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Abstract

Conventional subspace construction approaches suffer
from the need of “large-enough” image ensemble render-
ing numerical methods intractable. In this paper, we pro-
pose an analytic formulation for low-dimensional subspace
construction in which shading cues lie while preserving the
natural structure of an image sample. Using the frequency-
space representation of the image irradiance equation, the
process of finding such subspace is cast as establishing a
relation between its principal components and that of a de-
terministic set of basis functions, termed as irradiance har-
monics. Representing images as matrices further lessen
the number of parameters to be estimated to define a bi-
linear projection which maps the image sample to a lower-
dimensional bilinear subspace. Results show significant im-
pact on dimensionality reduction with minimal loss of infor-
mation as well as robustness against noise.

1. Introduction
Appearance variation due to illumination changes is an

inherent challenge in many vision tasks such as recogni-

tion. While the lighting function is arbitrary, Belhumeur

and Kriegman [1] proved that the set of images of a con-

vex surfaces under distant illumination lies near a low di-

mensional linear subspace. As such, vision applications,

concerned with the recovery of illumination, reflectance or

surface geometry from images, e.g. [2], would benefit from

low-dimensional generative model which captures appear-

ance variations w.r.t. illumination conditions and surface re-

flectance properties.

Typically, subspace construction entails performing a di-

mensionality reduction scheme, e.g. Principal Component

Analysis (PCA), on a large set of real or synthesized images

of object(s) of interest with different imaging conditions.

Despite its great success, the numerical approach has two

major problems. First, the acquired/rendered image ensem-

ble should be statistically significant vis-à-vis capturing the

full behavior of illumination and reflectance. Second, the

curse of dimensionality hinders numerical methods such as

Singular Value Decomposition (SVD) which becomes in-

tractable especially with a large number of large-sized re-

alizations in the image ensemble. One way to bypass the

need for large image ensembles is to use the harmonic ex-

pansion of the image irradiance equation under the convolu-

tion framework [3, 4, 5] to analytically construct appearance

subspaces to represent images under fixed pose but different

illumination conditions.

In this paper, we propose an approach for analytic bilin-

ear subspace construction to capture the full behavior of ap-

pearance variation resulting from non-Lambertian surface

reflectance when exposed to complex illumination. We take

advantage of the two-fold benefit of the frequency-space

representation of the image irradiance equation. First, it

decouples the image formation process such that the illumi-

nation conditions and surface reflectance characteristics are

encoded into the coefficients of a deterministic set of basis

functions, which we term irradiance harmonics. This al-

lows the incorporation of prior information about natural il-

lumination and real world surface materials in the subspace

construction process. Second and more importantly, the

process of finding such subspace can be cast as establishing

a relation between its principal components and that of the

irradiance harmonics. This resolves the issue of dimension-

ality since the source of randomness in the imaging process

becomes the irradiance harmonics coefficients rather than

the whole image realization. Further we take into account

the spatial correlation of image pixels while connecting the

spatial constraints to the irradiance constraints. This implies

applying two linear transforms (hence bilinear) to both the

left and right sides of the input image. Results show the

superiority of our approach compared to the analytic linear

one, e.g. [6, 5], in terms of providing significant decrease in

subspace dimensionality while maintaining higher approx-

imation accuracy. Potential applications involve construct-

ing generative appearance models which can be used for

rendering images under new illumination and in recognition

applications.
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Figure 1. Subspace construction to model illumination and reflectance: assuming fixed pose and surface geometry, the frequency space

representation of the image irradiance decouples the image formation process such that the illumination and reflectance are encoded into

the coefficients cks of the irradiance basis functions Bs which are geometry and pose dependent. In case of analytic subspace construction

(b), the image coefficients cks become the random variable instead of the image realization. Thus the inherent curse of dimensionality

numerical methods such as Singular Value Decomposition can be handled.

2. Analytic Bilinear Subspace Construction
For a specific object geometry under fixed pose, the con-

volution theory [3] implies a multiplicative framework in

the frequency domain where an image is represented as a

linear combination of pre-computed basis functions, which

we term as irradiance harmonics, {Bs}, that are pose and

geometry dependent. See Fig. 1. Representing the illumi-

nation by its spherical harmonics (SH) coefficients lmn as

in [3, 5] and the surface reflectance by its coefficients aqpr
in the basis of [7], [5] or [8], the image irradiance can be

defined as,

E(α, β) =
∑
s

csBs(α, β) (1)

where α = α(x) and β = β(x) are the spherical coor-

dinates of the surface normal �n(x) in the global reference

frame, the harmonic coefficients cs encode light and sur-

face bidirectional reflectance distribution function (BRDF)

where cs = lmn aqpr with s and its corresponding indices

n,m, p, r and q are given by an ordering function of the

basis functions [5].

2.1. Problem Formulation

Let E ∈ RH×W be a matrix representation of the im-

age irradiance of the visible surface normals to the viewer

such that H denotes height and W denotes width. The ob-

jective is to solve for two linear transformations, hence the

name bilinear, Ũ ∈ RH×H′
and Ṽ ∈ RW×W ′

which map

the image space RH×W into a lower-dimensional subspace

RH′×W ′
with H ′ ≤ H and W ′ ≤W where1,

Y � ŨTEṼ (2)

such that this low-dimensional subspace captures most of

the variations observed in the image space due to illumi-

nation and reflectance. Thus the objective is maximize the

total scatter matrix,

{Ũ, Ṽ} = argmax
Ũ,Ṽ

ΨY s.t. ΨY = E{‖Y − Ȳ‖2F }
(3)

where F denotes the matrix Frobenius norm and Ȳ =
E{Y} is the origin of the desired subspace. We need

to point out that this centering is different from [5](pixel-

centering), we opted for image-centering to capture appear-

ance variations which can be used for recognition applica-

tions where the contribution of each image is proportional

to its deviation from the subspace origin.

2.2. Analytic Bilinear PCA Derivation

The optimization problem in Eq. 3 does not admit to a

closed form solution allowing solving for the projection ma-

trices simultaneously. Lu et al. [9] used alternating projec-

tion method to derive a numerical method for multilinear

1 (̃) denotes lower-dimensional.

144514451447



PCA for M -order tensors. In this work we derive the ana-

lytical counterpart for M = 2 of such an approach.

Let Bs ∈ RH×W be the s-th irradiance harmonics

of the visible surface normals be represented as a matrix.

Hence it can be decomposed into a core matrix CB
s and

two orthonormal projection matrices ŨB ∈ RH×H′
and

ṼB ∈ RW×W ′
such that Bs � ŨBC

B
s Ṽ

T
B . The har-

monics projection matrices {ŨB , ṼB} and the core matri-

ces CB
s ∀s are solved for using Bidirectional PCA (BD-

PCA) [10] in an offline stage using all irradiance harmonics

up to illumination and reflectance order (N and P ). This

step determines the lower dimensions H ′ and W ′ based

on the variations inherited from a deterministic ensemble

of bases. It is important to emphasis the computational

advantage of BD-PCA over PCA where BD-PCA requires

H ×W ×H ′ +H ×H ′ ×W ′ multiplications while PCA

requires H ×W × D′ multiplications for D′ ≤ H ×W ,

H ′ ≤ H and W ′ ≤W [10].

As such the image irradiance of the visible surface nor-

mals can be rewritten as,

E = ŨB

(∑
s

csC
B
s

)
ṼT

B (4)

According to the linearity property of the expectation op-

erator, the origin of the image irradiance subspace can be

given by,

Ȳ = ŨT ŨB

(∑
s

E{cs}CB
s

)
ṼT

BṼ (5)

where the harmonics coefficients cs becomes the random

variable rather that the image itself.

In order to simplify the process of finding the projection

matrices {Ũ, Ṽ}, we establish a relation between the or-

thonormal columns of Ũ and Ṽ and those of ŨB and ṼB ,

respectively, such that,

ŨT = AUŨ
T
B , ṼT = AV Ṽ

T
B (6)

where AU ∈ RH′×H′
and AV ∈ RW ′×W ′

are the weight-

ing matrices encoding such a relation. This renders another

benefit of our analytic construction where the optimization

problem in Eq. 3 is solved for less number of parameters,

i.e. H ′ ×H ′ +W ′ ×W ′ rather than H ×H ′ +W ×W ′.
From Eq. 6 and Eq. 4, the image projection can be sim-

plified to,

Y = AU

(∑
s

csC
B
s

)
AT

V (7)

where the solution for {AU ,AV } matrices is given by the

following theorem.

Theorem 1 (Analytic Bilinear PCA) Let {AU ,AV } be
the solution to Eq. 3. Then, based on Alternating Least

Squares, given AV , the weighting matrix AU consists of
the H ′-eigenvectors of ΥT

V such that,

ΥV =
∑
s

∑
s′

E{(cs − c̄s)(cs′ − c̄s′)}CB
s A

T
V AV (C

B
s′)

T

(8)

and given AU , the weighting matrix AV consists of the W ′-
eigenvectors of ΥT

U such that,

ΥU =
∑
s

∑
s′

E{(cs − c̄s)(cs′ − c̄s′)}(CB
s )

TAT
UAUC

B
s′

(9)

where E{(cs− c̄s)(cs′− c̄s′)} = E{cscs′}−E{cs}E{cs′}.
In the following, we use pseudo (truncated) identity ma-

trices for initializing this iterative procedure where conver-

gence is observed within no more than three iterations.

2.3. Model-based Bilinear PCA

The major advantage of the analytic approach is the ex-

plicit relation between the principal components spanning

the image space and the illumination and reflectance coef-

ficients, allowing for a model-based framework for generic

subspace generation. Further, the rotation of the lighting

function can be done analytically, reducing the need for ac-

quired data drastically.

Assuming that the lighting function and the surface ma-

terial/reflectance are independent, one would have [5],

E{cs} = E{lmn }E{aqpr} ,

E{cscs′} = E{lmn lm
′

n′ }E{aqpraq
′

p′r′} (10)

where the respective indices are given by the ordering func-

tion of the irradiance harmonics functions. Nillius and Ek-

lundh [5] derived a closed form for the expectations and co-

variances in Eq. 10. As such, databases of nL illumination

maps, e.g. [11, 12] and nB real world materials, e.g. [13]

can be devised to incorporate prior information in a model-

based framework for analytic subspace construction. See

Fig. 1 for illustration.

3. Connection with Analytic PCA
Nillius and Eklundh [5] proposed an analytic PCA

framework which depends on vector spaces. It can be seen

that our proposed solution generalizes the case of vector

spaces in [5] where the image is considered as a vector

e ∈ RD with D = H×W . The objective is then to find or-

thonormal projection matrix W̃ ∈ RD×D′
which maps the

original vector space RD into a vector subspace RD′
with

D′ ≤ D where y = W̃T e. Comparing the residual of both

cases (linear vs. bilinear), the former case is considered a

special case where the column-mode projection matrix is

identity such that,

e = W̃y⇐⇒ (Ĩ⊗ W̃)y = e v. s.

E = ŨYṼT ⇐⇒ (Ṽ ⊗ Ũ)y = e (11)
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where ⊗ is the Kronecker product of two matrices, Ĩ is the

identity matrix.

4. Space and Time Complexity
Consider a set of K−images in the vector space

{ek}Kk=1. Since each ek ∈ RD is approximated by W̃yk

where W̃ ∈ RD×D′
is common for all images, we need to

keep W̃ and {yk}Kk=1 for all approximations where yk ∈
RD′

. Hence this requires D×D′+K×D′ = (D+K)×D′

scalars to store the reduced representation. As such the

compression ratio using linear representation is K×D
(D+K)×D′ .

In case of bilinear representation, the matrices Ũ ∈
RH×H′

and Ṽ ∈ RW×W ′
and {Yk}Kk=1 can be used

to recover the original image set {Ek}Kk=1 where each

Ek ∈ RH×W is approximated by ŨYkṼ
T . Hence to

store the bilinear representation, we need H × H ′ + W ×
W ′ + K × (H ′ × W ′) scalars with compression ratio

K×H×W
H×H′+W×W ′+K×(H′×W ′) , where H ′ << D′, W ′ << D′

and H ×W = D.

The computation time for the bilinear representation Y
is O(H ′ ×W (H +W ′)) in comparison to O(D ×D′) in

case of linear representation. Note that our algorithm in-

volves two eigen problems of sizes H ′ ×H ′ and W ′ ×W ′

while the linear counterpart involves an eigen problem of

size D′ ×D′. Further, the decomposition of irradiance har-

monics in the linear case needs to solve an eigen problem of

size D×D while the bilinear case needs two eigen problems

with sizes H ×H and W ×W . As such, our bilinear repre-

sentation is computationally more efficient when compared

to the linear one.

5. Experimental Results
In the sequel, surface reflectance is modeled using the

database provided by Mitsubishi Electric Research Labora-

tories (Merl) [13] which represent a wide variety of surface

materials with different diffuse and specular reflection prop-

erties (nB = 100). We fit the BRDF measurements up-to

reflectance order P = 8 to (1) spherical harmonics basis

[3], (2) hemispherical Zernike-based basis [5] and (3) the

isotropic version of hemispherical harmonics (HSH)-based

Helmholtz reflectance basis2 [8]. The main difference be-

tween the three types of basis is modeling the dependency

of the surface BRDF w.r.t. the polar coordinates where as-

sociated Legendre polynomials is used in (1) while Zernike

polynomials and shifted associated Legendre polynomials

in (2) and (3), respectively.

We compute the irradiance harmonics for the visible part

of a unit sphere, nonetheless, this analysis is applicable to

any other geometrical structure. We use illumination or-

der up to N = 10 and reflectance order up to P = 8

2See supplemental material sections 6 and 7 for their closed form.

from which we selected S-harmonics of the highest aver-

age power content where S is chosen such that at least 70%
of the cumulative power content is maintained (S ≈ 580).

The three types of harmonics3 are decomposed using BD-

PCA [10] to obtain their orthonormal projection matrices

spanning the row and column subspaces of the respective

harmonics (H ′ ≈ W ′ = 14), in addition to their corre-

sponding vector subspaces (D′ = 34).

In the following set of experiments, we render testing

images based on [7] (H = W = 100) using an out-of-

training scenario where the illumination maps from sIBL

[12] are used in training the illumination prior (nL = 54)

whereas ten illumination maps from [11] are used to render

testing images with randomly drawn views. Further, the

BRDF that is used to render a testing image is excluded

from training the reflectance prior.

Given an image with the same geometry but under un-

known natural illumination and reflectance. The trained ap-

pearance subspace is fit to such an image using number of

principal components which maintain Q = 98% of harmon-

ics variation. We assess the reconstruction accuracy using

the Mean Absolute Error (MAE) between the testing image

and the reconstructed one where color values are normal-

ized in the range [0, 1].

5.1. Effect of Irradiance Harmonics

Fig. 2 shows the average reconstruction errors for each

material in the Merl BRDF database based on linear and

bilinear subspace construction. It can be noted that bilin-

ear subspace, generally, attains lower error levels for all

surface materials when compared to the linear one. This

highlights the ability of bilinear representation to encode

the intrinsic spatial properties of an image sample com-

pared to the linear one. Further, HSH-based irradiance

harmonics (diamond) provides minimal reconstruction er-

ror compared to SH-based (circle) and Zernike-based ones

(square). This emphasizes the importance of accounting

for the physical properties of non-emitting surfaces where

a surface point receives incident illumination from the in-

coming hemisphere oriented by the surface normal at that

point. In addition, the spectrum based on HSH-based ba-

sis captures more BRDF energy content compared to that

of Zernike-based ones. This is based on the fact that at a

specific illumination order, the set of associated Legendre

polynomials is distinguished by the property that it contains

a polynomial for every combination of order and degree,

compared to Zernike polynomials which are restricted to

even differences between polynomial order and degree.

5.2. Effect of Q%

An important factor which affect the subspace dimen-

sionality is the percentage of harmonic variation Q being

3According to the devised reflectance basis
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Figure 2. The average reconstruction error for each material in the Merl database based on the 100 rendered testing images per material

where subspaces were constructed based spherical and hemispherical irradiance harmonics (refer to the legend) where Q = 98%. Note

that bilinear subspaces surpass the linear ones while the Helmholtz HSH-based irradiance harmonics attains minimal reconstruction errors

for all the surface materials.

maintained when the irradiance harmonics is decomposed

(using PCA or BD-PCA in case of linear or bilinear sub-

space, respectively). Fig. 3(a,b and c) portrays the average

reconstruction error as a function of maintained harmonic

variation percentage for linear and bilinear subspaces, re-

spectively, with range Q ∈ [85%, 99%]. It can be noted

that a bilinear subspace can capture the appearance accu-

rately with lower harmonic variation percentage (i.e. lower-

dimensional subspace) compared to the linear one regard-

less of the basis used to model surface reflectance.

5.3. Effect of Noise

To test the robustness of the proposed subspace w.r.t. to

noise, we added white Gaussian noise with different signal-

to-noise ratio (SNR) levels to each testing image. To con-

duct a fair assessment, we have fixed the harmonic variation

that each subspace captures such that Q = 98%. Fig. 4(a,b

and c) shows the average reconstruction error as a function

of SNR levels. One can observe the superiority of bilinear

construction in capturing surface appearance even at low

SNR levels compared to the linear one. This highlights the

benefit of the proposed bilinear appearance model in terms

of robustness against noise. Fig. 4(d) shows sample recon-

structions for the hippo toy from “Weizmann Photometric

Stereo Database” [2] using the pink-fabric BRDF [13] and

the Eucalyptus illumination map [11] where our bilinear

representation attains minimal reconstruction errors.

Figure 3. The average reconstruction error as a function of the

harmonic variation percentage (Q%) maintained by the subspace.

Surface reflectance is represented using (a) spherical harmon-

ics basis [3], (b) hemispherical Zernike-based basis [5] and (c)

the isotropic hemispherical harmonics (HSH)-based Helmholtz re-

flectance basis [8].

6. Conclusion
In this paper, we proposed an analytic formulation for

subspace reconstruction to capture the full behavior of com-

plex illumination and non-Lambertian reflectance. Thanks

to the frequency-space representation of the image irradi-

ance equation, we were able to incorporate prior informa-

tion about natural illumination and real world surface ma-

terials. The process of finding the analytic subspace was
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Figure 4. The average reconstruction error as a function of the signal-to-noise (SNR) ratio in dB. Surface reflectance is represented using

(a) spherical harmonics basis [3], (b) hemispherical Zernike-based basis [5] and (c) the isotropic hemispherical harmonics (HSH)-based

Helmholtz reflectance basis [8]. One can observe that bilinear subspace still capture appearance even with low SNR levels. (d) Sample

reconstructions of the hippo toy from “Weizmann Photometric Stereo Database” [2] using the pink-fabric BRDF [13] under the Eucalyptus

Grove illumination map [11] with different SNR levels using irradiance harmonics that are based on Zernike-based hemispherical basis

deployed by Nillius ad Eklundh in [5].

cast as establishing a relation between its principal compo-

nents and that of the irradiance harmonics basis functions

to resolve the issue of dimensionality. By representing im-

ages as matrices rather than vectors, we were able to lessen

the number of parameters to be estimated to define a bi-

linear projection which maps the image sample to a lower-

dimensional bilinear subspace. Despite admitting to an it-

erative scheme, our approach showed robustness w.r.t. ini-

tialization while being able to converge in just one iteration

when using truncated full projection. The proposed analytic

bilinear PCA showed significant decrease in dimensionality

when compared to the linear counterpart while attaining the

lowest reconstruction errors. It was further tested against

noisy input showing robust image representation even at

low SNR levels.
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