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Abstract

Articulated objects represent an important class of objects
in our everyday environment. Automatic detection of the type
of articulated or otherwise restricted motion and extraction
of the corresponding motion parameters are therefore of high
value, e.g. in order to augment an otherwise static 3D re-
construction with dynamic semantics, such as rotation axes
and allowable translation directions for certain rigid parts
or objects. Hence, in this paper, a novel theory to analyse
relative transformations between two motion-restricted parts
will be presented. The analysis is based on linear subspaces
spanned by relative transformations. Moreover, a signa-
ture for relative transformations will be introduced which
uniquely specifies the type of restricted motion encoded in
these relative transformations. This theoretic framework
enables the derivation of novel algebraic constraints, such
as low-rank constraints for subsequent rotations around two
fixed axes for example. Lastly, given the type of restricted
motion as predicted by the signature, the paper shows how to
extract all the motion parameters with matrix manipulations
from linear algebra. Our theory is verified on several real
data sets, such as a rotating blackboard or a wheel rolling
on the floor amongst others.

1. Introduction
Rigid structure-from-motion (SfM) has developed to a

mature state in recent years and can provide convincing and

highly accurate 3D reconstructions. Furthermore, 3D point

clouds of indoor scenes can nowadays be quickly captured

with cheap depth cameras. Unfortunately, even though the

majority of a scene is generally indeed rigid, the aforemen-

tioned techniques will reconstruct all the objects in a scene

in a static state and rigidly attached to the background. Sep-

arate objects or object parts and their dynamic relation will

therefore be lost in this process. However, the observation

of articulated or otherwise restricted motions between ob-

jects can provide valuable information about the dynamic

relationship between these objects and parts and ultimately

also about semantic classes of objects. In this paper, we

∗This work was done while this author was employed by ETH Zürich

Figure 1: Application example : The framework in this paper
enables the automatic extraction of the rotation axis (in red) and
the translation direction (in green) from rigid transformations of a
wheel rolling on the street. Moreover, as a side results, the wheel
radius (in pink) and its contact line (in blue) with the ground can
be inferred, as well.

therefore focus on such motions and the primary goal is

to automatically detect the type of articulated or restricted

motion class between two parts or objects and extract all

relevant parameters of these restricted motions. We refer

to Fig. 1 for an example application where the motion pa-

rameters of a wheel rolling on the street have been extracted

automatically. In order to achieve this, we propose to analyse

the relative rigid transformations between two parts. Note

that the computation of these relative transformations is not

the main objective of this work. These transformations can

for example be computed with existing methods such as

an iterative-closest-point algorithm applied to point clouds

measured by depth cameras, or a classical SfM approach

working on pure image data as we did in our experiments.

The paper will explain that the relative transformations can

be arranged in a single motion matrix which encodes all the

information for determining which type of restricted mo-

tion has been observed and for computing all the relevant

parameters of that motion.
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Contribution: The main contribution of the present

paper is the introduction of a so-called signature for rela-

tive transformations between two parts. This signature is a

function of the motion matrix which is entirely determined

by considering observed transformations as data samples

from a linear subspace. The signature uniquely describes

the type of restricted motion, such as a planar motion where

an object translates on a plane and rotates around rotation

axes which are orthogonal to this plane. Different signa-

tures basically represent an extensive catalogue of restricted

motions in the sense that they enumerate various types of

motions together with algebraic constraints which have to

be met by a certain type of restriction. Besides motivating

and deriving properties of this signature, we will also show

how all the relevant parameters of a restricted motion can be

extracted by simply solving linear systems of equations. In

addition to subsuming well-known cases of articulated mo-

tions (such as rotations around a fixed point), our derivations

will lead to an unified framework which also covers novel

types of restricted motions, e.g. articulated motions around

two non-intersecting fixed rotation axes or around a trans-

lating rotation axis with fixed orientation can be treated in

the very same way. As we will see in the experiments, these

novel types of restricted motions are practically highly rele-

vant. Note that in cases where not every individual part can

be directly observed (e.g. due to lack of trackable features or
occlusion), the resulting observable motions can become a

complex chain of individual transformations. Being a unique

feature of our analysis, our method can in particular detect

a sequence of two subsequent rotations and untangle these

so that the motion of a potential intermediate part can be

hypothesized accurately.

2. Related Work

We will mainly discuss related work about articulated

motions and subspace representations for SfM, since our

method relies on those techniques. We refer to [10, 1] and

references therein for general rigid SfM.

The analysis of articulated motions has been a topic of ac-

tive research since many years. The importance of articulated

skeletons for approximating the motion of a human body

has often motivated research about articulated motions in

computer vision or graphics [14, 13, 6, 21, 16, 15], whereas

in robotics, teaching robots how to interact with man-made

environments has been a driving force [12, 17]. More specif-

ically, O’Brien et al. [14] measured relative transformations

between articulated parts with a magnetic motion capture

system. Assuming two parts rotate around a common fixed

joint, this joint represents a fixed point under the relative

transformations and can be computed with linear methods.

This observation is actually the major reoccuring concept

in most previous work which largely differ in the methods

employed for fitting a model to observations. For example,

recent work by Chang and Zwicker [4] proposed an energy

minimization approach to register range scans from artic-

ulated objects. For 3D reconstructions based on general

non-rigid and articulated image feature trajectories, Paladini

et al. [15] proposed a non-convex optimization algorithm

with projections onto the Stiefel manifold in order to ensure

valid camera matrices. The work by Fayad et al. [8] phrased
the problem of articulated SfM from point correspondences

as a discrete-continuous optimization problem which was

optimized with an alternating approach switching between

discrete graph-cut and continuous optimization. Framing

the recovery of an articulated motion also as a non-linear

and non-convex optimization problem, Ross et al. [16] intro-
duced a probabilistic graphical model for articulated motions.

Sturm et al.’s model selection based formulation [17] is one

of the few approaches, which also considers 1D translational

joints. However, more complex restricted motions such as

combinations of rotational and translational joints are not

addressed. Note that in contrast to the algebraic focus of

our work, these approaches put more emphasis on the opti-

mization of the objective function compared to the algebraic

constraints due to restricted motions.

Contrary to our analysis of relative transformations, sev-

eral recent approaches in computer vision are based on

subspace intersection constraints [19, 21, 7, 5]. In those

approaches, each articulated part has an associated 4D sub-

space which is given by the span of the trajectories of tracked

feature points [18] on that articulated part. As shown in

[19, 21], the underlying reason for intersecting trajectory

subspaces is again the fixed point assumption due to a joint

at a fixed location relative to the two articulated parts. Note

that the very same subspace intersection constraints can also

be used for motion segmentation purposes [20]. While this

already leads to powerful constraints for simple articulated

motions around a single fixed joint, the following sections

will present an algebraically motivated formulation for the

analysis of relative transformations between parts. This for-

mulation clearly goes beyond the current state-of-the-art and

leads to novel constraints describing relations between re-

stricted motions. The vectorized representation of relative

transformations we will introduce is also related to recent

work about rigid factorization-based SfM [2, 3]. This line of

work established the relation between trajectory subspaces

observed in images and the subspaces spanned by rigid trans-

formations.

3. Notation
The sequence of integers from 1 to F is denoted as

[F ] = {1, . . . , F}. Stacking of row or column vectors of

the same size into a matrix is denoted with an arrow ⇓f , i.e.
[⇓f tTf ] is the matrix which results by stacking all the vec-

tors tf for f ∈ [F ] as rows into a matrix. Matlab indexing

notation is used for slicing out subblocks of a matrix, e.g.
M∶,1∶9 denotes the first 9 columns of matrix M. A basis for
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the orthogonal complement of the columns of a matrix A
will be denoted with [A]

�
, i.e.AT [A]

�
= 0. The vectoriza-

tion of a matrix A is denoted as vec (A). This operations
stacks all the columns ofA below each other in one single

column vector, in Matlab notation vec(A) = A(:). The
representation of rotations in angle-axis notation will be very

important throughout this paper. Specifically, the rotation

matrix around an axis a by an angle α can be represented in

the following way

Ra,α = cosαI3 + (1 − cosα)aaT + sinα [a]
×
, (1)

where [a]
×
denotes the cross-product matrix, i.e. [a]

×
b

denotes the cross-product between the vectors a and b.

4. Rigid Motion Subspaces
As an element of SE3, the special Euclidean group in R

3,

a rigid transformation at frame f ∈ [F ]

Tf = [Rf tf
0T 1

] (2)

has 3 non-linear and 3 linear degrees of freedom. This highly

non-linear special Euclidean group can be embedded in a

higher-dimensional linear space and we are going to see that
this renders the analysis of restricted motions particularly

simple. Hence, rigid transformations will be considered as

points in R
13, i.e. (vec (Rf)T , tTf ,1) and F general rigid

motions span a 12D affine subspace embedded in RF which

is spanned by the columns of the matrix

[⇓f (vec (Rf)T , tTf ,1)] . (3)

This representation of rigid motions as an affine subspace

in R
F has already appeared in [2] . However, that work

focused on factorization-based structure-from-motion and

the major challenge was to find the matrix in Eq. (3) with a

factorization algorithm, i.e. the recovery of these rigid trans-

formations based on factorization of feature trajectory data.

In contrast, the present work analyses restricted motions and

assumes that the relative transformations Tf at each frame

f ∈ [F ] between two parts are given as input. The goal is

then to extract all the aspects of the restricted motion by ana-

lyzing the subspace structure of the matrix in Eq. (3). These

aspects include the determination of the type of articulated

or restricted motion and all its parameters, e.g. the orienta-
tion and location of rotation axes amongst others. Such an

analysis can actually be slightly simplified by considering

Tf − I4 instead of Tf since the ’homogeneous 1’ cancels
in that case and this allows to reason about 12D linear sub-
spaces embedded in R

F . Hence, rigid transformations will

be mapped to vectors (vec (Rf − I3)T , tTf ) ∈ R
12 and F

general rigid motions will therefore span a 12-dimensional

linear subspace embedded in R
F which is defined by the

column span of the motion matrix

M = [⇓f (vec (Rf − I3)T , tTf )] ∈ RF×12. (4)

5. Motion Signatures
The important observation is that restricted motions gen-

erally do not entirely span the aforementioned 12D space.

Indeed, in the following we are going to show that each type

of restricted motion will yield a specific low-dimensional

subspace structure which allows to distinguish between dif-

ferent motions by just considering the matrix M. More

specifically, we propose a tuple of integers called signature
in order to capture the low-dimensional subspace structure of

an restricted motion. This signature is defined as a function

of the motion matrix M in the following way

sig (M) = (rank (M∶,1∶9) , rank (M) − rank (M∶,1∶9)) .
The signature sig (M) uniquely determines the type of re-

stricted motion encoded in M (see list in Tab. 1). The first

entry of the signature sig (M) = (r, d) entirely determines

the number of fixed rotation axes involved in the restricted

motion whereas the second entry specifies the dimensional-

ity d of the subspace in which the object translates over time.

Sec. 7 will explain in more detail what we mean with transla-

tions in restricted motions. Tab. 1 summarizes the results of

the analysis based on our unified framework for articulated

and restricted motions whereas Tab. 2 shows several intuitive

examples of specific instances of such motions handled by

our framework. Moreover, once the signature is computed

and the type of restricted motion is thereby determined, all

aspects of this motion can be directly extracted by carefully

analyzing the nullspace structure of M (see Sec. 8).

It will turn out to be important to distinguish between

two subspaces determined by the matrix M. The translation

subspace is spanned by the columns of the translational part

M∶,10∶12 whereas the rotation subspace is spanned by the

rotational part of the motion matrix M∶,1∶9. Note that the

second entry of the signature encodes the dimensionality d
of the subspace of the translation subspace which is not yet

contained in the rotation subspace. It is not obvious why

the translation subspace is entirely contained in the rotation

subspace in the absence of any dynamic translation, i.e. when
d = 0. This is especially true for rotations around two fixed
axes. The following two sections will explain why this is

the case. Initially in Sec. 6, time-varying translations will

be ignored, i.e. we assume d = 0 and once an appropriate

formulation has been derived, we will treat the case d ≠ 0 in

Sec. 7. As the case of pure translations is trivial (i.e. r = 0),
we omit any further discussion of this case.

6. Non-Translating Joints
In the following, the signature for rotations around one,

two, or three fixed axes will be explained under the assump-

tion that the joint is not translating, i.e. d = 0. Specifically,
we will derive the values of the two entries of the signature

for each type of restricted motion. Two questions need to

be addressed in order to do so. Firstly, the dimensionality

of the rotation subspace span (M∶,1∶9) needs to be derived.
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Type of Articulation / Restricted Motion Signature Formula for relative transformation Tf with T ∈ R3×d

Pure d-dimensional translation (0, d) [ I3 Tt̃f
01×3 1

]

Rotation around one axis and d-dimensional

translation
(2, d) [Ra,αf

t −Ra,αf
t +Tt̃f

01×3 1
]

Rotation around two axes and

d-dimensional translation
(8, d) [Rb,βf

tb +Tt̃f
01×3 1

] [ I3 −tb + ta
01×3 1

] [Ra,αf
−ta

01×3 1
]

Arbitrary rotations and d-dimensional

translation
(9, d) [ Rf t −Rft +Tt̃f

01×3 1
]

Table 1: List of possible signatures: The dimension d of the dynamic translations Tt̃f can be zero. Rotations around two intersecting
axes are captured by choosing tb = ta. Note that the axes a and b do not have to be orthogonal. The important class of planar motions

corresponds to signature (2,2) with a rotation axis orthogonal to the translation direction, i.e. aTT = 0T .

Secondly, we need to show that the translation subspace

span (M∶,10∶12) is entirely contained inside the rotation sub-

space since a signature of the form (r,0) encodes exactly

this property. In preparation for translating joints in Sec. 7,

this property will be shown by finding a matrix X ∈ R
9×3

such that

M [X
I3

] = 0F×3. (5)

6.1. Rotations Around One Axis
A rotation around an axis a which is located at point t by

a time-varying angle αf reads like

[Rf tf
0T 1

] = [Ra,αf
t −Ra,αf

t
0T 1

] , (6)

which can be understood as changing the coordinate system

by first moving the location of the axis to the origin, then

applying the rotation, before finally reestablishing the orig-

inal coordinate origin. Let us have a look at the axis-angle

representation of

Ra,αf
− I3 = (1 − cosαf) (aaT − I3) + sinαf [a]

×
. (7)

This shows that the rotation subspace will only span a 2-
dimensional subspace determined by the column span of

[⇓f (1 − cosαf , sinαf)] ∈ RF×2 since

M∶,1∶9 = [⇓f vec (Ra,αf
− I3)

T ] (8)

= [⇓f (1 − cosαf , sinαf)]
⎡⎢⎢⎢⎣
vec (aaT − I3)

T

vec ([a]
×
)T

⎤⎥⎥⎥⎦
.

This explains the first entry of the signature in the case of

rotations around one axis.

What remains to be shown is that the translation sub-

space is entirely contained in the rotation subspace. It is

well-known, that the location of a non-translating joint is un-

affected by a rotation around this joint and hence t represents
a fixed point. In turn, we have

([Ra,αf
, t −Ra,αf

t] − [I3 0])(t
1
) = 0, (9)

and application of a property of the Kronecker-product1

1For any matrices of compatible size, the following holds:

yields the equation M [XT , I3]
T = 0F×3 with X = t ⊗

I3. This shows in particular that the translation subspace

span (M∶,10∶12) is a linear combination of the rotation sub-

space span (M∶,1∶9) and hence entirely contained in the lat-
ter.

6.2. Rotations Around Two Axes
The sequential application of rotations around two fixed

axes a at location ta and b at location tb which are not
necessarily located at the same point in space looks like

[Rf tf
0T 1

] = [Rb,βf
tb −Rb,βf

tb
0T 1

] [Ra,αf ta −Ra,αf ta
0T 1

] .
Since a and b are eigenvectors of Ra,αf

and Rb,βf
respec-

tively, it holds that bTRb,βf
Ra,αf

a = bTa is constant over

time. Hence, we have that M∶,1∶9 (a⊗ b) = 0F×1 which

shows that in this case the rank is at most 8. Using the angle-
axis representation, it can actually be shown that the rank

equals 8.
The translations are equal to tf = tb +

Rb,βf
(−tb + ta −Ra,αf

ta) and therefore

M∶,10∶12 = [⇓f −vec (Rb,βf
− I3)

T [tb ⊗ I3]

−vec (Rb,βf
(Ra,αf

− I3))
T [ta ⊗ I3]] . (10)

It can be shown (e.g. by inserting the angle-axis

representation for rotation matrices) that the col-

umn span of both [⇓f −vec (Rb,βf
− I3)

T ] and

[⇓f −vec (Rb,βf
(Ra,αf

− I3))
T ] are contained in

the column span of M∶,1∶9. Therefore, there again exists

a matrix X such that Eq. (5) holds. We refer to the

supplemental material [11] for a detailed derivation and

an explicit formula for X since no valuable insight can be

gained by the required algebraic manipulations.

6.3. Rotations Around Three Axes
Here, we assume a ball joint, i.e. all three axes are located

at the same point in space t. Rotations around three fixed

axes are obviously fully general, i.e. any rotation can be

vec (AYB) = [BT ⊗A]vec (Y).
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Example Description Signature Additional Constraints

Planar motion, i.e. a rigid object which translates

in a plane orthogonal to its rotation axis.
(2,2)

Rotation axis and translation

direction are orthogonal

aTT = 0T

A wheel rolling on the ground: the wheel rotates

around an axis with fixed orientation and

translates at the same time along a line

orthogonal to the axis.

(2,1)

Rotation axis and translation

direction are orthogonal, i.e.
aTT = 0, and linear relationship

between αf and magnitude of

translation t̃f .

A rotatable blackboard: the stand undergoes a

planar motion whereas the blackboard itself also

rotates around an axis which is parallel to the

plane of planar motion.

(8,2) Intersecting axes, i.e. ta = tb, and
orthogonal axes aTb = 0.

Drawer opening and closing along a 1D line. (0,1)

Table 2: Examples of restricted motions which can be handled by the formulation presented in this paper. Note that a static camera
observing the dynamic object can act itself as one of the two moving parts defining the relative motion between the two parts.

decomposed into three sequential rotations around these

three fixed axes. Hence the rotation subspace spans a 9D
space. Moreover, since t is again unaffected by the rotation,

the same derivation as in Sec. 6.1 applies and hence Eq. (5)

holds with X = t⊗ I3.

7. Translating Joints
Modeling also a time-varying translational component t̂f

in the restricted motion between two parts leads to slightly

more complex formulas. For example, a rotation around one

axis which at the same time translates is modeled as

[Rf tf
0T 1

] = [ I3 t̂f
0T 1

] [Ra,αf
t −Ra,αf

t
0T 1

] . (11)

Let us assume that the time-varying translations are restricted

to a d-dimensional subspace, i.e. t̂f = Tt̃f with T ∈ R3×d.

Given the observed relative transformations [Rf , tf ], we
would like to extract not only the parameters of the rotation

(e.g. the axes of rotation and their locations) but also the

low-dimensional subspace spanned by the translations, i.e.
span (T).

Coming back to the previous example, note that neither

t + t̂f − Ra,αf
t nor the translation of the inverse relative

transformation −RT
a,αf

(t + t̂f) + t has a low-dimensional

structure, even though t̂f might have. If we knew the loca-

tion t of the joint, we could apply a coordinate transforma-

tion to set the origin of the coordinate system to this joint

location. In that case, t becomes equal to the zero-vector

and the low-dimensional subspace could directly be read of

from the relative transformation. However, the joint location

is usually not known upfront. Nevertheless, the translational

component of the relative transformation can be reformu-

lated according to [Rf − I3] t + tf = t̂f . If the t̂f originate

from a d-dimensional subspace spanned by the columns of

T ∈ R3×d, we get

[⇒f [Rf − I3] t + tf ] = [⇒f t̂f ] = T [⇒f t̃f ] . (12)

One approach to solve this low-rank problem is to use poly-

nomial minor constraints in the entries of t. This will lead
to trivariate polynomial equations of grade d + 1. Solving
such multivaritate polynomial systems is a delicate issue.

Therefore, here we sidestep this by building upon the pre-

viously derived formula in Eq. (5). This has the additional

benefit that a single unified framework can handle all the

cases mentioned in Tab. 1. As can be seen by the example in

Eq. (11), the time-varying translations t̂f are simply added

as additional offsets to the translations which would result

without time-varying translations. Hence, using the matrices

X ∈ R9×3 derived in Sec. 6, we see that

M [X
I3

] = [⇓f t̂Tf ] = [⇓f t̃Tf ]TT . (13)

The component of the translations M∶,10∶12 which is linearly

independent of the rotational partM∶,1∶9 is therefore entirely

due to the dynamic translation. Hence, the second entry of

the signature equals d because the dynamic translations are

restricted to a d-dimensional subspace. Finally, since the

matrix T is constant throughout time we finally arrive at the

following equation which will turn out to be crucial for the

extraction of the motion parameters (see Sec. 8.2)

M [X
I3

] [T]
�
= [⇓f t̃Tf ]TT [T]

�
= 0F×3−d. (14)

Remark: Planar translations or translations along a

line are a relative concept. Specifically, considering the

inverse relative transformations T −1
f might not reveal a low-

dimensional structureT ∈ R3×d contained in the translations,

even though Tf contains one. Therefore, in order to be on the

safe side, both sets of transformations need to be analyzed.
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8. Extraction of Parameters
Having shown that the signature provides an unique pat-

tern for varying types of restricted motion, an appropriate

method to extract the motion parameters can be chosen ac-

cording to the signature encoded in the motion matrixM. In

the following, we shortly outline how these parameters can

be extracted by simply solving several linear systems.

8.1. Rotation Axes and Angles
If the signature tells us that the motion is around one

fixed axis (i.e. the first entry of the signature equals 2), the
linear system M∶,1∶9 (a⊗ I3) = 0F×3 needs to be solved for

the axis a. This is based on the fact that the axis a is an

eigenvector with eigenvalue 1 of each Ra,αf
. The approach

for rotations around two fixed axes is based on the fact

that bTRb,βf
Ra,αf

a = bTa which is constant throughout

time. Hence, the only nullvector of M∶,1∶9 must be of the

form n = a ⊗ b. Hence, in case the signature predicts a

rotation around two axes (i.e. the first entry equals 8), the
one-dimensional nullspace n ∈ R

9 of M∶,1∶9 is computed

first, this nullspace is then reshaped into a 3-by-3 matrix N,

and lastly a rank-1 decomposition of this reshaped matrix

reveals the two axes N = baT . The extraction of the angles

is based on Eq. (1) for Ra,α which leads to the following

formulas for any vector c

aT [c]
×
Ra,αc = sinα (1 − (cTa)2) (15)

cTRa,αc = cosα (1 − (cTa)2) + (cTa)2 . (16)

For the extraction of αf in the single axis motion case,

Eq. (15) and Eq. (16) directly yield cosαf and sinαf re-

spectively if the vector c is chosen orthogonal to the axis

a. For the two-axes case, the vector c is chosen as a and b
giving, since Rf = Rb,βf

Ra,αf
:

bTRfb = cosαf (1 − (bTa)2) + (bTa)2 (17)

aTRfa = cosβf (1 − (aTb)2) + (aTb)2 (18)

bT [a]
×
Rfa = sinβf (1 − (aTb)2) (19)

aT [b]
×
RT

f b = − sinαf (1 − (bTa)2) , (20)

from which the angles αf and βf can be readily extracted.

8.2. Translations
The extraction of the translational parameters is based on

our derivations in Sec. 7. Especially Eq. (14) is important in

so far as it allows to recover a basis T for the time-varying

translations by analyzing the nullspace ofM. More specifi-

cally, we compute the nullspace N of M, i.e.MN = 0, e.g.
by a singular value decomposition ofM. Then the column

span of the columns ofN restricted to the last three entries

encode a basis for the orthogonal complement [T]
�
, i.e.

span (N10∶12,∶) = span ([T]
�
). This orthogonal comple-

ment completely determines the subspace of dynamic trans-

lations. Note that the dimensionality of the nullspace ofM
might be higher than the dimensionality 3−d of the orthogo-

nal complement [T]
�
since the rotational part M∶,1∶9 might

be rank-deficient, as well. However, the part of the nullspace

due to the rotational part does not interfere with the last three

rows ofN which are entirely determined by [T]
�
. Neverthe-

less, the nullspace due to the rotational part alone could be

eliminated by first computing a rank-revealing singular value

decomposition of M∶,1∶9 = UΣVT and then computing the

nullspaceN ∈ R12×3−d of [U,M∶,10∶12] whose dimensional-

ity will then equal the dimensionality of span ([T]
�
). Once

T is known, the computation of a decomposition of the ob-

served translations tf into more semantically meaningful

parts boils down to a linear system of equations. For exam-

ple, the translations observed by rotations around two axes

equal tf = tb +Rb,βf
(−tb + ta −Ra,αf

ta) +Tt̃f , which

are linear in the unknowns ta, tb, and t̃f . Given sufficiently

many frames, these unknowns can be computed in the least-

squares sense, for example. Actually, since ta and tb are
only defined up to translations along a and b, respectively,
the locations of the axes can be parametrized by ta = [a]

�
t̃a

and tb = [b]
�
t̃b.

Note that there are some instances where the location of

the axis not well-defined. Specifically, the location ta of an

axis a is not uniquely defined if aTT = 0 and d = 2 since

in that case, shifting the axis inside the plane ta +Tt0 can
be compensated by the time varying Tt̃f . The important

class of planar motions belong to this category. Nevertheless,

such cases do not pose a problem for our algorithm, the

system matrix of the resulting linear system will simply have

a 2-dimensional nullspace.

9. Experiments
We performed multiple experiments with image data from

challenging motion sequences. Since our method is entirely

based on relative transformations between two parts, let us

quickly explain how we extracted these transformations from

pure image data. Note that any other method to extract such

transformations could be used, as well (e.g. a motion capture

system or ICP on point clouds from measurements obtained

by a depth camera). We build on top of standard rigid SfM

[10] with intrinsically calibrated cameras. Feature points are

extracted and matched across different frames and a robust

RANSAC [9] stage extracts rigid transformations from two-

and three-view relations. In case of a static camera observing

an object which undergoes a restricted motion (experiments

in Sec. 9.2 and Sec. 9.3), the camera actually acts as the

second part. Hence, the SfM pipeline will report a single

transformation between pairs of frames which corresponds

to the relative motion of the two parts between these two

frames. In case of a moving camera (experiment in Sec. 9.1),

an initial 3D model is reconstructed from two or more views

assuming that the configuration of the articulated or other-

wise motion-restricted object stays fixed during those views

thereby also fixing the scale ambiguity between parts. Se-

quential 3-point RANSAC is then used to extract all rigid
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Figure 2: Our method accurately recovers the rotation axis a (in
red) of a laptop opening and closing its screen from pure imagery
data taken by a moving camera. This articulated motion has
signature (2,0) and is thus equivalent to the motion of a door, for
example.

transformations with sufficient support between this initial

model and new views. The so obtained transformations are

split into disjoint groups based on the spatial distance be-

tween their inlier sets. Each group then corresponds to the

motion of one part. Lastly, the relative motion between two

parts can be recovered from the two corresponding groups

by expressing their motions w.r.t. to one fixed frame. This

basically factors out the motion of the camera and only the

motions of the parts remain.

9.1. Hinge Joint
A sequence of 23 images of a laptop opening and closing

the screen were taken with a moving camera. Features were

tracked on both, the laptop base and the screen. Since this

motion corresponds to a rotation around one single axis with

fixed location, the signature equals (2,0). Being an artic-

ulation type which has already been studied extensively in

previous work, here we would like to show that our general

framework flawlessly handles this type, as well. Despite

a moving camera, we are able to accurately compute the

orientation a and location t of the rotation axis based on

our method (see Fig. 2). The extracted articulated motion

parameters can be used to generate novel, unobserved con-

figurations, as demonstrated in the supplemental material

[11].

9.2. Planar Motion and Two-Axes Rotations
For this experiment, 27 image of a moving blackboard

were taken with a static camera. Features were matched

exclusively on the black writing area. These features undergo

a complex motion since the blackboard stands on wheels

and can therefore be rotated and translated according to a

planar motion. On top of that, the black writing area can

be rotated around a horizontal axis leading to a restricted

motion with signature (8,2) which previous approaches

could not handle. Our method can successfully extract the

two rotation axes a and b and the two-dimensional span of

the translation directions T ∈ R3×2. Due to one part of the

motion being a planar motion, the location tb of the axis b
is not defined. Note that this is not a defect of our method

but rather an inherent property of planar motions. As Fig. 3

shows, the well-defined location ta of the first axis a is

recovered correctly. Furthermore, even though our method

does not explicitly enforce orthogonalities contained in the

data such as between the rotation axes aTb = 0 or between

Figure 3: Top: The restricted motion parameters of a moving
blackboard undergoing a rotation around a horizontal axis a (in
red) followed by a planar motion are recovered accurately by our
approach. The two extracted rotation axes are shown in red and
the translation directions T (parallel to the floor) in green. Note
that the location ta of the axis a is well-defined (and recovered),
whereas the location tb of axis b is not defined due to the planar
motion. For visualisation purposes, we chose tb at the center of
mass of the tracked points (visualized in pink).
Bottom: As discussed in Sec. 9.2, our approach enables a visual-
hull reconstruction of the blackboard stand, even though no feature
points on the stand have been tracked (i.e. no poses were known
relative to it).

the translations and the second axis bTT = 0T , we recover

angles ∠(a,b) = 90.0345○ and ∠(b, [T]
�
) = 0.0510○, a

clear indicator for the accuracy of our estimates. As a further

application, once the two rotations are disentangled, we

can compute the intermediate motion of a putative part as

would be observed without the rotation Ra,αf
, i.e. in the

present case without the rotation around the horizontal axis.

This recovered intermediate motion together with silhouette

images obtained with background subtraction permits for

example the computation of a visual hull of the blackboard

stand, as shown in Fig. 3. Remember that no points could be

tracked on the stand and its shape is only deduced based on

its silhouette consistency w.r.t this recovered intermediate

motion.

9.3. Rotation Around a Translating Axis
This experiment is based on the motion of the front wheel

of a car rolling on a straight line on the street. Features on

the wheel are extracted and matched across 21 images taken

by a static camera. While this motion has similarity to a

hinge joint, the one-dimensional dynamic translation leads

to a signature (2,1) which makes this particular restricted

motion a hard instance. We refer to Fig. 1 and Fig. 4 for a

visualization of the extracted motion parameters.

Having recovered the motion parameters including the

time-varying rotation angles αf and translations Tt̃f , we
can check for a linear relation t̃f = αR between αf and t̃f
to recover the radius R of the wheel and its contact line with

the street. As can be seen in Fig. 4, a linear model clearly

relates these estimates in this data set.
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Figure 4: A wheel of a car rolling on a straight line on the street
corresponds to a signature (2,1). The tracked feature points are
shown in pink, the extracted rotation axis in red, the translation
direction in green, and the contact line in blue. Once the motion
parameters are recovered, the angles αf and translation magni-

tudes t̃f can be explored, looking for potential dependencies. Here
a linear relation is found which actually shows the radius of the
wheel (in arbitrary unit, since SfM reconstruction is up to scale).

10. Conclusions and Future Work

In this paper, we have analysed the relative transformation

between two motion-restricted parts. The vectorized relative

transformations gave rise to a motion matrix. A signature can

be computed from the restricted motion subspace induced

by this motion matrix which exactly specifies the type of

restricted motion. Together with a careful analysis of the

nullspace-structure of the motion matrix, this leads to a

general framework for articulated and restricted motions

between two parts. The framework has been successfully

applied to several challenging data sets showcasing how

existing and novel restricted motion types can be handled in

the same way.

In future work, we will address the issue of assigning de-

tected rigid transformations to individual parts. As described

in Sec. 9, we currently rely on a static camera or on a simple

heuristic based on the spatial distance between the points

in the inlier sets of the transformations found by the SfM

pipeline. Furthermore, we are investigating robust model

selection / rank-detections for the singular values of the

motion matrix since SfM can return erroneous relative trans-

formations, especially for nearly degenerate or ill-condition

motion sequences.
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