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Abstract

In this paper, a novel approach based on a non-linear
manifold learning technique is proposed to recover 3D non-
rigid structures from 2D image sequences captured by a sin-
gle camera. Most of the existing approaches assume that 3D
shapes can be accurately modelled in a linear subspace.
These techniques perform well when the deformations are
relatively small or simple, but fail when more complex de-
formations need to be recovered. The non-linear deforma-
tions are often observed in highly flexible objects for which
the use of the linear model is impractical.

A specific type of shape variations might be governed by
only a small number of parameters, therefore can be well-
represented in a low dimensional manifold. We learn a non-
linear shape prior using diffusion maps method. The key
contribution in this paper is the introduction of the shape
prior that constrain the reconstructed shapes to lie in the
learned manifold. The proposed methodology has been
validated quantitatively and qualitatively on 2D points se-
quences projected from the 3D motion capture data and real
2D video sequences. The comparisons of the proposed man-
ifold based method against several state-of-the-art tech-
niques are shown on different types of deformable objects.

1. Introduction
The objective of the Structure from Motion (SfM) is to

jointly reconstruct 3D shapes and estimate corresponding

camera motion trajectories based only on a set of observed

image sequences. While the reconstruction of rigid objects

has been well-established [19] over the past two decades,

deformable shape reconstruction is still challenging, mainly

because it is a severely under-constrained problem. This

is particularly true for the articulated objects or the object

which contains large and complex deformations. Such time-

varying shape recovery problem is referred to as Non-Rigid

Structure from Motion (NRSfM).

Bregler et al. [5] was the first to adopt the factorisa-

tion algorithm to deformable 3D structures by introducing a

low rank shape model to represent deformable shapes. As a

time-varying object usually cannot arbitrarily deform, the

idea of this model is to represent a deformable shape as

a linear combination of basis shapes. Due to its simplic-

ity, shape basis model has been widely used to tackle the

NRSfM [4, 26, 1]. Non-rigid articulated structure represen-

tation has also been formulated following the idea of fac-

torisation algorithm [21, 15]. However because of inher-

ently high number of degrees of freedom and motion de-

generacy, these methods may fail to provide meaningful re-

construction. To counter this effect, it is common to intro-

duce prior information to define additional constraints for

minimisation of the re-projection error. Xiao et al.[25] pro-

posed a closed-form solution and showed that orthonormal-

ity constraints is insufficient to provide unique solution to

estimate basis shapes. Torresani et al.[20] employed a form

of Probabilistic Principal Components Analysis to provide

Gaussian distribution on deformation coefficients as prior

knowledge. Del Bue [8] proposed an alternative approach

introducing a single shape prior coupled with a bundle ad-

justment refinement. These approaches may improve the

performance for both non-rigid and articulated SfM, ob-

taining reliable 3D reconstruction but only if an appropri-

ate initial value is provided. Departing from the shape basis

model, a trajectory based algorithm was proposed in [2] by

Akhter et al. who described a duality theorem in 3D struc-

ture representation which models independent 3D point tra-

jectories. The main advantage of this representation is that

the basis trajectories can be predefined, thus removing a

large number of unknowns from the estimation.

The restriction of the most existing NRSfM methods is

that they try to explain the complex deformations using a

global model. An alternative piecewise model has been re-

cently developed [23, 18, 10]. This model is able to cope

well with strongly deforming objects. However, necessity

for dividing the surface into a set of overlapping patches

(often preformed manually) is generally viewed as the se-

vere drawback of this model.

To move away from the linear combination of ba-

sis shapes, Rabaud and Belongie [16] integrated the Lo-
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cally Smooth Manifold Learning algorithm to regularise the

NRSfM problem. However, there is no guarantee that the

manifold is planar or isometric to a plane. Despite the man-

ifold learning techniques are becoming increasingly popu-

lar and have been successfully used in different applications

including medical image analysis [24], object classification

[14] and segmentation [9], these techniques have not been

widely applied in NRSfM problem.

2. Contributions
Although the tremendous progress has been achieved to-

wards solving the Structure from Motion for deformable

shapes, one of the still existing limitations of the methods

proposed so far is that they mainly address the problem

of small deformations. The main reason for their failure

when recovering objects with large, complex deformations

can be attributed to the reliance on a linear shape model.

This paper focuses on modelling non-linear deformable ob-

jects with large complex deformations, such as deformable

cloth or articulated full-body motion. In this case, the exist-

ing methods based on linear space manifold are no longer

applicable. We argue that the linear models require more

parameters than our method based on non-linear manifold

learning approach.

This paper proposes a novel method for reconstruction

of 3D deformable structures exhibiting large and complex

deformations. The proposed method is based on a re-

cently introduced manifold learning technique called Dif-

fusion Maps [6]. This manifold build as a shape prior, with

the reconstructed shapes constrained to lie in the manifold.

Our method achieves good results when dealing with ob-

jects undergoing significant and complex deformations. In

case of articulated deformations, e.g., full-body movement,

rather than having an initial segmentation stage to assign

different body parts [15] which may lead to unexpected er-

rors, the whole data are considered as a single entity with-

out the need for body part recognition. Learning instead a

corresponding low dimensional manifold from the training

examples. Such techniques have rarely been applied in the

context of non-rigid shape reconstruction. Our approach is

to integrate the learned non-linear shape prior manifold into

the NRSfM solver. The advantage of our method is that

it can be adopted for reconstruction of highly deformable,

complex objects.

3. Problem Formulation
Considering a set of 2D images captured by a single cam-

era, tracking P feature points in F video frames, the 2F×P
measurement matrix can be formed as:

W=

⎡
⎢⎣
x11 · · · x1P

... xtp

...

xF1 · · · xFP

⎤
⎥⎦=

⎡
⎢⎣
R1 0

. . .

0 RF

⎤
⎥⎦

⎡
⎢⎣
−S1−

...

−SF−

⎤
⎥⎦= RS (1)

where W is an observation matrix and contains 2D input

points xtp = [xtp, ytp]
T

with indices t and p referring to the

pth point in the tth image. Without loss of generality, we

assume that the coordinates of the feature points are given

with respect to the centre of gravity calculated for all the

points in the corresponding image. We also assume that

the orthographic projection accurately models the image

acquisition.

The goal is to recover camera orientations matrix R
and the concatenated time-varying shapes matrix S, based

only on the 2D measurement in matrix W. It is an under

constrained problem since the shape and motion are both

changing with time. The number of unknown variables

(3F+3FP) is higher than the number of observed input data

(2FP) from the observation. To deal with this, two models

have proved to be successful.

Low-rank shape model
The points in each observed image can be represented

as xt = RtSt, where xt represents input points, Rt is a

2×3 projection matrix representing camera orientation and

St ∈ R
3×P is a 3D shape projected onto the tth frame.

Describing the deformation using a shape model in a linear

subspace is one way of imposing compactness on S to

reduce the dimensionality of the problem. A deformable

3D shape can be represented as a linear combination of K
unknown but fixed basis shapes Bl:

St =
∑K

l=1
αtlBl (2)

where K � F, P . The deformation coefficients αl are ad-

justable over time. This low-rank shape model can be ob-

tained by performing Singular Value Decomposition (SVD)

or Principal Components Analysis (PCA). The measure-

ment matrix can be decomposed and represented by pose,

basis shapes and time varying coefficients matrices, there-

fore it can be rearranged as:

W =

⎡
⎢⎣
α11R1 · · · α1KR1

...
. . .

...

αF1RF · · · αFKRF

⎤
⎥⎦

⎡
⎢⎣
−B1−

...

−BK−

⎤
⎥⎦ = MB (3)

Since basis shapes B ∈ R
3K×P , and M ∈ R

2F×3K the

rank of measurement matrix W is 3K at most in the absence

of noise. The factor M and B are computed by factorising

the measurements W. The solution is not unique and is

defined up to a ambiguity matrix Q ∈ R
3K×3K . According

to [25], the limitation of the closed-form solution in this

approach is that the motion matrix is nonlinear, when an

inaccurate set of basis shapes have been chosen, it may not

be possible to remove the affine ambiguity.

Smooth trajectories model
According to the duality theorem, as described in [2],
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Shape Trajectory Proposed

Camera 3F
Coefficients FK 3KP F(K+1)

Basis 3KP / /

Total 3F+FK+3KP 3F+3KP 3F+F(K+1)

Table 1: Comparison of number of unknowns in low-rank shape model,

trajectory model and our proposed non-linear manifold model

representing a non-rigid shape using the above shape basis

model is dual to trajectory basis model, in which each point

trajectory is represented as a K dimensional point within

an unknown linear trajectory space. The trajectory for each

point is approximated by a linear combination of a small

number of basis trajectories Al:

Tp =
∑K

l=1
Alβββpl (4)

where βββpl are 1×3 coefficient vectors for the basis trajectory

The basis trajectory can be predefined in an object inde-

pendent way using Discrete Cosine Transform (DCT) basis

and therefore avoid training process. The model only needs

to consider camera parameters and trajectory coefficients,

thus requires less parameters than shape basis model (see

Table 1).

Non-linear manifold model
Our model departs from the linear shape model. The

shape basis B in the proposed method are selected from the

learned shape manifold. Unlike the low rank shape model,

where all the reconstructed shapes are represented as a

linear combination of unknown but fixed K basis shapes, in

the proposed method, the basis shapes may be different at

each frame. Although it may seem to increase the number

of parameters in the model, it should be recognised that all

the basis shapes are selected from the manifold and are not

estimated as a part of the optimisation process. The param-

eters to be estimated in the proposed approach include only

the camera motion and shape coefficients, representing the

shape in the local linear barycentric coordinates system

approximating the manifold at the location corresponding

to the current estimate of St.

Comparing the three models together, the number of

unknowns for each model is given in Table 1. In most

cases, K < 10, F, P > 100, the proposed model requires

less parameters than low rank shape model and has a

similar order of magnitude as trajectory model. Although

the number of parameters depends on number of frames

F in our method, it is important to note that they are not

depending on the number of feature point P. That makes

our approach suitable for the shape which contains large

number of feature points.

4. NRSfM with Diffusion Maps
In this section, an overview of the proposed manifold

based NRSfM algorithm is given first, followed by a short

description of the diffusion maps including description of

out-of-sample and pre-image problems.

As known from [25], enforcing only the rotation con-

straints cannot guarantee the unique solution for the camera

motion and the basis shapes. To solved this, the designed

shape prior can help to attract a shape towards the manifold

and therefore avoid incorrect reconstruction.

A summary of the algorithm for recovery of non-rigid

object and estimation of camera motion is given in Algo-

rithm 1. Initial shapes S′ and camera motion R′ are esti-

mated by running a few iteration of the optimisation process

in batch NRSfM using linear basis shapes model [17]. For

each initial shape, Nyström extension is used for embed-

ding these new samples into the reduced space. Intuitively,

if the points in reduced space are relatively close, the cor-

responding shapes in high-dimensional space should rep-

resent similar shapes. Based on this observation, the recon-

structed shape at each frame can be represented as weighted

sum of K+1 basis shapes from the learned manifold. The

coefficients of correspond basis shape are calculated based

as barycentric coordinates of K+1 closest points in reduced

space. Once the basis shapes and their coefficients have

been obtained, an optimisation is applied to minimise the

image reprojection error with an additional smoothing term

and basic rotation constraint over all frames. However, the

quality of optimisation result is depending on the accuracy

of initial shapes. Updating basis shapes in each iteration can

help to circumvent the problem. The basis shapes are being

kept updated as long as 2D measurement error rt exceeds

the defined threshold rT (10−3 in our case) or the error be-

tween two adjacent frames is relatively large which implies

that the current results are unlikely to explain the shapes

well.

4.1. Diffusion Maps

In contrast to linear methods, non-linear approaches are

able to handle a wider range of data variability and preserv-

ing local structures at the same time. While linear mani-

fold method like PCA is straightforward, the recovered in-

put data lies on a linear subspace of high dimensional space.

The problem with this is that the input data may have com-

plex non-linear dependencies and preserving local or indeed

global structures in the data may not be possible utilising

linear projections.

Diffusion maps is a graph based technique with iso-

metric mapping from original shape space to reduced low-

dimensional diffusion space. Assuming X is a dataset with

M samples, the goal of dimensionality reduction problems

is to find an embedding from data X = {X1 · · ·XM} in

high N dimensional space to reduced K dimensional space

153015301532



Algorithm 1 Outline of Diffusion Maps based NRSfM

Input: Stream of 2D observations, diffusion map Ψ of

training dataset X (Section 4.1)

Output: 3D deformable shapes S and camera motion R
for each frame.

1: Initialisation of estimating Initial shapes S′ and camera

motion R′.
2: while (‖r‖ > rT ) or

(‖rt‖ − ‖rt−1‖ > 10−3
)

do
3: Shape projection onto manifold (shape Embedding)

(Section 4.2)

4: Find K+1 closest points bl, l = 1 · · ·K+1 in low di-

mensional space, where K is the dimensionality of

the reduced space.

5: Shape update (Section 4.3)

6: Non-linear optimisation by minimising 2D measure-

ment error and shape smooth term to obtain updated

shapes St and camera motion Rt,t=1 · · ·F .(Section

4.4)

7: end while

x={x1 · · · xM}. A mapping is defined by: Ψ : X�→Ψ(X) =
(Ψ1(X), · · · ,ΨK(X)), where X ∈ R

N , K � N .

Given a set of shapes X1 · · ·XM ∈ M, where M is

the manifold embedded in R
N , Euclidean distance for

each pair of shapes ‖Xi − Xj‖2 is calculated to build an

adjacency graph. The entries of the adjacency matrix

Wij,i, j ∈ 1 . . .M define the weighted similarity graph for

all connected vertexes. Using Gaussian kernel Wij =

exp(−‖Xi − Xj‖2/2δ) in this case, where δ is calculated as

δ = 1
M

∑M
i=1 min

j:Xi �=Xj

‖Xi − Xj‖2. We also apply k-nearest

neighbour (kNN) sparsification scheme, retaining k edges

for each point and remove other connections to avoid out-

liers. The work presented in [6], shown that the diffusion

distances describe the intrinsic geometric linking of the ad-

jacency matrix, and the diffusion map Ψ can be constructed

as:

Ψ : Xi �→ [λ1ϕ1(Xi), · · · , λKϕK(Xi)]
T

(5)

The mapping is expressed using eigenvectors ϕ and eigen-

values λ of diffusion operator P=D−1Ŵ ,where each entry

p(Xi,Xj)=Ŵij/dii with dii=
∑M

j=1 Ŵij and dij=0 for all

i �= j,∀d∈D. An anisotropic normalized graph Laplacian

[7] has been used for renormalizing the adjacency matrix

Ŵij =Wij/qiqj , in which qi=
∑M

j=1 Wij ,qj =
∑M

i=1 Wji.

Fig.1 illustrates the embedding of shapes from cardboard
data [22] together with representative corresponding shapes

extracted from 1000 training samples.

4.2. Out of sample extension

In general, the diffusion map Ψ is only able to provide

an embedding for the data which is given in the training

set. However, in the NRSfM problem, it is necessary to

calculate embedding for shapes which are not presented in

the training set. To extent the embedding for new data, the

mapping can be approximated with the Nyström extension

[3]. Suppose St ∈ R
N is a new data which has not been

presented in the training set. Knowing that for every sample

in training dataset:

∀Xi∈X,
∑

Xj∈X
p(Xi,Xj)ϕk(Xj)=λkϕk(Xi), k=1. . .M (6)

Having a shape St not present in the training set X, an em-

bedding St �→
(
Ψ̂1(St),· · ·, Ψ̂K(St)

)
of this new shape is

calculated from:

Ψ̂k(St)=
∑

Xj∈X
p(St,Xj)ϕk(Xj) (7)

where p(St,Xj) is calculated the same as in Diffusion

maps.

4.3. The pre-image problem

The pre-image problem is concerned with finding the in-

verse mapping of a point x ∈ R
K given in the reduced

space back to the manifold Xi = Ψ−1 (xi),with X ∈ R
N .

Assuming we look for a shape St given by its embedding

xt, if this shape St does not exist in the training dataset,

the exact pre-image might not be found in that case. To

resolve this problem, Arias et al. proposed to find an ap-

proximate pre-image by optimising a certain optimality cri-

teria [3]. Inspired by this, we assume that the pre-image

can be represented as a linear combination of its neighbours

on the manifold selected from the training samples. The

simplest way to achieve this is to identify the K+1 closest

points of xt in the reduced space. This can be efficiently

calculated by using a Delaunay triangulation. Since diffu-

sion maps provides isometric mapping the data must keep

the same structure when embedded into the reduced space

and therefore the neighbours on the manifold correspond to

the closest neighbours in the reduced space. Each point xt

can be represented as xt =
∑K+1

l=1 θtlbtl, where btl is the

lth nearest point of xt. The weights θtl are computed as

the barycentric coordinates of xt, thus can be obtained by

optimising the following function:

argmin
θtl

F∑
t=1

∥∥∥∥∥xt−
K+1∑
l=1

θtlbtl

∥∥∥∥∥
2

with
K+1∑
l=1

θtl=1, 0≤θt≤1
(8)

Once the weights θtl are estimated, The shape St can

be approximated as a set of weighted training samples

St=
∑K+1

l=1 θtlBtl, where the training sample Btl is the pre-

image of btl.

4.4. Cost function

The cost function to be minimised consists of the repro-

jection error, shape smoothing terms an rotation constraint.
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Figure 1: The reduced space of cardboard dataset

The cost function is given as:

argmin
Rt,θtl

F∑
t=1

‖Wt−RtSt‖2+ϕS

F∑
t=2

‖St−St−1‖2+ϕR

F∑
t=1

εrot

with

K+1∑
l=1

θtl=1, 0≤θt≤1 (9)

where εrot=
∥∥∥RtRt

T−I
∥∥∥
2

enforces orthonomality of all Rt.

ϕS and ϕR are regularisation constants.

The cost function above was minimised by using

Levenberg-Marquardt algorithm.

The accuracy of the optimised results strongly depends

on initialisation since the mapping in the out-of-sample ex-

tension is based on initial shapes. To eliminate the effect,

basis shapes are updated until the 2D measurement error is

smaller than predefined threshold rT and the error between

two adjacent frames is small enough.

5. Experimental Results
The proposed methodology has been validated quantita-

tively and qualitatively on both motion capture and real data

for different types of deformable object. To demonstrate ad-

vantages of our method over previously proposed methods,

the experiments are mainly focused on reconstructing com-

plex deformations. To demonstrate the performance of the

algorithm, extensive experimental evaluation has been pro-

vided.

The models and algorithms used for comparison are as

follows:

MP: The metric projection method [15].

PTA: The DCT based point trajectory approach [2].

CSF: The column space fitting method [11].

KSFM: The kernel non-rigid structure from motion [12].

IPCA: The incremental principal components analysis

based method [17].

DM: The proposed method.

The data which were used for testing include: two articu-

lated face sequences, surprise and talking, both captured us-

ing passive 3-D scanner with 3D tracking of 83 facial land-

marks [13]; two surface models, cardboard and cloth [22];

five different human actions, walking, pick-up, yoga, drink
and stretch, and three dance sequences dance, Indian dance
and Capoeira, from CMU motion capture database. Diffu-

sion maps requires training process, so training datasets for

two face sequences are taken from the BU-3DFE [27] and

for two surface sequences are obtained from [22]. Since

no separate training data are available in CMU database,

half of each sequence is used for manifold learning and the

other half for testing. All the training data has been rigidly

co-registered. Same testing data has been applied for other

methods which do not require training.

5.1. The influence of embedding dimensionality

For the first set of experiments, we start with tests on

motion capture data. The accuracy of 3D shape reconstruc-

tion is affected by the dimensionality of the manifold repre-

senting prior information. To find the relationship between

manifold dimensionality and the reconstruction error, ex-

periments have been carried out with all the test sequences

and dimensionality changing between 3 and 10. To sim-

plify visualization of results, all the 12 sequences are sepa-

rated into 3 groups, those are: small deformation sequences

(surprise, talking, cardboard), large deformation sequences

(cloth, walking, pick-up, yoga, drink, stretch) and all the

dance sequences. For evaluating the results, the normalized

means of the 3D error are compared over all frames and all

points:

e=
1

ΔFP

F∑
t=1

P∑
p=1

etp, Δ=
1

3F

F∑
t=1

(Δtx+Δty+Δtz) (10)

where Δtx,Δty ,Δtz are the standard deviations of x,y and

z coordinates of ground truth shape at tth frame and etp
is the Euclidean distance between corresponding point p at

frame t in the reconstructed and ground truth shapes. Fig.2

shows the means of reconstruction error for each group and

the overall average results when different manifold dimen-

sions K are used. As expected, in general, increasing the

number of manifold dimensions decreases the error. This

is especially true for the group of dance sequences and the

group representing large deformations. Higher dimensional

manifolds preserve more information from the original data

leading to better results. However for data with small de-

formations, the 3D error levels off and does not strongly

depend on K. This does make sense as only a small number

of basis shapes is required to describe the data variability

containing only relatively small number of degrees of free-

dom.
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Figure 2: Average normalised mean 3D error and standard deviation of

different number of dimensions in reduced space. Bars left to right: Group

of small deformation sequences, group of large deformation sequences,

group of all dance sequences, all the sequences.

5.2. Sensitivity to noise

In most cases, inaccurate 2D measurement caused by

feature tracking/detection error may lead to shape recon-

struction failure for most previously proposed approaches,

as those are very sensitive to noise. This experiment was

designed to test the sensitivity of our method to different

level of noise in the observations. Firstly, we performed the

experiment on the walking data using only our method but

with different level of noise and different dimensionality of

the learned manifold. The measurement W was perturbed

by Gaussian noise according to the standard deviation of

the measurement data with given level of noise. The recon-

struction errors are evaluated for 10 trials with each level

of noise, which are set to 2%, 4%, 6%, 8%, 10% and 12%.

The results are shown in Fig.3a.

Also we compare our method against several state-of-

the-art techniques in terms of sensitivity to the noise present

in the measurement data. We used MP, PTA, CSF, KSFM

and DM for comparison here and the results are given in

Fig.3b. The proposed method achieved much smaller er-

rors both in terms of the mean and standard deviations. It is

important to note that the results from our method are rela-

tively stable and are not very sensitive to noise, even when

the noise level has increased to 12%, the estimated maxi-

mum error was 0.0870. Even with the noise presented in

the measurements, reasonably accurate shapes are still ob-

tainable, showing that manifold based method can produce

results that are better than those obtained by previously pro-

posed methods.

5.3. Comparison with previous methods

For the comparative evaluation, performance of the pro-

posed method is tested against all the 5 other approaches

listed above for all 12 sequences. Table 2 summarises the

results showing 3D reconstruction errors of each method

and each sequence, together with the optimal number of

bases for which minimal reconstruction error on the test

data is obtained. We followed the same evaluation proce-
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Figure 3: Reconstruction error as function of the measurement noise for

the walking data. (a) Our method with varying number of manifold dimen-

sion K; (b) Our method evaluated against four other methods.

dure as reported in [12]; the 3D errors of the PTA, CSF and

KSFM methods are chosen with their best parameter K by

running the trials with K varying from 2 to 13. The best

result for DM method is chosen by changing manifold di-

mension K from 3 to 10. Considering the ambiguity of esti-

mated camera motion [2], the shapes are aligned using a sin-

gle global rotation based on Procrustes alignment method.

As shown on the Table 2, trajectory based methods PTA,

CSF and KSFM are able to provide comparable results, to

the proposed method on objects with small deformations

(e.g. faces etc.). This is because these objects exhibit mostly

a rigid motion, the deformations are only seen around the

lips and chin. But those methods provide relatively large

error on highly non-rigid human motion sequences (e.g.
dance etc.). DM is the only method that presents accu-

rate reconstructed results almost at all times, even for full-

body motion capture sequences. Note that although the ini-

tial shapes of our method may not belong to the manifold

M, after optimisation process, the results demonstrate good

convergence since the 3D errors are relatively small. An im-

portant observation is that, in the trajectory based methods,

the optimal number of bases K has to be independently es-

timated for each sequence. Choosing too big K may lead to

an ill-conditioned problem, but the point trajectory cannot

be comprehensively represented if K is too small, while the

results from our method are more predictable.

Finally more qualitative reconstruction comparison for

different methods is shown in Fig. 5 to further highlight the

accuracy of our method.

5.4. Real data experiments

We tested our approach on a video sequence showing pa-

per being bended taken from a video camera. In the video,

81 features were tracked along 61 frames showing approx-

imately two periods of bending movement. Fig.4 shows a

comparison of our reconstructed shapes with the results ob-

tained from MP, PTA, KSFM methods.
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MP PTA CSF KSFM IPCA DM

Surprise 0.2558 0.0386(12) 0.0396(3) 0.0381(4) 0.1289 0.0352(10)

Talking 0.0991 0.0862(10) 0.0573(3) 0.0498(4) 0.0986 0.0350(10)

Cardboard 0.4185 0.2894(8) 0.3237(3) 0.2753(2) 0.2445 0.1064(10)

Cloth 0.3997 0.3526(6) 0.2609(6) 0.1806(2) 0.1909 0.0287(7)

Walking 0.4114 0.3948(2) 0.1675(2) 0.1029(5) 0.3264 0.0265(9)

IndianDance 0.4576 0.4848(13) 0.3368(7) 0.2343(7) 0.3440 0.0981(10)

Capoeira 0.4177 0.5127(6) 0.3648(4) 0.2376(7) 0.4059 0.0258(9)

Pick-up 0.4332 0.2433(12) 0.2298(6) 0.2321(6) 0.2900 0.0634(10)

Yoga 0.8085 0.1623(11) 0.1467(7) 0.1474(7) 0.2626 0.0768(10)

Drink 0.3310 0.0248(13) 0.0224(6) 0.0186(12) 0.0843 0.0207(9)

Stretch 0.3988 0.1087(12) 0.0709(8) 0.0736(12) 0.1918 0.0687(6)

Dance 0.2210 0.2935(5) 0.2684(2) 0.2369(4) 0.3058 0.1676(7)

Table 2: Normalised mean 3D error calculated for different sequences.

6. Comments and Future work
The paper presented a new approach to integrate the

idea from non-linear manifold learning techniques into the

NRSfM framework for the task of reconstructing complex

and highly deformable shapes. The diffusion maps have

been introduced in order to build non-linear shape prior

manifold. This approach significantly improved the recon-

struction quality and is well-adapted to large deformation of

complex objects, especially for non-rigid articulated body

movement, which cannot be accurately represented in a lin-

ear subspace. It should be pointed out that the improved

performance, of the proposed method, in terms of 3D shape

reconstruction accuracy comes at the cost of required avail-

ability of a representative training dataset, and therefore

the comparison of the proposed method with respect to the

other methods may not be seen as fair. Indeed in this sense

it can be also argued that the method does not fit the defi-

nition of the SfM problem due to the use of this additional

information.

As we only use limited number of shapes in training pro-

cess, to overcome this, the future work would include col-

lecting and generating data for building a sufficiently dense

representation of the manifold to further improve the per-

formance. As manifold learning has shown to be a very

powerful approach for analysis of the shapes, we believe

the manifold based method is a suitable groundwork for re-

construction of deformable shapes.
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