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Abstract

Computational color constancy is a very important top-
ic in computer vision and has attracted many researchers’
attention. Recently, lots of research has shown the effects
of using high level visual content cues for improving illumi-
nation estimation. However, nearly all the existing methods
are essentially combinational strategies in which image’s
content analysis is only used to guide the combination or s-
election from a variety of individual illumination estimation
methods. In this paper, we propose a novel bilayer sparse
coding model for illumination estimation that considers im-
age similarity in terms of both low level color distribution
and high level image scene content simultaneously. For the
purpose, the image’s scene content information is integrat-
ed with its color distribution to obtain optimal illumination
estimation model. The experimental results on real-world
image sets show that our algorithm is superior to some pre-
vailing illumination estimation methods, even better than
some combinational methods.

1. Introduction
The color signals of any object from an imaging device

are determined by three factors: the color of light incident

on the scene, the surface reflectance of the object, and sen-

sor sensitivity function of the camera [7] [8]. Therefore, the

color of same surface will usually appear differently under

varying light sources. In contrast, the human beings have

the ability to “see” a surface as having the same color in-

dependent of variations of the illumination, which is called

“Color Constancy” [16]. Computational color constancy is

targeted for providing the same sort of color stability in the

context of computer vision [1], and its central issue is to

build up an optimal illumination estimation model.

1.1. Related Work

Illumination estimation is actually an ill-posed prob-

lem and cannot be solved without any assumption. It has

been an active research topic in both scientific communi-

ty and imaging industry for several decades. Most ear-

ly studies treat an image as a bag of pixels with RG-

B values and give out the illumination estimation model

without considering the underlying semantic content ex-

pressed by the pixels’ arrangement. We name these meth-

ods as “Data Driven Estimation Methods”(DD). The D-

D methods can further be classified into unsupervised D-

D methods and supervised DD methods. The unsuper-

vised DD methods, such as Grey World (GW)[11], maxRG-

B [24], Shades of Grey (SoG)[18], and Edge-based method

[29] (also called Grey Edge, GE), etc, predefine fixed il-

lumination estimation models based on certain hypothe-

ses for all images. On the other hand, the supervised D-

D methods, including Color-by-Correlation (C-by-C) [17],

Spatio-Spectral statistics-based method (Spatio-Spectral)

[13], Neural Networks-based method (NN) [12], Support

Vector Regression-based method (SVR) [32], Gamut Map-

ping [22], edge-based Gamut Mapping [22] etc, learn the

estimation models on the color distribution or related fea-

tures of training data through the training procedures. Al-

though the DD methods are simple and have much low-

er complexities; the fixed estimation models embedded in

them result in lower generalizations. Once the model is

fixed in a DD method, the illumination colors of all the test

images are computed out using the same model. Therefore,

the DD methods are effective only when the distribution of

colors of the test image fits the assumed model very well.

In order to avoid the fixed model problem, many re-

searchers focus on the model selection or combination for

illumination estimation. Recent years have witnessed a rise

in applying image content analysis to guide illumination es-

timation. We name these methods as “Content Driven Esti-

mation Methods” (CD). All the existing CD methods essen-

tially are combinational methods [25] that generally con-

tain two steps: (1) applying several DD estimation models

(rather than only one) on the same image, (2) then selecting

the best estimate or combining their outputs based on the

image’s content characteristics. Previous efforts in this area

include the work of Gijsenij et al. [20], which selects the

most appropriate unsupervised DD method based on natu-
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ral texture statistics and scene semantics of the test image

(NIS). Lu et al. [27] use 3D stage geometry model (SG) to

divide images into different geometrical regions, and select

appropriate estimations per depth layer or geometrical sec-

tion. Bianco et al. [10] propose to use the indoor/outdoor

scene classification for choosing the most appropriate esti-

mation method (IO). Weijer et al. [30] use high level visual

information for improving illumination estimation (HVI), in

which an image is modeled as a mixture of semantic class-

es, such as sky, grass, road, and building. Then they evalu-

ate several different illumination estimation models on the

likelihood of its semantic content in correspondence with

prior knowledge of the world, and produce the final output

that results in the most likely semantic composition of the

image. According to the analysis on the CD methods, we

obtain the following observations:

• Since most existing CD methods are combinational

methods, their performance is inevitably affected by

the DD methods used for combination.

• Nearly all the existing CD methods combine the un-

supervised DD methods. The supervised DD method-

s, which generally have better performance [21][25],

have not been considered.

• Although the high level scene content is useful for

illumination estimation, automatical scene content

classification, such as 3D stage classification or in-

door/outdoor classification, is another difficult and un-

solved computer vision problem.

1.2. Our work

According to the observations above, this paper propos-

es a novel bilayer sparse coding model (BSC) for illumi-

nation estimation that integrates the high level content cues

and low level color features into a unified supervised frame-

work. The proposed BSC method models illumination esti-

mation as an image similarity problem and considers low

level color distribution and high level scene category si-

multaneously. Our work is primarily inspired by two hy-

potheses: (1) The images with similar color distributions

are preferable to be captured under the similar light colors;

and (2) the scenes belonging to the same high level cate-

gory have the similar illumination conditions [10]. This is

because the varying range of light colors in a certain type

of scene is often limited. For example, indoor lights tend

to be red; while outdoor lights are mostly bluish. The first

hypothesis has been validated in many supervised DD meth-

ods. The second one has also been shown to be effective in

some CD methods [20][27][10].

The proposed BSC method sounds similar to the IO al-

gorithm [10], but they are completely different in essence:

• The BSC method is an individual supervised methods

rather than a combinational method. It is not based on

any other DD methods. So the BSC method is to di-

rectly estimate the illumination color of the test image

based on the training images that are similar to the test

image from both color and scene viewpoints.

• The BSC method need not explicitly classify the scene

into predefined indoor/outdoor or other scene cate-

gories. Instead, it integrates the high level scene con-

tent similarity into the supervised illumination estima-

tion procedure so as to avoid negative impact of incor-

rect hard scene classification. In addition, the scene

categories are far more than indoor/outdoor.

• Another contribution in the proposed method lies in

unfixed model. Since the sparse coding is a no-model

learning algorithm. Compared with most existing

methods that always use a prefixed model(or a limit-

ed model set for selection) for all the test images, our

BSC algorithm adaptively learns a individualized mod-

el for each test image according to its color and scene

cues.

2. Sparse Coding Preliminaries

Before introducing the details of our model, we start with

a brief overview of sparse coding that is the basis of the pro-

posed algorithm. Recently, much interest has been shown

in computing linear sparse representation with respect to an

overcomplete dictionary of the basis elements. The goal of

sparse coding is to sparsely represent input vectors approx-

imately as a weighted linear combination of a number of

“basis vectors”. Given an input vector x ∈ Rk and basis

vectors U = [u1, u2, ..., un] ∈ Rk×n, sparse coding aim-

s to find a sparse vector of coefficients α ∈ Rn, such that

x ≈ Uα =
∑

j ujαj . It equals to solving the following

objective.

min
α
‖x−Uα‖22 + λ ‖α‖0 , (1)

where ‖α‖0 denotes the �0-norm, which counts the number

of nonzero entries in a vector α. It is well known that the

sparsest representation problem is NP-hard in general case.

Fortunately, recent results [31] show that, if the solution is

sparse enough, the sparse representation can be recovered

by the following convex �1-norm minimization [31] as:

min
α
‖x−Uα‖22 + λ ‖α‖1 , (2)

where the first term of Eq(2) is the reconstruction error, and

the second term is to control the sparsity of the coefficients

vector α with the �1-norm. λ is regularization coefficient

to control the sparsity of α. The larger λ implies the s-

parser solution of α. The sparse coding technique based

on �1-norm has been widely applied in many applications,

including face recognition, image classification, etc [31].
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3. Bilayer Sparse Coding for Illumination Es-
timation

In this section, we firstly propose bilayer sparse coding

model (BSC) for illumination estimation; then discuss color

feature and scene feature used in BSC; and finally give out

an optimization algorithm for BSC.

3.1. Bilayer Sparse Coding Model (BSC)

3.1.1 Sparse Coding for Color Similarity

Given N training images I1, ..., IN , the color feature vec-

tor of the image Ii is Ci ∈ Rd. Here, color feature Ci can

be binarized 2D/3D chromaticity histogram that has been

proved to be effective for many supervised color constancy

algorithms [17][12][32]. For any test image Iy with col-

or feature Cy ∈ Rd, we can linearly reconstruct its color

feature using the training images under the sparse coding

framework, as:

min
γ
‖Cy −Cγ‖22 + λ ‖γ‖1 , (3)

where C = [C1, C2, ..., CN ]; γ = [γ1, γ2, ..., γN ]T is a

N -dimensional coefficient vector that indicates the recon-

struction weight associated with each training image. From

viewpoint of color gamut, the Eq(3) is actually to recon-

struct the color gamut of the test image using color gamut

of all the training images. The sparse code γ can also be

viewed as the color correlation coefficient between Iy and

each training image.

3.1.2 Sparse Coding for Scene Category Similarity

Generally speaking, a typical type of scene is determined

by a bag of certain objects and their co-occurrence rela-

tionships [23]. For example, the ‘street’ scene sometimes

contains roads and buildings.

To model appearances of different objects in the scene,

we segment each training image Ii into ni objects, denoted

as I1i , I
2
i , ..., I

ni
i , then we have n1 + n2 + ...+ nN objects

in the training image set in all. Each object Iki is represent-

ed by visual vocabulary histogram vki ∈ Rm that is gained

from Bag-of-Words model (BOW) [2]; and all the objects in

Ii are denoted as Vi = [v1i , v
2
i , ..., v

ni
i ] ∈ Rm×ni . The test

image Iy is also segmented into ny objects I1y , I
2
y , ..., I

ny
y ,

their corresponding vocabulary histograms are represented

as v1y, v
2
y, ..., v

ny
y ∈ Rm. The scene category similarity anal-

ysis here is to reconstruct the ny objects in the test image by

using the n1 +n2 + ...+nN objects in the training images,

as show in Figure 1.

Considering co-occurrence property of objects in the

same image, we should try to reconstruct the objects in

the test image using those objects from the same training

image. Therefore, we introduce the multi-task joint sparse

Figure 1. Sparse reconstruction of image’s scene content: (A) test

images Iy and its segmented objects. (B) Training image I1 and

its segmented objects, W j
1 , (j = 1, 2, ..., ny) is a reconstruction

coefficient vector of the jth object in Iy associated with all the

objects in I1. (C) Training images IN and its segmented objects,

W j
N , (j = 1, 2, ..., ny) is reconstruction coefficient vector of the

jth object in Iy associated with all the objects in IN .

representation based on �2,1 norm [33]. The multi-task join-

t sparse representation can be regarded as a combinational

model of group Lasso and multi-task Lasso by penalizing

the sum of �2 norms of the blocks of coefficients associated

with each covariate group (objects in each training image)

across different reconstruction tasks (object reconstruction

in the test image)[33].

For any test object Ijy in the test image Iy , if W j
i ∈ Rni

denotes the reconstruction coefficient associated with the

objects I1i , I
2
i , ..., I

ni
i in the image Ii, we can use Wi =

[W 1
i ,W

2
i , ...,W

ny

i ] ∈ Rni×ny to represent the reconstruc-

tion coefficient matrix of all the objects in Iy associated

with all the objects in the image Ii . The details of cor-

responding relationship between objects and coefficient are

shown in Figure 1. The joint sparse representation of all the

objects in the test image can be formulated as [33]:

min
W

ny∑
j=1

∥∥∥∥∥vjy −
N∑
i=1

ViW
j
i

∥∥∥∥∥
2

2

+ β
N∑
i=1

‖Wi‖12, (4)

where W = [W1,W2, ...,WN ]T is the sparse coefficient

matrix for all the objects in the test image; β is the regu-

larization coefficient. The optimization problem in Eq(4),

which is known as multi-task joint covariant selection in

Lasso related research, can be effectively solved by �2,1
mixed-norm Accelerated Proximal Gradient (APG) algo-

rithm proposed by Yuan et al [33].

3.1.3 Bilayer Sparse Coding for Illumination Estima-
tion(BSC)

In order to integrate scene category information into illumi-

nation estimation model, a bilayer sparse coding model for
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illumination estimation is formulated to include similarity

analysis on both color distribution and scene category, as:

Color Layer:

min
γ
‖Cy −Cγ‖22 + λ ‖Dγ‖1 ,

D = diag(f(‖W1‖12), f(‖W2‖12), ..., f(‖WN‖12)),
(5)

Scene Layer:

min
W

ny∑
j=1

∥∥∥∥∥vjy −
N∑
i=1

ViW
j
i

∥∥∥∥∥
2

2

+β
N∑
i=1

g(‖γi‖1) ‖Wi‖12, (6)

where

f(‖Wi‖12) =
max

k=1..N
(‖Wk‖12)− ‖Wi‖12 + ε

max
k=1..N

(‖Wk‖12)− min
k=1..N

(‖Wk‖12) + ε
, (7)

g(‖γi‖1) =
max

k=1..N
(‖γk‖1)− ‖γi‖1 + ε

max
k=1..N

(‖γk‖1)− min
k=1..N

(‖γk‖1) + ε
. (8)

From the formulation above, we can find that the func-

tion f(‖Wi‖12) and g(‖γi‖1) are the monotone decreasing

functions, in which ε is used to avoid 0. Their outputs are

between (0, 1] and can be viewed as the costs in sparse col-

or reconstruction and sparse scene content reconstruction.

In the color layer, it tends to select the images with low-

er f(‖Wi‖12) values, which is corresponding to the high-

er �2,1 norm ‖Wi‖12 of the scene reconstruction coefficient

Wi, to reconstruct the test image’s color feature. Similarly,

in the scene layer, it tends to select the images with low-

er g(‖γi‖1), which is corresponding to the higher �1 norm

‖γi‖1 of the color reconstruction coefficient γi, to recon-

struct the test image’s scene content. Comparing Eq(5) with

Eq(3) can tell us that the γ in BSC model contains not only

color correlation but also scene content correlation informa-

tion. The optimization of the BSC model will be discussed

in section 3.3.

3.1.4 Illumination Estimation

The coefficient γ in Eq(5), which represents the correlation

between the test image and all training images, is used for

illumination estimation. To remove the shading effect, the

ground truth illumination color value ei = (Ri, Gi, Bi)
T of

the training image Ii is mapped into 2D chromaticity space

through: li =
(

Ri

Ri+Gi+Bi
, Gi

Ri+Gi+Bi

)T

. And the coeffi-

cient vector γ is also normalized by �1 norm as: γ̂ = |γ|
‖γ‖1 .

So the final illumination chromaticity ly= (ry, gy)
T

of the

test image can be estimated as the weighted average of the

illumination values of all the training images as:

ly = Lγ̂, L = [l1, l2, ..., lN ] (9)

3.2. Feature Extraction

This section discusses the feature extraction in the B-

SC model. In the color reconstruction layer, we consider

3D color space as [32]: two chromaticity values, defined as

(r, g)T =
(

R
R+G+B , G

R+G+B

)T

, and one intensity value,

defined as L = (R+G+B). The chromaticity space (r, g)T

is equally partitioned along each component into 50 equal

parts yields 2500 bins. The intensity L is quantized into 25

equal steps [32][9], so the 3D color histograms consist of

62,500 (50× 50× 25) bins [32]. Each image is represented

as a binarized 3D chromaticity histogram, in which ’1’ or

’0’ indicates the presence or absence of the corresponding

chromaticity and intensity in the image.Since 0 ≤ r+g ≤ 1,

a compact 3D chromaticity histogram can be obtained by

discarding the space with r+g > 1.

In the scene layer, the SIFT descriptor [26] that is widely

applied to scene classification, is used as object’s visual fea-

ture under the Bag-of-Word (BoW) model [2]. Considering

that the scene layer is to find the training images with both

similar scene contents and similar illumination conditions

to the test image, color SIFT descriptor on r-g chromaticity

space is used as scene feature. The dense SIFT descrip-

tors are extracted with 8-pixel step for each image. Then

all the SIFT descriptors in the training images are clustered

as m visual words via Kmeans scheme. Finally, each seg-

mented region with the corresponding SIFT descriptors in it

is represented as a m-dimensional visual words histogram

vki ∈ Rm via BoW model.

3.3. Optimization for Bilayer Sparse Coding Model

The optimization in Eq(5) and Eq(6) is not straightfor-

ward. However, if the value of γ is fixed, the optimization

in scene layer is just a multi-task joint sparse coding, which

can be effectively solved via the �2,1 mixed-norm Acceler-

ated Proximal Gradient (APG) algorithm [33]. On the other

hand, if the coefficient matrix W is given, the optimization

in color layer is just a general sparse coding with a cost con-

strain that can also be solved by the �2,1 mixed-norm APG.

Consequently, we give an approximate iterative �2,1 mixed-

norm APG algorithm to optimize the bilayer sparse coding

as shown in Algorithm 1.

At each iteration, the new values of γ or W is obtained

for the next iteration. The ‖p̂− γ̂‖ ≤ δ, which indicates the

distance between successive solutions of γ, is the stopping

condition of the iterations.

4. Experiments

We evaluate the proposed BSC algorithm on two real-

world image sets. The first one is provided by Gehler et

al.[19][3] and subsequently reprocessed by Shi et al.[4] (de-

noted as Gehler-Shi set). The second one includes the real-
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Algorithm 1 Pseudo-code for bilayer sparse coding opti-

mization.
Input: The color feature Ci and scene feature Vi =

[v1i , v
2
i , ..., v

ni
i ] ∈ Rm×ni of each training im-

age, the color feature Cy and scene feature Vy =
[v1y, v

2
y, ..., v

ny
y ] of the test image,the regularization co-

efficient λ and β, the threshold ε.

1: Initialize D = diag(1, 1, ..., 1), solve γ in Eq(5) via the

�2,1 mixed-norm APG.

2: repeat
3: Set p = γ.

4: for i = 1→ N do
5: Compute g(‖γi‖1).
6: end for
7: Solve W in Eq(6) with g(‖γi‖1) via the �2,1 mixed-

norm APG algorithm.

8: for i = 1→ N do
9: Compute f(‖Wi‖12)..

10: end for
11: Solve γ in Eq(5) with f(‖Wi‖12) via the �2,1 mixed-

norm APG algorithm.

12: until (‖p̂− γ̂‖ ≤ δ or max iteration times are arrived)

Output: γ and W.

world images captured from a digital video provided by

Ciurea et al [14]; and then is linearized by Gijsenij et al

[21] to remove the gamma-correction (denoted as Linear S-

FU set).

The BSC method is compared with some leading illu-

mination estimation methods, including GW [11], maxRG-

B [24], Grey Edge (0th, 1st, 2nd-order)[29], Gamut Map-

ping [22], Spatio-Spectral [13], SVR[32], HVI [30] and

NIS[20]. All the parameter settings for each algorithm are

determined according to the settings in the excellent sur-

vey [21][6].The binarized 3D color histogram is also used

in the SVR method. There are three parameters that are reg-

ularization coefficients λ, β and number of visual words m
in BoW need to be set in advance in the BSC algorithm.

The optimal parameters λ, β and m are selected out from

λ, β ∈ {0.01, 0.1, 1, 10},m ∈ {500, 1000, 1500} through

3-fold cross validation on training set in each experiment.

The JSEG algorithm[15] is used to segment each object in

the image due to its flexibility in adjusting the number of

regions. In order to further validate the effect of the scene

category for illumination estimation, the single color layer

in BSC (denoted as SSC) excluding any scene cue is also

used in comparison. The matrix D in SSC is always fixed

as D = diag(1, 1, ..., 1).

4.1. Error Measurement

The error measurements is one of the most important

issues in experiments. For each image in the image set-

s, the ground truth chromaticity of the light source ea =
(ra, ga, ba) is known. To measure how close the esti-

mated illumination resembles the true color of the light

source, the angular error measurement, which is the angu-

lar distance between the estimated illumination chromatici-

ty ey= (ry, gy,1−ry−gy)T and the ground truth chromatic-

ity ea, is adopted to evaluate the performance of diverse

algorithms. The angular error function angular(ey, ea) is

defined as

angular(ey, ea) =
180o

π
cos−1

(
ey • ea
‖ey‖ ‖ea‖

)
, (10)

where ey • ea is the dot product of ey and the ea ; and ‖•‖
indicates the Euclidean norm. The mean, median, trimean,

best-25% and worst-25% angular errors are used to measure

the performance of each algorithm on a data set [21]. The

worst-25% (or best-25%) indicates the mean angular error

of the largest (or smallest) 25% angular errors on test im-

ages. In addition, to provide more insight into the complete

distribution of errors on an image set, we also compute the

on a data set.

4.2. Experimental Results on the Gehler-Shi Set

The Gehler-Shi image set contains 568 images that are

taken using two high quality DSLR cameras (Canon 5D

and Canon1D) and includes a wide variety of indoor and

outdoor shots. All the images were saved in Canon RAW

format. Because the tiff images provided by Gehler et al

[19] in this set were produced automatically, they contain

clipped pixels that are non-linear (i.e., have gamma or tone

curve correction applied) and include the effect of the cam-

era’s white balancing. To avoid these problems, Shi et al.

[4] reprocessed the raw data and created almost-raw 12-bit

Portable Network Graphics (PNG) format images. This re-

sults in a 2041× 1359 (for Canon 1D) or 2193× 1640 (for

Canon 5D) linear images (gamma=1) in camera RGB space.

Consequently, the reprocessed Gehler-Shi set is used in the

following experiments.

The same as the setting in [21], the 3-fold cross-

validation strategy is conducted on this set. The three folds

are provided by the authors of the data set and to ensure re-

peatability of the results. During the experiment, one subset

is picked as test set; the other two are used as training set.

This procedure is repeated 3 times with different test set s-

election, the overall performance is used as the final result.

The final experimental results are shown in Table 1.The Do

Nothing method always estimates the illuminate as being

white (r = g = b).
According to the results in Table 1, the proposed BSC,

Gamut Mapping, and HVI methods, which outperform all

the other methods, are comparable to each other. The BSC

method achieves much lower median, trimean and best-25%

angular errors. The low worst-25% error of the BSC method
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Table 1. Comparison of performance on the Gehler-Shi image set. The performance of other algorithms is from [21]

Algorithm Mean Median Trimean Best-25% Worst-25%

Do Nothing 13.7 13.6 13.5 10.4 17.2

maxRGB 7.5 5.7 6.4 1.5 16.2

GW 6.4 6.3 6.3 2.3 10.6

general GW (e0,p,σ) 4.7 3.5 3.8 1.0 10.1

1st-order GE (e1,p,σ) 5.4 4.5 4.8 1.9 10.0

2nd-order GE (e2,p,σ) 5.1 4.4 4.6 1.9 10.0

Gamut Mapping 4.1 2.5 3.0 0.6 10.3

Edge-based Gamut Mapping 6.7 5.5 5.8 2.1 13.7

Spatio-Spectral 5.9 5.1 5.4 2.4 10.8

SVR 8.1 6.7 7.2 3.3 14.9

HVI 3.5 2.5 2.6 0.8 8.0
NIS 4.2 3.1 3.5 1.0 9.2

SSC 4.8 3.8 4.0 1.0 10.8

BSC 4.0 2.5 2.8 0.6 9.6

implies the stableness of our algorithm. The HVI and NIS

also have good performance. In addition, the performance

of the BSC method is much better than SSC method. The

two facts imply that high level scene category cues can in-

deed improve the illumination estimation. Furthermore, the

SSC outperforms SVR method, which shows that the sparse

coding technique is a good alternative learning tool for illu-

mination estimation.

4.3. Experimental Results on the Linear SFU Set

The second image set is introduced by Ciurea et al. [14]

which consists of more than 11,000 frames from videos.

Since a matte grey sphere ball is mounted onto the video

camera to obtain the ground truth illumination of each im-

age; in order to ensure that the grey ball has no effec-

t on our results, the grey sphere is masked during experi-

ments. Another issue of this data set is that an unknown

post-processing procedure is applied to the images by the

camera, including gamma-correction and compression. Gi-

jsenij et al [21] created a modification of this set by ap-

plying gamma-correction (with γ = 2.2). For consistency,

the ground truth is also recomputed on the linear images

[6]. The recomputed linear image set is also used in this

experiment. Since the SFU set contains 15 subcategories

from which images are taken in different places, the 15-fold

cross-validation is adopted here to ensure that the correlated

images of the same scene in the same group [21]. Then one

subset is used for testing and the other 14 ones are used for

training. This procedure is repeated 15 times. The overall

performance is shown in Table 2.

The proposed BSC method outperforms all other meth-

ods, even better than the combinational method NIS and

HVI. Some similar conclusions to previous experiment can

also be obtained. The SSC method also achieves much

better performance than all the other methods except NIS

and HVI, which again implies the effect of the sparse code

technique for illumination estimation. The fact that the B-

SC method outperforms SSC further confirms the effect of

scene category cues for illumination estimation.

5. Conclusion
Image’s high level content cue has been evidenced to be

helpful for improving the illumination estimation. Howev-

er, most prevailing methods using high level content cues

can be viewed as combinational methods. In this paper, we

integrate image’s color distribution and scene content anal-

ysis into a unified bilayer sparse coding framework for illu-

mination estimation. The experiments on real-world image

sets show that the mutually constrained combination can

improve the accuracy of illumination estimation.
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