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Abstract

Under unknown directional lighting, the uncalibrat-
ed Lambertian photometric stereo algorithm recovers the
shape of a smooth surface up to the generalized bas-relief
(GBR) ambiguity. We resolve this ambiguity from the half-
vector symmetry, which is observed in many isotropic mate-
rials. Under this symmetry, a 2D BRDF slice with low-rank
structure can be obtained from an image, if the surface nor-
mals and light directions are correctly recovered. In gener-
al, this structure is destroyed by the GBR ambiguity. As a
result, we can resolve the ambiguity by restoring this struc-
ture. We develop a simple algorithm of auto-calibration
from separable homogeneous specular reflection of real im-
ages. Compared with previous methods, this method takes
a holistic approach to exploiting reflectance symmetry and
produces superior results.

1. Introduction

Photometric stereo is an important research topic in com-
puter vision. It provides direct access to surface normal-
s, which not only are crucial in photo-realistic rendering,
but also help improve 3D reconstruction accuracy [12, 13].
Auto-calibration algorithms are practically important for
photometric stereo, since conventional algorithms(e.g. [25])
requiring known illumination conditions involve additional
efforts of calibration. Under unknown directional lighting,
it is well known that surface normals of a Lambertian ob-
ject can only be determined up to a linear ambiguity [10].
Later it is shown [26, 3] that this ambiguity can be reduced
to the generalized bas-relief (GBR) ambiguity by enforcing
the integrability constraint. This paper focuses on further
resolving the GBR ambiguity.

Reflectance of an opaque material is described by
the bidirectional reflectance distribution function (BRDF),
which is a function of the incoming and outgoing light
directions in a local coordinate system. Reflectance of
many real-world objects satisfies various symmetries, e.g.
isotropy and reciprocity, which provides additional infor-
mation to resolve the GBR ambiguity. As demonstrat-
ed in [20, 22], the GBR ambiguity can be solved using
‘isotropic pairs’ and ‘reciprocal pairs’ identified from one

Figure 1. Synthesized 2D slices of a bivariate BRDF. Values
are color-coded: red means larger BRDF values, blue indicates
smaller values, and white regions are undefined for a BRDF. The
horizontal and vertical axes are two angles φd and θh, which are
defined in Section 3.1. The upper slice, which is obtained from
ground truth normals and light direction, is constant along each
row, while clearly this structure does not hold for the bottom slice
estimated using GBR-distorted normals and light direction.

or two images. Surface points with specular spike [7, 6]
or diffuse maxima [8] can also resolve the GBR ambigui-
ty. However, these methods all require carefully identified
special surface points, which are easily affected by image
noise.

We solve the GBR ambiguity by a holistic analysis of
half-vector symmetry, which suggests the BRDF value stays
unchanged when rotating the incoming and outgoing light
directions as a fixed pair around their bisector. This symme-
try is closely related to the barycentric parameterization of
isotropic BRDFs [19], and can be elegantly expressed in the
halfway/difference parameterization [15]. Given the correc-
t surface normals and light directions, we can obtain a 2D
BRDF slice from each image of a curved isotropic surface.
If the BRDF is half-vector symmetric, this 2D slice should
form a special low-rank matrix when it is properly parame-
terized, as illustrated at the top of Figure 1. However, as we
have observed and will present in subsequent sections, such
a structure is generally destroyed when normals and light
directions are distorted by a GBR transformation, as shown
at the bottom of Figure 1. Restoring the special structure of
2D BRDF slices can resolve the GBR ambiguity. We pro-
pose a simple algorithm to find the solution based on this
observation.
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The contribution of this paper mainly lies in: 1) propos-
ing half-vector symmetry as a novel cue to solve the GBR
ambiguity; 2) proving that half-vector symmetry resolves
the GBR ambiguity; 3) providing a simple auto-calibration
algorithm based on a holistic analysis of this symmetry.

1.1. Related Work

Woodham [25] proposed the first photometric stereo
method with directional lighting information known a pri-
ori. Hayakawa [10] proved that under unknown directional
illumination, normals of a Lambertian surface can only be
recovered up to a linear transformation. This ambiguity is
reduced to the GBR ambiguity by enforcing the integrabili-
ty constraint [26, 3].

Different methods have been proposed to resolve the G-
BR ambiguity. Besides those utilizing interreflection [5] or
special lighting configurations [28], the other methods can
be divided into two categories. The first category of meth-
ods resolves the ambiguity by analyzing reflectance prop-
erties. Earlier methods rely on specific reflectance mod-
els. Georghiades [9] adopted the Torrance-Sparrow mod-
el [24] to tackle the problem. In [7, 6], the authors assumed
specular-spike reflectance and showed that the ambiguity is
solved by detected specular spots in images. More recen-
t methods exploit general reflectance symmetries. Tan et
al. [20, 22, 21] exploited isotropy and reciprocity to recover
GBR parameters from carefully identified ‘isotropic pairs’
and ‘reciprocal pairs’ in a single image.

In the second category, priors on surface albedos are ex-
ploited. Alldrin et al. [1] recovered the GBR parameters
by assuming the true distribution of surface albedo has s-
mall entropy. Shi et al. [17] identified surface points with
the same albedo but different normals to resolve the ambi-
guity. In a recent work [8], the authors assumed smoothly
varying surface albedos in order to locate the ‘lambertian
diffuse maxima’, which are then used in a robust estimation
framework to estimate the GBR paramters.

2. Background

Assume a Lambertian object is illuminated by distant
light sources and imaged by a fixed orthographic camera.
If interreflection and shadow are ignored, the intensity ipf
of a pixel p under the light source sf is given by

ipf = ρpn
�
p sf , (2.1)

where ρp and np are the albedo and normal of the pixel p
respectively, the norm ‖sf‖ and normalized vector sf in-
dicate the light intensity and direction. Note that we use
bold lowercase letters to indicate normalized vectors. For
all P pixels in an image under F different light directions,
Equation 2.1 can be written in a matrix form

I = N�S. (2.2)

Each column of I is an image under one of the light sources
and each row is the intensity profile of a pixel under al-
l different illumination conditions. Columns of N are sur-
face normals multiplied by their corresponding albedos, and
columns of S are light directions scaled by their intensities.
For a smooth surface, normals and light directions can be
recovered to an unknown GBR transformation G [3]:

I = N�S = (GN)�(G−�S) = N̂�Ŝ, (2.3)

where N̂ = GN , Ŝ = G−�S and G has the following
matrix form

G =

⎛
⎝
λ 0 μ
0 λ ν
0 0 1

⎞
⎠ . (2.4)

As is shown in Equation 2.3, a normal n and a light direc-
tion s are distorted in the following way

n̂ =
Gn

‖Gn‖ , ŝ =
G−�s
‖G−�s‖ . (2.5)

The aim of auto-calibration is to restore every n and each s
from n̂ and ŝ respectively by recovering λ, μ and ν.

3. Half-Vector Symmetry and GBR

In this section, we will introduce half-vector symmetry
of BRDFs and present the special low-rank matrix structure
enforced by it. After that, we will examine how the GBR
ambiguity destroys the structure of this matrix.

3.1. Half-Vector Symmetry

BRDF is a function of incoming and outgoing light
directions (ωin,ωout) in a local coordinate system.
Rusinkiewitz [15] proposed to use four spherical coordi-
nates (θh, φh, θd, φd) to parameterize a BRDF as

f(ωin,ωout) = f(θh, φh, θd, φd). (3.1)

Angles in Equation 3.1 are illustrated in Figure 2 and ex-
plained here. First of all, the half vector is defined as
the bisector of lighting and viewing directions, i.e. h =
ωin+ωout

‖ωin+ωout‖ . In a local coordinate system where the sur-
face normal is aligned with the z-axis, θh and φh are the
azimuthal and polar angles of h respectively. θh is called
half angle. θd is named difference angle and is defined as
the angle between h and ωin. φd indicates the rotation an-
gle of ωin and ωout as a pair around the half vector h.

Common BRDF symmetries can be elegantly expressed
using this parameterization. One of the various symme-
tries widely observed in real-world materials is isotropy,
which means BRDF values stay unchanged as the lighting
and viewing directions are rotated as a fixed pair around the
normal. Thus, isotropy reduces the BRDF to a 3D func-
tion f(θh, θd, φd). Many isotropic materials also satisfy the
half-vector symmetry, which suggests that BRDF values are
invariant with rotation of lighting and viewing direction-
s around the half vector. In this case, the BRDF does not
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Figure 2. Halfway/difference parameterization of BRDF [15]

depend on φd and is further reduced to a bivariate function
f(θh, θd).

This kind of bivariate BRDF model is reported in previ-
ous works. For example, Stark et al. [19] studied several
traditional parametric reflectance models and showed that
they are bivariate. Shi et al. [18] further used a biquadratic
function to represent bivariate BRDFs. Romeiro et al. [14]
evaluated the validity of such a representation on the MER-
L BRDF database [11] and concluded that it can be used
to represent most materials in the database to high accura-
cy. Besides, the same bivariate BRDF representation has
already been adopted in calibrated photometric stereo [2]
and reflectometry [14].

3.2. Structured 2D BRDF Slice

The pixel intensity of a general isotropic surface is calcu-
lated as I = f(θh, θd, φh)(n · s). We ignore the light inten-
sity ‖s‖ here for notation simplicity. Under the assumption
of directional lighting, orthographic camera and homoge-
neous surface reflectance, pixel intensities in an image are
determined as

I = fθd(θh, φd)(n · s), (3.2)

where fθd(θh, φd) = f(θh, θd, φd) is a 2D slice of the orig-
inal BRDF.

For a curved surface with abundant normals, e.g. a
sphere, when both the normals n and light direction s are
known, we can estimate a 2D slice of the BRDF, namely
fθd(θh, φd), based on Equation 3.2. This BRDF slice can
be arranged into a matrix form in the range θh ∈ [0, π

2 ],
φd ∈ [0, 2π]. For a bivariate BRDF, f does not depend on
φd. Thus each row of the matrix is constant. Such a low-
rank structure can be clearly seen at the top of Figure 1.

3.3. GBR-Distorted 2D BRDF Slice

When surface normals and light direction are distorted
by a GBR transformation as in Equation 2.5, the 2D BRDF
slice estimated from Equation 3.2 no longer has the low-
rank structure. An example from synthetic data is shown
at the bottom of Figure 1. This observation motivates us to
resolve the GBR ambiguity by restoring the low-rank struc-
ture of BRDF slices.

In the special case that the lighting and viewing direc-
tions coincide, the low-rank property is preserved by the
classic bas-relief ambiguity, i.e. μ = ν = 0 in Equation 2.4.

Figure 3. Projective plane with color-coded BRDF values. A black
ellipse corresponds to a row in the BRDF slice of Figure 1. Top
row shows the effect of a GBR transformation (μ, ν �= 0); bottom
row shows the case of a classic bas-relief transformation with 0 <
λ < 1. Before GBR transformation, the values on an ellipse are
the same, while this is not true after GBR transformation.

In more general cases, however, a GBR transformation will
destroy the low-rank structures of 2D BRDF slices. In fac-
t, for a general bivariate BRDF, we are able to prove the
following proposition.

Proposition 1. Any GBR transformation cannot simulta-
neously perserve the special low-rank structure of bivariate
BRDF slices estimated from two images whose light direc-
tions are not coplanar with the viewing direction.

Here we give some intuitive explanations with illustra-
tive figures. Please refer to appendix for a formal proof.

We consider the problem on the projective plane where a
3D unit vector (x, y, z) is represented by a point (x/z, y/z).
Viewing direction v = (0, 0, 1)�, light direction s, half
vector h and every surface normal n can find their corre-
sponding points on this plane. From an image of a curved
surface, e.g. a sphere, we can observe sufficient number of
points (surface normals) of this plane. Given the lighting
and surface normal directions, a BRDF value can be esti-
mated at each pixel of an image. By encoding these BRDF
values into colors and mapping them to the projective plane
according to the normal at each pixel, we obtain a ‘BRDF
map’ shown in Figure 3, where red indicates larger values.

First of all, as marked by the black ellipse in Figure 3,
points with the same θh form an ellipse around h, with one
of its symmetry axis being the line vs connecting v and s.
For a bivariate BRDF, the BRDF value should be constant
along each ellipse, since θh is fixed for those points on the
same ellipse and θd is fixed for all pixels in the same image.
These ellipses correspond to rows in the matrix representa-
tion of the 2D BRDF slice in Figure 1.

Now we show how a GBR transformation can change the
structure. The GBR transformation moves normals and the
light direction in different ways, as shown in Equation 2.5.
In fact, the transformed light direction ŝ will still lie on the
line vs, according to the equation
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ŝ =
G−T s

‖G−T s‖ �
⎛
⎝

sx
sy

−μsx − νsy + λsz

⎞
⎠ (3.3)

where the symbol�means equal up to a scale. So the trans-
formed half vector ĥ will also stay on the line vs. On the
other hand, a GBR transformation will translate all normals
(along with the BRDF map associated them) by a displace-
ment (μ, ν) and scale them by λ. Besides, BRDF values are
also changed since they are estimated from pixel intensities
and the GBR transformed shading n̂�ŝ using Equation 3.2.

In general, the different motions of normals and the light
direction will make the BRDF value change along the trans-
formed ellipse(consists of points forming the same half an-
gle with ĥ). As a result, the low-rank structure of the 2D
BRDF slice in Figure 1 will be destroyed. For example,
the top of Figure 3 shows the case of non-zero μ, ν. The
transformed BRDF map has varying values along the ellipse
around ĥ. Similarly, at the bottom of Figure 3, we consider
the case of μ = ν = 0 and λ �= 1, i.e. the classic bas-relief
ambiguity. λ < 1 is assumed here. In this case, the GBR
transformation moves the light direction s = [sx, sy, sz]

�

to ŝ, which is even further from v (the origin). This can be
seen from the following equation

ŝ =

⎛
⎝

1
λ 0 0
0 1

λ
0 0 1

⎞
⎠

⎛
⎝

sx
sy
sz

⎞
⎠ �

⎛
⎝

sx/(λsz)
sy/(λsz)

1

⎞
⎠ . (3.4)

At the same time, normals and the associated BRDF map
will be scaled and shrinked toward the origin v. So the
transformed BRDF value is no longer constant along the
transformed ellipse. This again breaks the low-rank struc-
ture of the 2D BRDF slice.

4. Auto-Calibrating Photometric Stereo

We follow the dichromatic reflectance model [16] and
assume that the reflectance of an object is the sum of a d-
iffuse component and a homogeneous specular componen-
t: f(ωin, ωout, x) = ρ(x) + fs(ωin, ωout), where x indi-
cates a surface point, ρ is the diffuse albedo and fs is the
specular BRDF. Given multiple images taken under vary-
ing lightings and a fixed viewpoint, it is relatively easy to
separate the diffuse and specular components using exist-
ing techniques [16, 23]. From the diffuse images, we are
able to recover surface normals and light directions up to a
GBR transformation by the uncalibrated photometric stereo
method [26].

By assuming the specular BRDF is bivariate, it is guar-
anteed by our earlier discussion that surface normals are
correctly recovered iff the low-rank structure in estimated
specular BRDF slices is restored.

One natural idea of restoring the low-rank structure is to
use the established TILT technique [27], which recovers a
low-rank pattern via domain transformation. In our case,

however, both the position of each point (corresponding to
a normal) on the 2D BRDF slice and its associated BRDF
value are changed by a GBR transformation. Thus, TILT is
not suitable for our problem and we need to resort to other
solutions. We formulate a simple optimization algorithm to
estimate the GBR parameters given normals and light direc-
tions up to a GBR ambiguity, together with a set of specular
images.

We first define an objective function to measure how well
the estimated 2D BRDF slice satisfies the special ‘low-rank’
constraint, which in our case means each row is constan-
t. The most straightforward measure is defined as the sum
of variances along each row(the axis of φd). It is obvious
that the correct GBR parameters should correspond to the
unique global minimum of the objective function.

However, there are some practical issues in adopting
such a measure. Firstly, with a real image of limited res-
olution, some entries of the 2D BRDF slice are missing
because the corresponding normals are not observed in the
image. Different rows of the matrix have different number-
s of observations. Thus we give higher weights to rows of
a larger number of valid observations, since the variances
calculated from those rows are more reliable. Secondly,
the absolute variance level is biased by BRDF values. In
other words, rows with larger BRDF values tend to have
larger variances. So we divide the variance of each row by
the square of its mean value for normalization. Thirdly, the
BRDF values estimated from Equation 3.2 at large θh are
usually noisy because the shading term n�s tends to be s-
mall over those regions. So we only use the top 20 rows
(θh = 1◦, 2◦, . . . , 20◦) when evaluating the variance. Here
is the objective function we used,

min
G

N−1∑
i=0

20∑
θh=1

ki,θh
20∑
θ=1

ki,θ

Var [fi(θh, φd)]

Mean2 [fi(θh, φd)]
. (4.1)

In this function, N is the number of input specular images
and we can estimate a 2D BRDF slice fi from each image.
The integer ki,θh is the number of valid observations in row
θh of slice i. Note that the calculation of variance and mean
are evaluated only on valid entries.

Empirically, we found it useful to add one more con-
straint to the objective function 4.1. We require the sum
of intensities (BRDF value times n�s) in the top 20 rows
makes up at least 5% of that of the whole 2D slice. If this
condition is not satisfied in a BRDF slice, a large constant
penalty value will replace the sum of variance for that slice.
This simple practice helps exclude some degenerated solu-
tions, e.g. a very small λ compressing the whole BRDF map
to a single point.

The proposed objective function is difficult to optimize
because both the position and value of the BRDF map
depend on the GBR transformation. We simply adopt a
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Figure 4. Error plot of results on MERL database. BRDFs are sorted according to error values. Five materials from the database are
presented using a rendered sphere. One of the recovered BRDF slice(only the range θh ∈ [0◦, 40◦] is shown) is also shown above the
rendered sphere.

coarse-to-fine search for optimization. The objective func-
tion is first evaluated at coarsely sampled grid points in
the parameter space. We then search nearby the optimal
grid point with higher sampling rate. Empirically, we find
the objective function is smooth and this multi-resolution
search can generate good results. As in [1], the search s-
pace is restricted to −5 ≤ μ, ν ≤ 5, 0 < λ ≤ 5. The initial
sampling step is set as 0.5. After each iteration, both search
range and sampling step are reduced to 1

5 of the coarser one.
Three iterations suffices to find an accurate estimation of G-
BR parameters.

5. Experimental Validation

5.1. Experiments on Synthetic Datasets

We evaluated our method using images synthesized from
the MERL BRDF database [11]. For each material, we ren-
dered four images of a sphere with light directions random-
ly sampled over the visible hemisphere. We transformed
the known normals and light directions using a GBR trans-
formation whose parameters are randomly sampled in the
search space. These four images and the GBR-distorted
normals and lighting directions are fed into our algorithm
for test. We compared the recovered normal directions with
ground truth and recorded the mean angular error.

For each material in the database, we repeated the above
process 10 times with different light directions and GBR
parameters. A plot of median error is shown in Figure 4 for
all the BRDFs in the database. The results show that the
proposed method is capable of recovering surface normal-
s from the GBR ambiguity with high accuracy. Note that
even some BRDFs are not strictly half-vector symmetric,
the correct solutions still correspond to the global optimal
of the objective function.

5.2. Experiments on Real Object Datasets

We have also evaluated our method on real data. Each
dataset consists of a few images of an object with homoge-

neous specular reflection. As a first step, color information
was used to separate each image into a diffuse image and
a specular image [16]. To handle shadows, the algorithm
in [4] was used to fill in missing values in shadow region-
s. After pre-processing, we applied the technique of uncali-
brated Lambertian photometric stereo to obtain normals and
light directions up to an unknown GBR tranformation [26].
Finally, our coarse-to-fine optimization was performed us-
ing the specular images to fully recover surface normals.

To assess quality of the recovered normals, we compared
our results with normals computed from calibrated photo-
metric stereo. In the calibrated method, lighting informa-
tion was known and the same set of diffuse images were
used. As shown on the left of Figure 6, our algorithm suc-
cessfully recovered normals of the apple surface and the re-
covered BRDF slice shows the expected low-rank structure,
which is also observed in the result of calibrated photomet-
ric stereo. Figure 7 shows results on other datasets.

Comparison of our method with several other algorithms
is shown in Table 1. Those [1, 17, 8] utilizing only albedo
information were run on diffuse images. As can be seen, our
method achieves a similar performance as the diffuse max-
ima method [8] and outperforms the other methods. Please
notice that our method and [8] exploit completely different
sources of information. While [8] is purely based on diffuse
images and owns its robustness to a robust estimator, our
method exploits information in specular reflection and its
accuracy comes from a robust global structure. These two
methods can reinforce each other and better performance
can be expected by fusing them.

It is worth noting that in most examples, the BRDF s-
lice recovered by our method shows an even better ‘low-
rank’ pattern than that of the slice from calibrated photomet-
ric stereo. This difference suggests inaccuracy of record-
ed light directions. We carefully conducted another ex-
periment to further validate our method. By painting a
sphere with green paint whose BRDF is known, we pre-
pared a dataset with known ground truths for both normals
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Method Duck Apple Pear Pear2
[1] 7.5(5.4) 9.0(3.9) 9.7(3.6) 23.8(9.4)

[17] 6.6(5.5) 8.9(3.6) 24.9(8.3) 23.7(10.3)
[6] 7.7(4.4) 8.7(3.9) 4.6(2.4) 13.8(5.3)

[21] 7.3 (9.4) 9.8 (16.2) N/A N/A
[8] 7.4(4.8) 7.0(2.9) 7.3(2.7) 9.2(4.9)

Ours 5.7(4.5) 7.8(3.1) 4.4(2.4) 11.7(4.9)

Table 1. Mean and standard deviation(in brackets) of angular er-
ror(deg) by different methods on four datasets. Normals obtained
from calibrated photometric stereo are regarded as ground truth.

Method Normal error BRDF error
Calibrated 4.03(2.87) 0.091

Ours 3.95(1.87) 0.071
Table 2. The first column shows mean and standard deviation(in
brackets) of angular error(deg) of normals by different methods
on the Sphere dataset; the second column shows the root-mean-
square error of recovered BRDF slices.

and the BRDF. After separating six images of the sphere
under directional lighting into diffuse and specular com-
ponents, both the calibrated method and our method were
run respectively. Since the BRDF of the sphere is homoge-
neous across its surface, we used the original images instead
of separated specular images in our algorithm to solve the
GBR ambiguity. We then estimated the BRDF slice from
each image based on normals(and light directions) recov-
ered from both methods respectively. Recovered normals
and BRDF slices were compared to ground truths. As can
be seen from Figure 5 and Table 2, our method performed
slightly better than the calibrated method in this case.

6. Conclusion and Discussion

In this paper, we have carefully examined the structure
of a 2D BRDF slice estimated from a curved surface under
directional illumination. We have shown that if the BRDF
is bivariate, which is implied by isotropy and half-vector
symmetry, the estimated BRDF slice will have a special
low-rank structure and this structure is generally destroyed
by GBR-distorted normals and light directions. Based on
this observation, we have formulated a simple algorithm to
automatically calibrate photometric stereo by restoring the
structure. Our approach is distinguished from several pre-
vious works in that it seeks to recover a global structure in-
stead of relying on a few critical surface points. This holistic
approach makes our algorithm robust and accurate.

Limitations As implied by the algorithm, a major limi-
tation to our method is that it requires sufficent normal vari-
ation to work. In fact, while information at all pixels with
different normals helps achieve robustness, it excludes our
method from dealing with extreme cases where only a few
different normals are observed in an image. A possible solu-
tion is to use special light configurations [28]. Alternatively,
we might also fit parametric models to these limited obser-

Figure 5. Results of the dataset Sphere. The first row shows the
separation result of an image. The second row shows normals and
the last row displays BRDF slices. From left to right are ground
truth, results estimated from calibrated method, results produced
by our method.

vations before analyzing the structure of the BRDF slice.

Acknowledgements

We thank the reviewers for their helpful suggestions.
This project is partially supported by the AOARD and ON-
RG project R-263-000-A36-597.

References

[1] N. Alldrin, S. Mallick, and D. Kriegman. Resolving the gen-
eralized bas-relief ambiguity by entropy minimization. In
Proc. CVPR, pages 1–7. IEEE, 2007. 2, 5, 6

[2] N. Alldrin, T. Zickler, and D. Kriegman. Photometric stere-
o with non-parametric and spatially-varying reflectance. In
Proc. CVPR, pages 1–8. IEEE, 2008. 3

[3] P. Belhumeur, D. Kriegman, and A. Yuille. The bas-
relief ambiguity. International Journal of Computer Vision,
35(1):33–44, 1999. 1, 2

[4] M. Brand. Incremental singular value decomposition of un-
certain data with missing values. In Proc. ECCV, pages 707–
720. Springer, 2002. 5

[5] M. Chandraker, F. Kahl, and D. Kriegman. Reflections on the
generalized bas-relief ambiguity. In Proc. CVPR, volume 1,
pages 788–795. IEEE, 2005. 2

[6] O. Drbohlav and M. Chaniler. Can two specular pixels cal-
ibrate photometric stereo? In Proc. ICCV, volume 2, pages
1850–1857. IEEE, 2005. 1, 2, 6
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GBR-distorted normals, our recovered normals, height map from calibrated photometric stereo, height map using GBR-distorted normals,
our recovered height map, BRDF slices. In the last column, there are three BRDF slices for each dataset. From top to bottom, they are
estimated using normals from calibrated photometric stero, GBR-distorted normals and our recovered normals respectively.
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A. Proof

Proof. Consider the problem on the projective plane. A-
part from a BRDF value, each point is also associated with
a shading value n�s and an intensity value I which is the
BRDF multiplied by the shading. For a bivariate BRDF,
the BRDF map consists of a set of ellipses around h with a
symmetry axis vs. It is clear the shading map is also sym-
metric about vs. So the intensity map is symmetric about
vs and its maximum m must lie on vs.

When the GBR ambiguity is incurred, the transformed
light direction ŝ will keep lying on the line vs based on e-
quation 3.3, and so is ĥ. However, the intensity maximum
will experience a translation (μ, ν) and a scaling λ. If (μ, ν)
is not parallel to vs, the intensity maximum will shift away

Figure 8. Projective plane with BRDF values. Top: BRDF trans-
formed by a general GBR; bottom: BRDF transformed by GBR
with μ, ν = 0, 0 < λ < 1.

from vs to m1. Now we consider the point m2, which lies
on the other side of vs and is the mirror point of m1 across
vs. Its intensity is smaller than that of m1 and their trans-
formed shading values are equal: m�

1 ŝ = m�
2 ŝ. Thus, their

transformed BRDF values are different. On the other hand,
these two points have the same transformed half angle and
thus they belong to the same row of the GBR distorted 2D
BRDF slice. So the low-rank structure is broken.

Even if (μ, ν) is parallel to vs, the GBR transformation
will still break the low-rank structure of the BRDF slice
from another image whose lighting direction is not copla-
nar with v and s.

In the following, we consider the case μ, ν = 0. We
assume λ > 0 by ignoring the concave/convex ambiguity.
We will prove by contradiction for the case λ < 1. The case
of λ > 1 can be proved similarly. Assume the low-rank
structure still hold in the GBR-transformed BRDF slice.

Since the normalsnv = v andns = s have the same half
angle: θh = θd, they should have the same BRDF value

I(nv)

cos(2θd)
=

I(ns)

cos(0)
. (A.1)

A similar relation holds for the GBR transformed case

Î(nv)

cos(2θ̂d)
=

Î(nŝ)

cos(0)
(A.2)

where Î is the transformed intensity map, nŝ = ŝ, and θ̂d
is the transformed half angle for nv and nŝ. As shown
in Section 3.3, Î is the result of shrinking I toward v and
ŝ is further from v than s, we have I(nv) = Î(nv) and
θd < θ̂d. Combining this with Equation (A.1,A.2), it can
be derived that the relation Î(nŝ) > I(ns) should hold.
On the other hand, nŝ is transformed from nx, which lies
even further from v: Î(nŝ) = I(nx). For most real-
world BRDFs, Intensity decreases as the normal moves
away from the fixed viewing direction v and lighting di-
rection s: I(nx) < I(ns). thus, Î(nŝ) < I(ns). Contra-
diction.
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