cor-

responding edge weights proportional to the pairwise affin-

ity values. Then the pairwise affinities are re-evaluated in

the context of all other elements, by diffusing the similar-

ity values through the graph. The most common diffusion

processes are based on random walks, where a transition

matrix defines probabilities for walking from one node to

a neighboring one, which are fixed proportional to the pro-

vided affinities. By repeatedly making random walk steps

on the graph, affinities are spread on the manifold, which in

turn improves the obtainable retrieval scores.

Let us consider a toy example to illustrate the useful-

ness of such diffusion processes for retrieval tasks. Figure 1

shows a toy pattern, where two query points are defined,

and as the scope of retrieval is to return the most similar ex-

amples from the database, all other elements are labeled ac-

cording to the larger affinity to one of the two query points.

As can be seen without diffusion the underlying manifold

is not considered and retrieval performance is insufficient.

In comparison, after diffusing the similarities through the

manifold and capturing the intrinsic global manifold struc-

ture, we get significantly improved retrieval results.

In general, diffusion processes iteratively update the pro-

vided affinity matrices, until some kind of convergence is

achieved. Nevertheless, many approaches have a closed-

form solution, where one can directly calculate the result

without an iterative process. Unfortunately, closed form so-

lutions require complex operations, like calculating the in-

verse of huge matrices, which makes them impracticable for

large-scale retrieval applications. Therefore, in this paper

we mainly focus on iterative diffusion processes, where we

further speed up the process, by sparsifying the graph struc-

ture, e. g. by considering graphs of a fixed topology like a

k-nearest neighbor graph. Diffusion is then constrained to

the newly obtained graph representation.

To summarize, diffusion processes have shown to be an

indispensable tool for improving retrieval performance. In

this paper, we first aim at providing a thorough overview

of the state-of-the-art in this field in Section 2, where we

highlight and discuss similarities and differences between

related work. Additionally, we outline relations to a game

theoretical process and derive a novel formulation for diffu-
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Figure 1: Illustration of usefulness of diffusion processes

for retrieval. Affinities before (left) and after (right) the dif-

fusion are used to assign each element to the highlighted

query samples according to their pairwise affinities. As can

be seen, pairwise affinities alone are not sufficient to capture

the intrinsic structure of the data manifold. Applying a dif-

fusion process spreads affinities and allows to significantly

improve retrieval performance (best viewed in color).

sion based on evolutionary dynamics. Finally, it turns out,

that all these methods can be summarized into one, generic

diffusion framework, which we describe in Section 3. Re-

lated work represents specific instances of our generic defi-

nition and this allows us to propose several new algorithms,

by simply combining the most promising ideas of the re-

lated papers. We finally provide an evaluation, focusing

on highlighting the ideas that have the highest influence on

the retrieval scores. In such a way, we are able to derive a

formulation that e. g. obtains a 100% bullseye score on the

popular MPEG7 data set, as it is shown in Section 4.

2. Related Work
We start by reviewing the state-of-the art in the field of

retrieval, with a specific focus on methods based on diffu-

sion processes. Diffusion processes in general start from a

provided pairwise N × N affinity matrix A, which relates

N different elements to each other. First step, is to inter-

pret the matrix A as a graph G = (V,E), consisting of N
nodes vi ∈ V , and edges eij ∈ E that link nodes to each

other, fixing the edge weights to the provided affinity val-

ues Aij . Diffusion processes then spread the affinity values

through the entire graph, based on the defined edge weights.

This process is interpretable as a random walk on the graph,

where a so-called transition matrix defines probabilities for

walking from one node to a neighboring node. Instead of

tracking where an individual random walk goes to, usually

the probability distribution over vertices after a certain num-

ber of steps is of interest. As we will see in the following

discussion of related work, diffusion processes mainly dif-

fer in (a) initialization, (b) definition of the transition matrix

and (c) definition of the diffusion process. Our core findings

on this are finally summarized in Table 1.

We start with the definition of a random walk on a graph

G = (V,E). For this, we have to define the random walk

transition matrix as

P = D−1 A , (1)

where D is an N ×N square matrix defined by

dij =

{
deg(i) if i = j
0 otherwise

, (2)

where deg(i) is the degree of a vertex, i. e. the sum over its

edge weights. Thus, P is a row-stochastic matrix (rows sum

up to 1), containing the transition probabilities for a random

walk in the corresponding graph. Due to the structure of

the state transitions, it is possible to define the probability

vector ft of being at a specific node after t steps of random

walks as

ft = f0 P
t , (3)

where Pt is the power of the matrix P, i. e. P raised to the

positive integer t, and f0 is the 1 × N dimensional vector

of the initial distribution. Thus a single step of the diffusion

process is defined by the simple update rule

ft+1 = ft P . (4)

Note, that this iterative method relates to the Power Iter-

ation method, which computes the principal eigenvector of

a matrix. Indeed, the iterative process converges to the left

eigenvector of the transition matrix P with corresponding

eigenvalue 1.

The random walk model was later extended to one of

the first and most successful retrieval methods: the Google

PageRank system [17]. This system was originally designed

for objectively ranking webpages, by measuring the human

interest in related pages, considering the underlying hyper-

link structure. Thus, for random walk diffusion, each web-

page is represented as a node and the edge weights are fixed

in relation to the number of outgoing links per page. Main

insight of the PageRank system is that a web user does

not always purposefully click to navigate, sometimes he/she

jumps to a potentially random page. Thus, the standard ran-

dom walk is modified, and at each time step t a random walk

step is done with probability α, whereas a random jump to

an arbitrary node is made with probability (1 − α). This

leads to following update strategy

ft+1 = α ft P + (1− α) y , (5)

where y defines the probabilities of randomly jumping to

the corresponding nodes. Iterating this update step until

convergence returns the desired webpage ranking in the fi-

nal distribution ft→inf . For example, y was selected as uni-

form vector for webpage ranking in [17] and this approach

is referred to as global PageRank (GPR). Nevertheless, y
can be selected in any manner, and enables personalization

to specific random jump preferences, which is then denoted

as personalized PageRank (PPR).

Please note, that if we aim to analyze diffusion for many

different and independently personalized PageRanks, the
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update can be written in matrix notation as

Wt+1 = αWt P+ (1− α) Y , (6)

where the rows of the N × N matrix W now contain the

ranks of interest and the N ×N matrix Y is simply a stack-

ing of all personalized row vectors y into a matrix.

In [23] a method denoted as Ranking on Manifolds

(ROM) was proposed, which is heavily related to the stan-

dard PageRank approach. This method also iteratively

updates an initialization vector (the ranking values for a

query). Main difference to PageRank is the slightly adapted

transition matrix defined as

PNC = D−1/2 AD−1/2 , (7)

which we denote as PNC because of its analogy to the nor-

malized Graph Laplacian used in normalized cut segmen-

tation. This matrix is symmetric (in contrast to the random

walk transition matrix P). The diffusion process is the same

as in the personalized PageRank (see Equation 5), where the

sequence converges again to a non-trivial solution, where P
and PNC have the same eigenvalues and eigenvectors re-

lated by xP = xNC D1/2, where xP is the principal eigen-

vector of P and xNC of PNC, respectively.

A related diffusion process origins from the field of

semi-supervised learning denoted as label propagation

(LP) [24], where the goal is to spread information from la-

beled to unlabeled data. In the scope of image retrieval, this

means that the only labeled point is the query instance itself.

Label Propagation applies the standard random walk diffu-

sion step (Equation 4), but in contrast injects query infor-

mation in a specific manner by fixing f (i) = 1 after each

diffusion step. Running this diffusion process for infinite

time converges to a constant vector and assigns each node

the same label (since only the query is labeled). Hence, in

this case the evolution of the vector is of interest and the

process has to be stopped at the right moment (mostly af-

ter t iterations), where adapting t allows to perform kind of

multi-scale analysis.

Graph transduction (GT) [2] directly focuses on apply-

ing label propagation for retrieval tasks. Key idea of this ap-

proach is a normalization of the input affinity matrix A, that

is adapted specifically for each query. Thus, graph trans-

duction cannot be written in matrix form as shown in Equa-

tion 6, since the matrix A differs for all query elements.

As a consequence this approach is not scalable to large data

sets. More interesting, normalization is based on an analysis

of the nearest neighbors (NN) of the query, which constrains

the diffusion process locally and yields different transition

matrices for each query element. Nevertheless, by fixing a

neighborhood-graph and by using the same normalization

for all queries, graph transduction could be easily reformu-

lated in matrix notation.

In [21] the idea of constraining the diffusion graph to lo-

cal neighborhoods is further investigated (LCDP). Authors

also use a kNN-Graph to define the locality, but in contrast

to [2] additionally adapt the diffusion process. Key idea is to

define the transition probabilities in a novel manner, setting

them to high values if and only if all (!) paths between the

kNN of two nodes are short. The paper describes that this

idea can be encoded into the diffusion process by adapting

the update step to

Wt+1 = PWt P
T . (8)

Interestingly, in [22] exactly the same diffusion step is de-

rived from a different point of view. It is denoted as tensor

graph diffusion (TGD) and aims at integrating relations of

higher order than pairwise affinities into the diffusion pro-

cess. This is achieved by building a new graph represen-

tation obtained by the tensor product of the standard graph

with itself. In such a way an edge weight in the new graph

representation relates four tuples of vertices to each other

and reveals intrinsic higher-order relations between the el-

ements analyzed. The diffusion process on such a graph

again converges to a non-trivial solution. Nevertheless, this

form of diffusion is impracticable since the graphs are re-

ally huge. For this reason, authors show that the diffusion

process on the tensor graph is identical to a modified dif-

fusion process on the standard graph, which turns out to be

the same as in [21] (see Equation 8).

In [20] another variant to define a neighborhood graph

for diffusion, denoted as shortest path propagation (SPP),

was presented, where shortest paths were independently an-

alyzed for each query element. This again increases the

runtime significantly and achieves only slightly increased

retrieval scores. Another neighborhood graph variant was

introduced in [22], a so-called dominant set (DS) approach.

For each query, a dominant set is identified by evolution-

ary dynamics from game theory, which identifies the most

closely related neighbors. Such a dominant set approach is

also considered in [16] for defining a global neighborhood

graph. Again, just for retrieving the improved neighborhood

graph an independent diffusion process has to be applied,

which significantly increases runtime.

The methods discussed above, all improve retrieval

scores, but somehow lack the notion of a global similar-

ity metric. In contrast, diffusion maps [4] are also based

on a diffusion process on a graph and additionally induce

a global similarity metric. Also for diffusion maps the ran-

dom walk transition matrix P is used to propagate affinities

through the manifold. The final diffusion map distances

(for a fixed t) can be found in closed form, by eigenvalue

weighted Euclidean distances between eigenvectors of P.

Since for t → inf an equilibrium is reached, where all dif-

fusion distances equal zero, the dynamics of the diffusion

process are of main interest.
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Recently, in [8] a self-smoothing operator (SSO) was in-

troduced which is related to diffusion maps. It is equivalent

to PageRank, simply using the affinities for a query point

as initialization. This approach was extended in [19] by a

slight adaption of the diffusion step denoted as self diffusion

(SD), where a closed form solution for specific t values was

provided. The paper further describes a way to estimate an

optimal t value and a way to reduce complexity by a matrix

factorization approach.

Interestingly also the recently quite popular evolution-

ary replicator dynamics (RD) can be interpreted as diffusion

process on a matrix. These dynamics were already applied

in several computer vision applications, e. g. for matching

image segments and points [1], for finding common spatial

visual patterns [14] or for clustering [15], showing promis-

ing results in all applications. RD are a first order evolu-

tionary dynamic from the field of game theory defined by

the following diffusion process

f i
t+1 = f i

t

(Aft)i
ft

TAft
, (9)

where f i
t is the i-th element of the vector f . As an important,

additional constraint the vector f has to lie on the simplex

Δ defined as

Δ =
{
f ∈ R

N : f i ≥ 0 and 1T f = 1
}
, (10)

where 1 is a vector of ones, i. e.
∑

f i = 1. The dynamics

start with a random initialization f0 which also has to lie on

the simplex. The simplex Δ is invariant under the replica-

tor dynamics formulation, which means that every trajec-

tory starting on the simplex will remain on the simplex. For

more details and convergence proofs of these dynamics see

e. g. [18]. As can be seen the iterative process highly relates

to diffusion processes if written in matrix notation as

Wt+1 = Wt �AWt and Wt+1 = D−1 Wt+1 , (11)

where � is the Hadamard matrix product. The first step

in this update equation spreads the similarities, whereas the

second part ensures that the newly obtained matrix is again

row-stochastic, i. e. each row lies on the simplex. Although,

the matrix A is not a valid transition matrix it encodes the

same global information as the commonly used P and is

therefore, also applicable for diffusion.

Also methods from the field of clustering are frequently

based on such diffusion processes, and we would like to

mention the most related ones. In [11] power iteration clus-

tering (PIC) was proposed. This method is also based on

the observation that the largest eigenvector of the random

walk transition matrix P is always a constant vector with

eigenvalue 1. Power Iteration is used to find this largest

eigenvector, where again the evolution of the vector is of

interest, in this case to infer reasonable clusters. In [3],

a method denoted as authority shift clustering (ASC) was

proposed, where the personalized PageRank matrix is con-

sidered in the diffusion process and during evolution the

emerging clusters are analyzed and linked to each other to

define a hierarchical clustering result.

Finally, a few methods try to improve provided affinity

matrices without diffusion processes. For example, in [5]

a meta similarity approach was proposed. Core idea is

to characterize similarities between elements by comparing

similarities of the corresponding kNN sets. The process is

quite simple: (a) estimate the kNN and build a novel vec-

tor representation, where only the similarities to the kNN

are set and all others are fixed to 0, (b) use L1 distances

between the novel representations to measure their similar-

ity. Obviously, the correct choice of K is quite important

in such a process. In [9] a modified mutual-kNN graph was

exploited to update similarities without any type of diffu-

sion. The main idea is to build a specific graph structure

and simply let the shortest path through the graph define the

new affinities between the elements.

To summarize, a lot of different diffusion principles have

been proposed in the last years. All discussed methods are

heavily related to each other, without thoroughly specifying

similarities and differences. Thus, the idea of the paper is

to unite all these approaches under a common framework.

In such a way, we are also able to derive novel algorithms,

uniting advantages of the different concepts. Our frame-

work is described in detail in the next section.

3. Improving Retrieval by Diffusion
Based on the findings on related work in the field of re-

trieval, we are able to formulate a generic framework for

diffusion processes, where all methods discussed in the pre-

vious section represent single instances of our framework.

Our generic formulation then allows to define and validate

a set of novel diffusion processes, that are thoroughly eval-

uated in the experimental section. Let us first define some

basic notations used throughout this section.

We assume that we have given a set X =
{x1,x2, . . .xN} of N elements with xi ∈ RD and mea-

sures of pairwise similarities Aij between each point pair.

The most common way to define such similarities is to use

a Gaussian Kernel defined as

Aij = exp

(
−||xi − xj ||2

2σ2

)
, (12)

where σ is a parameter to fix. All affinity values together

form the N ×N input affinity matrix A defined as

A =

⎛
⎜⎝

A11 · · · A1N

...
. . .

...

AN1 · · · ANN

⎞
⎟⎠ . (13)
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Method Abbr. Initialization W0 Transition T Diffusion

Global PageRank [17] GPR u P ft+1 = ft T
Personalized PageRank [17] PPR u P ft+1 = α ft T + (1− α) y
Ranking on Manifolds [23] ROM u PNC ft+1 = α ft T + (1− α) y
Label Propagation [24] LP y P ft+1 = ft T and f (i) = 1
Graph Transduction [2] GT y P ft+1 = ft T and f (i) = 1
Locally Constrained DP [21] LCDP A PkNN Wt+1 = TWt T

T

Tensor Graph Diffusion [22] TGD A PDS Wt+1 = TWt T
T + I

Shortest Path Propagation [20] SPP y PSP ft+1 = ft T
Self Smoothing Operator [8] SSO A P Wt+1 = Wt T
Self Diffusion [19] SD A P Wt+1 = Wt T + I
Replicator Dynamics [18] RD u A ft+1 = ft �Tft and ft+1 = ft+1/ |ft+1|
Power Iteration Clustering [11] PIC s P ft+1 = Tft and ft+1 = ft+1/ |ft+1|
Authority Shift Clustering [3] ASC PPPR PPPR Wt+1 = Wt T

Table 1: Overview of related work in the field of diffusion processes. All methods start from the defined initialization W0

(first column) and iteratively propagate similarities through the underlying manifold using the defined transition matrix T
(second column) in the defined diffusion scheme (third column). Notation is as follows: A is the input affinity matrix, u is

the unit vector, y is the zero-vector with only the query element fixed to 1, s is the stationary vector as defined in [11], P is the

standard random walk transition matrix, PkNN is the random walk transition matrix constrained to the k-nearest neighbors,

PNC is the symmetric normalized cut transition matrix, PSP is the shortest path transition matrix as defined in [20] and PPPR

is the personalized PageRank transition matrix.

The goal of retrieval is to consider each element xi as in-

dependent query and rank all other points according to their

pairwise affinities to the specified query point xi. As base-

line, the input affinity matrix A could be directly analyzed

to perform retrieval. Nevertheless, as outlined in the previ-

ous sections, such an approach neglects the underlying data

manifold and does not lead to satisfactory results. Thus, we

next define a generic diffusion framework, which converts

a given affinity matrix A into a novel, diffused version A∗.
Retrieval is then based on the obtained matrix A∗.

Analyzing the related work, it can clearly be seen that

diffusion processes mainly consist of three important steps:

(A) Initialization, (B) Definition of the transition matrix

and (C) Definition of the diffusion process. We are able

to identify several variants for all three steps by analyzing

the methods discussed in the last section. Our framework al-

lows four types of initialization (A1)-(A4) (Table 2), six dif-

ferent types of transition matrices (B1)-(B6) (Table 3) and

finally three main diffusion variants (C1)-(C3) (Table 4).

The corresponding tables list the different choices and high-

light related work that fits into the different variants.

Thus in overall we get 4 × 6 × 3 = 72 possibilities to

define diffusion processes. For all combinations we start

from the initialization W0, and apply iterative updates us-

ing the transition matrix T in the defined diffusion pro-

cess, as long as the average number of changing elements

in the obtained rankings between two subsequent iterations

is below ε (we fix ε to 0.3 in all experiments), which fi-

nally yields the improved matrix A∗. Please note, that some

of the combinations have closed form solutions, which are

not further considered, since they require slow and com-

plex operations like the inverse of huge matrices. There-

fore, we focus on the iterative diffusion processes that con-

verge to the same solution and that are directly applicable

for large scale analysis. Please note, that only a few of these

72 variants have been applied before in the scope of re-

trieval applications: (A1)+(B1)+(C1): SSO [8], SD [19],

GT [2] – (A1)+(B5)+(C2): TGD [22] – (A1)+(B4)+(C2):

LCDP [21], and for example applying evolutionary dynam-

ics (C3) is for the first time considered for retrieval.

4. Experiments

Goal of our experiments is a thorough comparison of

the achievable performance of the 72 diffusion variants that

can be applied based on the generic framework described in

the last section. Specifically, we want to derive statements

about the importance of several proposed extensions. We

implemented our diffusion framework in Matlab and code

is provided at http://vh.icg.tugraz.at. Experi-

ments analyze three different data sets in the scope of re-

trieval: MPEG7 (shape), YALE (faces) and ORL (faces).

MPEG7 [10] is one of the most popular data sets for

demonstrating retrieval performance. It consists of 1400

binary images showing silhouettes from 70 different cate-

gories. MPEG7 has seen a tremendous progress in the re-
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ID Initialization W0 Methods

(A1) Affinity Matrix A SSO [8], SD [19], TGD [22], LCDP [21]

(A2) Identity Matrix I LP [24], GT [2], SPP [20]

(A3) Transition Matrix P ASC [3]

(A4) Transition Matrix PkNN ASC [3]

Table 2: Four different types of initialization and related work based on the different approaches.

ID Transition Matrix T Methods

(B1) Transition Matrix P
SSO [8], SD [19], GPR [17],

PPR [17], LP [24], GT [2], PIC [11]

(B2) Personalized PageRank Transition Matrix PPPR, ASC [3]

(B3) Normalized Cut Transition Matrix PNC ROM [23]

(B4) K-Nearest Neighbors Transition Matrix PkNN LCDP [21]

(B5) Dominant Set Neighbors PDS TGD [22]

(B6) Affinity matrix A RD [18]

Table 3: Six different types of transition matrices and related work based on the different approaches.

ID Update Scheme Methods

(C1) Wt+1 = αWt T + (1− α) I, SSO [8], SD [19], ROM [23], ASC [3]

(C2) Wt+1 = TWt T
T LCDP [21], TGD [22]

(C3) Wt+1 = Wt ⊗TWt and Wt+1 = D−1 Wt+1 RD [18]

Table 4: Three different update schemes and related work based on the different approaches.

cent years, concerning (a) the shape matching algorithms

applied for defining the pairwise affinities and (b) the im-

provements in the field of diffusion processes. We use the

best performing shape matching algorithm of [7] to define

the pairwise distances. Retrieval accuracy is measured by

ranking all other elements for each query and calculating

the average number of occurrences of elements of the same

category as the query, within the 40 first ranked elements.

This measure is denoted as the bullseye score and its upper

limit is 100%, which means that for each query the 20 in-

stances of the same category are ranked within the first 40.

If directly analyzing the distance matrix of [7] without ap-

plying diffusion we get a baseline bullseye score of 93.55%.

YALE face dataset B [6] is a standard benchmark for

face clustering, which consists of face images of various

persons seen under different poses and illumination condi-

tions. We extract the same subset as [8] to define a retrieval

task, where 15 subjects are shown in 11 different condi-

tions. Each image is down-sampled and then normalized to

0-mean and 1-variance. Distances are directly defined by

pairwise Euclidean distances between the vectorized repre-

sentations. Retrieval score is again measured by a bullseye

score, analyzing the 15 most similar instances. The baseline

bullseye score is 69.48% for this data set.

ORL has 40 subjects with 10 grayscale images per sub-

ject, where pose, illumination, and expression are diverg-

ing. The same representation as for YALE data set is used to

build the distance matrix, and the bullseye score consider-

ing 15 closest neighbors is used to evaluate retrieval quality.

The baseline bullseye score is 62.35% for this data set.

4.1. Evaluation of Retrieval Performance

As a first experiment we identify the most promising

combination out of our pool of 72 variants, by analyzing

the best achievable bullseye score after diffusion. For this

we thoroughly evaluated all combinations on all three data

sets considered, where we fixed the parameter K relative

to the number of instances within the same class (i. e. 10

for MPEG7, 5 for YALE and ORL). We independently op-

timized over σ values for each combination, to demonstrate

the best obtainable retrieval performance. According to the

PageRank approach, we fixed α to 0.85. Tables 5 (MPEG7),

6 (YALE) and 7 (ORL) list bullseye scores in a compactified

manner.

First of all, results show that applying diffusion, to

spread affinities through the manifold, in all cases sig-

nificantly improves the obtainable scores: for MPEG7:

93.55% → 100%, for YALE 69.48% → 77.30% and for
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ORL 62.35% → 77.42%. Furthermore, constraining the

diffusion process to the local neighbors by adapting the

transition matrix P to the k-nearest neighbors PkNN (B4)

or to the dominant set PDS (B5) seems to bring the largest

boost in performance, especially for the diffusion variants

(C1) and (C2). Thus, PkNN seems the way to go, because

PDS requires significantly more time (since for obtaining

the dominant set an independent diffusion step is required),

while in essence results are not substantially different. Fur-

thermore, all update schemes provide reasonable results on

all data sets, where the update scheme (C2) seems to yield

the best performance. Nevertheless, scheme (C2) requires

an additional matrix multiplication per iteration.

Initialization, in general is not so important, since meth-

ods converge to the same solution. Only, if using the game

theoretical diffusion (C3) one has to initialize either using

the affinity matrix A (A1) or the transition matrix P (A3),

other initializations do not provide reasonable results for

(C3). In overall, starting from the kNN-PageRank transi-

tion matrix PkNN (A4) seems to lead to fastest convergence

and best performance, which up to now has only be consid-

ered in the clustering approach of [3].

To summarize, as most promising combination, we

choose to initialize the diffusion process by the transition

matrix PkNN (A4), to constrain the transition matrix to the

k-nearest neighbors (B4) and to apply the higher-order dif-

fusion process (C2). This approach consistently yields the

best results, while having low computation time, which en-

ables large-scale retrieval applications. This configuration

is used for the experiments in the next section.

4.2. Influence of Locality

As we demonstrated in the last section, constraining the

diffusion process locally is a promising direction to improve

retrieval scores. Thus, in this experiment we analyze the

influence of different local neighborhood sizes on the ob-

tainable results, by thoroughly testing a range of K values,

defining the number of nearest neighbors considered. Ob-

tainable scores for the most promising diffusion variant (see

previous section) are shown in Figure 2.

As can be seen, selecting a reasonable K value is impor-

tant to obtain optimal retrieval results, nevertheless for all

K ≥ 3 performance is significantly improved in compari-

son to the baseline. On MPEG7 the choice is insignificant,

from K = 9 upwards the diffusion process always leads to

a 100% bullseye score, since this data set is already satu-

rated. On the other two data sets YALE and ORL, tuning

of K allows to improve performance, where on ORL an

optimal bullseye score of 77.30% is achieved for K = 5,

which decreases down to 73.40%, if using the number of

neighbors from the same class (10). For YALE, the opti-

mal score is 77.08% for K = 5 which decreases to 73.39%
for the correct K = 11. Due to this influence of K on re-

MPEG7 C1 C2 C3

B1 99.89 (A3) 99.93 (A3) 99.91 (A3)

B2 99.91 (A3) 99.94 (A3) 99.89 (A1)

B3 99.89 (A3) 99.90 (A4) 99.91 (A3)

B4 99.99 (A1) 100.00 (A4) 99.90 (A3)

B5 99.99 (A1) 100.00 (A4) 99.91 (A3)

B6 99.88 (A3) 99.88 (A3) 99.91 (A3)

Table 5: Scores on the MPEG7 data set. Bullseye rating for

the first 40 elements is listed. Best initialization method is

listed in brackets. Baseline: 93.55%

YALE C1 C2 C3

B1 71.90 (A4) 72.23 (A4) 71.07 (A1)

B2 70.96 (A4) 71.24 (A1) 71.07 (A1)

B3 71.46 (A4) 71.29 (A4) 71.18 (A1)

B4 73.39 (A3) 77.30 (A2) 71.24 (A1)

B5 74.38 (A3) 76.20 (A2) 71.46 (A1)

B6 70.91 (A3) 70.30 (A3) 71.74 (A1)

Table 6: Scores on the YALE data set. Bullseye rating for

the first 15 elements is listed. Best initialization method is

listed in brackets. Baseline: 69.48%

ORL C1 C2 C3

B1 71.88 (A4) 73.12 (A4) 65.65 (A1)

B2 73.58 (A4) 73.75 (A4) 67.20 (A3)

B3 72.12 (A4) 72.95 (A4) 65.62 (A1)

B4 75.98 (A4) 77.42 (A2) 70.93 (A1)

B5 74.12 (A3) 75.50 (A4) 68.73 (A3)

B6 71.28 (A4) 71.40 (A4) 65.65 (A1)

Table 7: Scores on the ORL data set. Bullseye rating for

the first 15 elements is listed. Best initialization method is

listed in brackets. Baseline: 62.35%

sults, researching methods to automatically find an optimal

K for constrained diffusion processes in an efficient manner

seems to be a promising future direction of research.

4.3. MPEG7 Results

MPEG7 is the most frequently used data set for evaluat-

ing retrieval methods. Thus, in Table 8 we show the recent

developments on MPEG7, listing different state-of-the-art

methods and the progress on the retrieval score over time.

As can be seen, we are able to demonstrate for the first time

a 100% bullseye score on this challenging data set, i. e. for

each query after diffusion, all 20 instances of the same cat-

egory are ranked within the first 40 returned instances.
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Figure 2: Influence of adapting the local neighborhood on

the obtainable retrieval scores (best viewed in color).

Method Bullseye score (in%)

IDSC [12] 85.40

IDSC + GT [2] 91.61

IDSC+mkNN [9] 93.40

ASC [13] 88.30

ASC+LCDP [13] 95.96

ASC+TN+TPG [22] 96.47

AIR [7] 93.67

AIR+TN+TPG [22] 99.99

AIR+Proposed 100.00

Table 8: Comparison of retrieval performance on MPEG7.

5. Conclusion

In this paper we introduced a generic diffusion frame-

work evaluated in the scope of retrieval applications. Our

diffusion methods start from different initializations, and

use different combinations of transition matrix and diffu-

sion process variants, to iteratively spread affinities through

the underlying data manifold. We further outlined that the

state-of-the-art in this field represents specific instances of

our diffusion framework. We provided a thorough evalu-

ation, highlighting that constraining the diffusion locally

achieves the most promising boost in performance, where

automatically selecting a reasonable local neighborhood

size is still an open issue. The best performing instance of

our generic framework for example achieved a 100% bulls-

eye score on the popular MPEG7 data set.
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