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Abstract

Due to its simplicity, the eight-point algorithm has been
widely used in fundamental matrix estimation. Unfortu-
nately, the rank-2 constraint of a fundamental matrix is en-
forced via a posterior rank correction step, thus leading
to non-optimal solutions to the original problem. To ad-
dress this drawback, existing algorithms need to solve ei-
ther a very high order polynomial or a sequence of convex
relaxation problems, both of which are computationally in-
effective and numerically unstable. In this work, we present
a new rank-2 constrained eight-point algorithm, which di-
rectly incorporates the rank-2 constraint in the minimiza-
tion process. To avoid singularities, we propose to solve
seven subproblems and retrieve their globally optimal so-
lutions by using tailored polynomial system solvers. Our
proposed method is noniterative, computationally efficient
and numerically stable. Experiment results have verified its
superiority over existing algebraic error based algorithms
in terms of accuracy, as well as its advantages when used to
initialize geometric error based algorithms.

1. Introduction

Fundamental matrix estimation from eight or more point

correspondences is a classical and important problem in

multiview geometry analysis [11], with widespread applica-

tions in camera calibration, 3D reconstruction, motion seg-

mentation and so on. To properly account for the epipolar

geometry, a fundamental matrix should be of rank-2, an es-

sential but extremely challenging nonconvex constraint that

every fundamental matrix estimation algorithm has to cope

with.

1.1. Related Works

Ever since the pioneering work by Longuet-Higgins

[17], a great variety of algorithms, taking into considera-

tion the rank constraint via either posterior rank correction

or interior rank-2 parametrization, have been proposed in

the past few decades, see [1, 18, 23] for overall reviews.

Among them, there is a category of robust estimation meth-

ods, like RANSAC [7] and MLESAC [22], that seek to es-

timate the fundamental matrix in the presence of outliers,

i.e. mismatches. Although robustness to outliers is certainly
of great interest, in this work, we concentrate on the other

important category of methods that aim at estimating an ac-

curate fundamental matrix from noisy and redundant cor-

respondences after outliers, if any, have been properly re-

moved.

Under the assumption of independently and identically

distributed (i.i.d.) Gaussian noise, the best criterion in the

sense of maximum likelihood estimation (MLE) is to min-

imize the reprojection error, also known as the gold stan-

dard [11]. Some noticeable algorithms, like [2], have been

proposed for this regard, however, it is still widely believed

that reprojection error minimization is a challenging task. It

is even nontrivial to evaluate the minimum reprojection er-

ror compatible with a known fundamental matrix, i.e. the
optimal two-view triangulation problem [10]. Therefore,

a common practice is to minimize instead the first order

approximation to the reprojection error, namely, the Samp-

son error, which is relatively easy to evaluate and minimize.

Zheng et al. [24] designed a branch-and-contract algorithm
to retrieve its global optimum, whose computational burden

is, unfortunately, quite heavy. A more practical and fre-

quently adopted compromise is to use some local optimiza-

tion based methods, such as the constrained Levenberg-

Marquardt (CLM) method [14] and the extended fundamen-

tal numerical scheme (EFNS) [13], usually initialized by

some algebraic error based algorithms that will be reviewed

below.

Due to their simplicity, algebraic error based algorithms

have attracted a lot of attention in fundamental matrix esti-

mation. Longuet-Higgins [17] proposed the first eight-point

algorithm to estimate the (calibrated therein) fundamental

matrix, which boils down to a simple eigenvalue factoriza-

tion problem. Hartley [8] successfully defended this eight-

point algorithm by introducing data normalization, leading

to the well-known normalized eight-point algorithm. In [6],
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Chojnacki and Brooks disclosed the underlying mechanism

of Hartley’s normalization from the viewpoint of statistical

bias correction. Following this thread of idea, Kanatani et
al. [12] recently revitalized the renormalization technique,
referred to as hyper-renormalization, and proposed to cor-

rect the statistical bias further iteratively. Although this

hyper-renormalization technique is shown to be effective in

ellipse fitting [12], we have found that it fails to work as ex-

pected for fundamental matrix estimation. The main reason

lies in that the rank-2 constraint of a fundamental matrix is

ignored in the process of iterative bias correction. As in the

normalized eight-point algorithm [8], one has to posteriorly

correct the estimated fundamental matrix to be of rank-2,

which leads to non-optimal solutions.

The importance of directly handling the rank-2 con-

straint has been justified via theoretical analysis in [20] and

empirical results in [9, 19]. However, it is very hard to di-

rectly incorporate the highly nonconvex rank-2 constraint

in the minimization process. In [9], Hartley proposed a pro-

jection technique to estimate the epipole in an iterative way,

which suffers from the risk of getting trapped into local min-

imum. As shown in [19], to find the globally optimal solu-

tion, it is necessary to solve a 1,728th-order polynomial,

which is surely impractical at all. Chesi et al. [5] proposed
a sum-of-square (SOS) convex relaxation method to min-

imize the algebraic error with rank-2 constraint, in which

one has to adopt bisection and solve a sequence of semidef-

inite programming (SDP) problems of fixed size. This itera-

tive algorithm is time-consuming, and admits no guarantee

of global optimality. As will be shown in the experiment

section, it usually offers a quite roughly approximate so-

lution due to finite accuracy of existing off-the-shelf SDP

solvers1. More seriously, it suffers from some singulari-

ties caused by improper parametrization2, thus inapplicable

to some otherwise well-posed camera configurations (pro-

vided nondegenerate parametrization), such as pure camera

translation along the horizontal axis. In a very recent on-

line manuscript, Bugarin et al. [3] avoided these singulari-
ties by using the determinant constraint and advocated mo-

ment relaxation to solve the resulting polynomial optimiza-

tion problem. The cost is to solving a hierarchy of SDP re-

laxation problems of increasing size, whose computational

burden is even higher than the SOS relaxation in [5]. In ad-

dition, the global optimality certificate is to check whether

the rank of the moment matrix is one, again a numerically

sensitive operation.

1The bisection path is determined by the sign of the maximum eigen-

value in Equation 15 of [5]. Due to finite accuracy of existing SDP solvers,

it is numerically unstable to determine the sign. Even making one mistake

in this process, the whole bisection path might be changed.
2We note that, by following our idea below, this problem could be alle-

viated by solving different subproblems. However, it is impractical due to

the aforementioned inefficiency and instability of the SOS solution.

1.2. Overview of Our Work

In this work, we propose a new rank-2 constrained eight-

point algorithm for fundamental matrix estimation. Similar

to [3,5], it is based on the algebraic error, and copes with the

rank-2 constraint directly. By carefully investigating the lin-

ear dependence between the three columns of a fundamental

matrix, we solve seven subproblems so as to avoid improper

singularities and keep the resulting optimization problems

tractable. According to the problem structure of their first-

order optimality conditions, we use univariate/multivariate

polynomial system solving techniques to find the guaran-

teed globally optimal solution without iterations. Espe-

cially, for high order multivariate systems, we customize

a novel generalized eigenvalue solver, which successfully

conquers numerical instabilities that would upset an auto-

matically constructed Gröbner basis solver [15] and a poly-

nomial eigenvalue solver with linearization [16].

Based on extensive experiment results, we have found

that our rank-constrained eight-point algorithm is much

more accurate than the normalized eight-point algorithm

[8], especially when the number of correspondences is less

than 40, or the noise level is higher than 1 pixel. Actu-

ally, in the majority of the test cases, its accuracy is suffi-

ciently close to that of CLM [14], a popular Sampson error

based iterative method. In addition, when using the solution

from our rank-constrained eight-point algorithm to initialize

CLM, it is possible to avoid some poor local minimum and

improve the worst-case performance. When compared with

the state-of-the-art SOS convex relaxation algorithm [5],

our proposed method is noniterative, computationally effi-

cient and numerically stable.

The remaining of this work is organized as follows. In

Sec.2, we present the mathematical formulations of the

rank-constrained eight-point algorithm, including the sub-

problems and the simplification process. Sec.3 shows the

details of solving polynomial systems, with emphasis on

the generalized eigenvalue factorization method for multi-

variate systems. We show extensive experiment results in

Sec.4 and conclude this work in Sec.5.

2. Mathematical Formulations
2.1. Preliminaries

Throughout this work, we use uppercase letters (e.g.,X),
lowercase letters in bold (e.g., x) and plain lowercase letters
(e.g., x) to denote matrices, column vectors and scalars, re-
spectively. The uppercase letter T is reserved for matrix or
vector transpose.

Given a set of point correspondences in homogeneous

coordinates {xi ↔ x′i}, i = 1, 2, · · · , n, n ≥ 8,3 between
two uncalibrated perspective views of a rigid scene, the ob-

3The minimal case is with 7 correspondences, which is trivial to solve.
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jective is to estimate a 3×3 fundamental matrix F satisfying
the epipolar constraints

x′Ti Fxi = 0, i = 1, 2, · · · , n. (1)

Due to certain measurement noise, the epipolar con-

straints in Eq.(1) could not be completely satisfied in gen-

eral. Therefore, to estimate F , it is common to minimize
the algebraic error defined by

min
F

n∑
i=1

(x′Ti Fxi)2. (2)

Because of the epipolar geometry constraint that all

epipolar lines must intersect at a point, i.e. the epipole, a
fundamental matrix should be of rank-2. In order to avoid

the drawback of posterior rank-2 correction in [8, 12], it is

mandatory to incorporate the rank constraint in the mini-

mization process. To this end, we can add the determinant

constraint [3, 24], which leads to a challenging polynomial

optimization problem. On the contrary, it is possible to pa-

rameterize the fundamental matrix properly such that the

rank-2 constraint is interiorly satisfied. In this work, we

adopt the right epipole parametrization, such that F e = 0.
Specifically, we denote the epipole e =

[
x, y, z

]T
, and

obtain the following linear dependency constraint

x

⎡
⎣f1f4
f7

⎤
⎦+ y

⎡
⎣f2f5
f8

⎤
⎦+ z

⎡
⎣f3f6
f9

⎤
⎦ = 0. (3)

It is straightforward to note that the variables x, y, z are
subject to scale and sign ambiguities. Chesi et al. [5] pro-
posed to rescale z to 1 so as to eliminate these ambiguities.
However, this rescaling is singular when z = 0, which cor-
responds to some well-posed camera motions, like camera

pure translation along the horizontal axis. Therefore, when

using this epipole parametrization, special attention must be

paid in order to avoid any possibility of additional singular-

ities.

In addition, to avoid the trivial all-zero solution of F in

Eq.(2) and Eq.(3), we need a scale constraint. Again, simply

setting f9 to 1 would cause additional singularities, as in [5].

In the following, we present seven subproblems so as

to avoid improper singularities and keep the resulting opti-

mization problems tractable.

2.2. Subproblems

2.2.1 Case-1: f3 = f6 = f9 = 0

When f3 = f6 = f9 = 0, the fundamental matrix F is

naturally rank deficient. To avoid the all-zero solution, we

add the unit-norm constraint
∑9

k=1 f
2
k = 1, leading to the

first subproblem (SP-1)

min
F

n∑
i=1

(x′Ti Fxi)2,

s.t.,

9∑
k=1

f2k = 1, f3 = f6 = f9 = 0.

(4)

By analyzing its first order optimality condition, it is triv-

ial to solve the optimization problem in Eq.(4) for (SP-1) via
eigenvalue factorization.

2.2.2 Case-2: f3 �= 0
When f3 �= 0, we can rescale F such that f3 = 1 to avoid
the all-zero solution. Now we consider the following three

possibilities:

(i) x �= 0: Based on the scale and sign ambiguities of
x, y, z, we can rescale x such that x = 1. The optimiza-
tion problem corresponding to the second subproblem (SP-
2) reads

min
F,y,z

n∑
i=1

(x′Ti Fxi)2,

s.t.,

⎡
⎣f1f4
f7

⎤
⎦+ y

⎡
⎣f2f5
f8

⎤
⎦+ z

⎡
⎣f3f6
f9

⎤
⎦ = 0, f3 = 1.

(5)

Now, we denote f =
[
f1, f2, f4, · · · , f9

]T
, Eq.(5) can be

rewritten into the following problem in matrix form

min
f,y,z

‖M f − b‖22,
s.t., N(y, z)f = c(y, z),

(6)

in which M is a known n × 8 matrix and b a known n-D
column vector constructed from xi and x′i, i = 1, 2, · · · , n.
N(y, z) is a 3×8 matrix linearly parameterized by y, z, and
c(y, z) a 8-D column vector. For simplicity, we abbreviate
N(y, z) and c(y, z) as N and c, respectively.
Let us observe that Eq.(6) is a linear least square (LLS)

problem with separable nonlinear equality constraints. In

other words, assuming known y, z, we can obtain f by solv-
ing a LLS problem with linear equality constraints. Specifi-

cally, by introducing the Lagrange multiplier λλλ, we can ob-
tain f as follows

f = (MTM)−1(MT b+
1

2
NTλλλ). (7)

Considering that N f = c, we can solve λλλ by

λλλ = 2G−1c − 2G−1N(MTM)−1MT b, (8)

where G = N(MTM)−1NT .
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After plugging f and λλλ into Eq.(6), the original optimiza-
tion problem can be simplified into the following equivalent

min
y,z

vTG−1v+ s

=
vTadj(G)v+ det(G)s

det(G)
=

p(y, z)

q(y, z)
,

(9)

where v = c − N(MTM)−1MT b, s = bT b −
bTM(MTM)−1MT b, det(G) represents the determinant
of G, and adj(G) the adjoint matrix of G.
The denominator q(y, z) is a 6-order positive bivariate

polynomial with respect to y and z, since G is positive def-

inite. The nominator p(y, z) is a 6-order nonnegative bi-
variate polynomial with respect to y and z, due to the facts
that the objective function is nonnegative and q(y, z) > 0.
p(y, z) = 0 corresponds to the ideal noise-free situation,
which is unlikely to happen in case of general n ≥ 8 noisy
correspondences.

We defer the minimization of the fractional program-

ming problem in Eq.(9) to Sec.3.2.

(ii) x = 0, y �= 0: Based on the scale and sign ambigu-
ities of x, y, z, we can rescale y such that y = 1. Now the
optimization problem corresponding to the third subprob-

lem (SP-3) is formulated as

min
F

n∑
i=1

(x′Ti Fxi)2,

s.t.,
[
f2 f5 f8

]T
+ z

[
f3 f6 f9

]T
= 0T ,

f3 = 1.

(10)

Similar to the aforementioned operations, given z, we
can project out f in Eq.(10). Finally, the constrained opti-
mization problem in Eq.(10) can be simplified (details omit-

ted) into the following unconstrained fractional program-

ming

min
z

p̃(z)

q̃(z)
, (11)

in which q̃(z) is a 4th-order univariate polynomial, while
p̃(z) a 6th-order univariate polynomial with respect to z.
The details of minimizing Eq.(11) is deferred to Sec.3.1.

(iii) x = 0, y = 0, z �= 0: According to Eq.(3), f3 =
f6 = f9 = 0, which contradicts against the assumption that
f3 �= 0. Therefore, this possibility will not occur.

2.2.3 Case-3: f6 �= 0
When f6 �= 0, we can rescale F such that f6 = 1 to avoid
the all-zero solution. Similar to Case-2, we can obtain the

fourth subproblem (SP-4) corresponding to the possibility
x �= 0, and the fifth subproblem (SP-5) corresponding to
the possibility x = 0, y �= 0. We omit the details of deriva-
tion to avoid repeating. Although the coefficients might be

different, the polynomial formation of (SP-4) is the same as
that in (SP-2). This holds for (SP-5) and (SP-3).

2.2.4 Case-4: f9 �= 0
Similarly, when f9 �= 0, we can rescale F such that f9 = 1
to avoid the all-zero solution. Similar to Case-2, we can ob-

tain the sixth subproblem (SP-6) corresponding to the pos-
sibility x �= 0, and the seventh subproblem (SP-7) corre-
sponding to the possibility x = 0, y �= 0. The derivation
details are omitted. Again, the polynomial formation of

(SP-6) is the same as that in (SP-2) and (SP-4). This holds
for (SP-5), (SP-3) and (SP-7).

2.3. Choosing the best solution

As will be shown in Sec.3, for each subproblem, we can

find all its stationary points by solving the polynomial sys-

tem arising from its first-order optimality condition. We

choose the real stationary point with the smallest objective

value as its globally optimal solution. As a consequence,

there are at most seven solutions after solving all seven sub-

problems. In our implementation, we choose the one with

the smallest Sampson error as our final solution.

3. Solving Polynomial Systems
To find the globally optimal solution of the fractional

problem, we derive its first-order optimality condition, and

identify all the stationary points.

3.1. Univariate Polynomial

For (SP-3), its first-order optimality condition reads

dp̃(z)

dz
q̃(z)− p̃(z)

dq̃(z)

dz
= 0, (12)

which is a 9th-order univariate polynomial. We calculate

the eigenvalues of its companion matrix, and choose the real

eigenvalue with the smallest objective value in Eq.(10) as

the solution for (SP-3). The same method can be used to
solve (SP-5) and (SP-7).

3.2. Multivariate Polynomials

The first-order optimality condition corresponding to

(SP-2) is composed of the following two 11-order bivariate
polynomials

∂p(y, z)

∂y
q(y, z)− p(y, z)

∂q(y, z)

∂y
= 0,

∂p(y, z)

∂z
q(y, z)− p(y, z)

∂q(y, z)

∂z
= 0.

(13)

For multivariate polynomial systems, it is common to use

the Gröbner basis technique. Noticeably, Kukelova et al.
[15] developed an automatic program to build the Gröbner

basis based polynomial system solver. Unfortunately, al-

though there are only two variables in Eq.(13), the order is

a bit too high. When using the automatic generator in [15],
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the size of the elimination template is 108×218, while that
of the action matrix is of 110×110. Through extensive tests,
we have found that the numerical stability of this automat-

ically generated Gröbner basis solver is poor. The reason

might lie in the relatively large size of the elimination tem-

plate.

The other possible choice is the latest polynomial eigen-

value factorization technique [16], which can be further re-

duced to the general eigenvalue factorization problem using

linearization. However, for our problems, the linearization

operation is not generally applicable, since y or z might be
zero. In addition, it drastically deteriorates the condition

number and causes numerical instability, since the order of

the polynomial system in Eq.(13) is relatively high.

To avoid the aforementioned numerical problems, we

first introduce an auxiliary variable δ, such that

min
y,z,δ

δ, s.t., p(y, z) = δq(y, z). (14)

At first sight, introducing δ might give rise to a more dif-
ficult constrained optimization problem. Actually, it helps

avoid any explicit elimination and makes possible a stable

polynomial system solver via generalized eigenvalue factor-

ization.

After introducing the Lagrange multiplier ρ, we derive
the first-order optimality condition of Eq.(14) as follows

1− ρq(y, z) = 0,

ρ(
∂p(y, z)

∂y
− δ

∂q(y, z)

∂y
) = 0,

ρ(
∂p(y, z)

∂z
− δ

∂q(y, z)

∂z
) = 0,

p(y, z)− δq(y, z) = 0.

(15)

Let us note that ρ = 1/q(y, z) and q(y, z) > 0, then ρ >
0. As a consequence, the first-order optimality condition in
Eq.(15) can be simplified into

∂p(y, z)

∂y
= δ

∂q(y, z)

∂y
,

∂p(y, z)

∂z
= δ

∂q(y, z)

∂z
,

p(y, z) = δq(y, z),

(16)

which is composed of three polynomial equations with re-

spect to three variables y, z, δ.
A key observation is that δ is linear in Eq.(16). Inspired

by the hidden variable technique in [16], to solve Eq.(16),

we can directly set δ as the hidden variable, resulting in
a generalized eigenvalue factorization problem without the

necessity of linearization.

Recall that both p(y, z) and q(y, z) are 6th-order polyno-
mials. Let u denote a 28-D column vector containing all the

monomials of y and z up to 6th-order. The three equations
in Eq.(16) can be organized into

C0u = δC1u. (17)

Since there are only three equations in Eq.(16), we have

to generate more equations by multiplying some monomials

at both sides of the three equations. We have found that it is

necessary to multiply all 45 monomials (up to 8th-order) at

both sides of the third equation in Eq.(16), and all 55 mono-

mials (up to 9th-order) at both sides of the first and second

equation in Eq.(16). It leads to an expanded polynomial

system

C̃0ũ = δC̃1ũ, (18)

in which ũ is a 120-D column vector includ-

ing all 120 monomials up to 14th-order, i.e.
ũ =

[
1, y, z, y2, yz, z2, · · · , z14]T , and C̃0 and C̃1

are 155×120 coefficient matrices by reorganizing C0 and
C1, properly and respectively.
Ideally, we should construct Ĉ0 by choosing 120 rows

of C̃0, such that Ĉ0 has the smallest condition number. In
our implementation, we simply select a prescribed subset

of rows from C̃0 and C̃1 to construct Ĉ0 and Ĉ1, respec-
tively. As will be verified by experiments, it is of suffi-

cient numerical stability. By applying generalized eigen-

value factorization on the 120×120 matrix pair (Ĉ0, Ĉ1),
we can find all the eigenvectors ũ, from which y, z can be
obtained after normalizing the first element of ũ to 1. Note
that the generalized eigen-factorization overlooks the corre-

lations among the elements in ũ. Therefore, there might be
some dummy solutions that violate the original polynomial

system in Eq.(16). To find the globally optimal solution,

we evaluate the objective value for each real solution pair

(y, z), and choose the one with the smallest objective value
(e.g., the objective value in Eq.(9) for (SP-2)) as the optimal
solution.

By using the same generalized eigenvalue solver, we can

also solve the polynomial system from (SP-4) and (SP-6).
Since their formations are the same, we record the track

of constructing C̃0 and C̃1, and use the same solver for all
these three subproblems.

4. Experiment Results
In this section, we evaluate the performance of our

proposed rank-constrained eight-point algorithm, denoted

by RC8P in short, and compare it with the state-of-the-

art algorithms, including the popular normalized eight-

point algorithm (N8P) [8] and the latest iterative hyper-
renormalization algorithm [12], denoted by HyperRen. In
both algorithms, the rank-2 constraint is imposed via poste-

rior rank-2 correction. The SOS-based convex relaxation

by Chesi [5] is also considered, which is represented by
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(a) Image Pair - Arial Views I (b) Image Pair - Dinosaur (c) Image Pair - Merton College III

Figure 1. Image pairs used to synthesize data. The pairs in (a), (b) and (c) are from the Aerial Views I, Dinosaur and Merton College III

sequence, respectively. In each pair, the corrected noise-free feature points are shown in magenta, while 20 epipolar lines in blue.
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(b) Image Pair - Dinosaur
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(c) Image Pair - Merton College III

Figure 2. Experiment results using synthetic data. Note that SOS lies almost outside the visible region of every subfigure.

SOS. We also use the CLM algorithm [14] to minimize the

Sampson error, which is initialized by N8P (thus named as
CLM+N8P) and our RC8P (CLM+RC8P), respectively.
As for the evaluation criterion, we use the

root mean square error (RMSE) on the basis

of the Sampson distance, which is defined as

RMSE =

√
1
n

∑n
i=1

(x′Ti F xi)2
(ẽ)21+(ẽ)

2
2+(ê)

2
1+(ê)

2
2
, where ẽ = Fxi

and ê = FT x′i. In addition, (ẽ)2k and (ê)2k, k = 1, 2, denote
the square of the k-th element of ẽ and ê, respectively. It
is widely recognized that the Sampson distance error is

sufficiently close to, but much easier to evaluate than, the

reprojection error. We normalize the data before estimation

by following Hartley’s normalization [8], while evaluate

the RMSE after denormaliation.

4.1. Synthetic Data

To make sure that the synthetic data reflect real-world

camera motions, we try to synthesize data on the basis of

real images. Given an image pair, we first build tentative

matches by matching SIFT points and remove potential out-

liers by using RANSAC together with the minimal 7-point
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(a) Image Pair �1 (b) Image Pair �2 (c) Image Pair �3 (d) Image Pair �4

Figure 3. Image pairs used in experiments. In each pair, feature points are shown in green, while 20 epipolar lines estimated from RC8P
are in cyan. The two pairs in (a) and (b) are from the House sequence, while the two pairs in (c) and (d) from the Notre Dame Cathedral

community image collection.

Table 1. RMSE of competing algorithms for the four image pairs in Fig.3. The number of inliers is shown in the square bracket.

RMSE (pixles) RMSE (pixles)

Method �1 [276] �2 [22] �3 [195] �4 [20] Method �1 [276] �2 [22] �3 [195] �4 [20]
N8P 0.8168 5.8340 0.4216 1.6139 RC8P 0.7978 0.1121 0.3996 0.6824

HyperRen 0.8156 6.1521 0.4037 1.2739 CLM+N8P 0.7918 0.1296 0.3744 0.7243

SOS 9.7009 0.1205 1.5124 0.7616 CLM+RC8P 0.7918 0.1119 0.3744 0.5445
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Figure 4. Average running time in milliseconds with respect to

varying number of correspondences. A close-up is at the right

side.

solver. Then, we estimate the fundamental matrix by using

CLM+RC8P, and correct the correspondences to be noise-
free via optimal triangulation [10]. These noise-free corre-

spondences are used as test data.

In our experiments, we use three image pairs from the

Oxford multiview geometry datasets4. Specifically, the

pairs in Fig.1(a), Fig.1(b) and Fig.1(c) are from the Arial

Views I, Dinosaur and Merton College III sequence, rep-

resenting different motion types such as (near) translation,

turntable motion and backward-forward motion.

We first investigate the performance of all competing al-

gorithms with respect to varying noise levels. The num-

ber of point correspondence is fixed to be 20. We add zero

mean Gaussian noise, with varying deviation σ in the range
of [0.2, 2] pixels, onto the randomly selected (20) noise-free

correspondences. At each noise level, we repeat 100 times,

and report the mean and maximum value of RMSE in the

1st and 2nd column of Fig.2, respectively.

The performance with respect to varying number of cor-

respondences n is also investigated. The noise level here is
frozen to 1 pixel. We vary the n from 8 to 108. At each n,
we run all algorithms 100 times using randomly selected n

4http://www.robots.ox.ac.uk/˜vgg/data/data-mview.html

correspondences. The mean and maximum value of RMSE

are shown in the 3rd and 4th column of Fig.2, respectively.

From Fig.2, we can see N8P is inaccurate, especially

when the noise level is higher than 1 pixel, or the number

of point correspondence is less than 40. The iterative bias

correction technique in HyperRen fails to improve the ac-
curacy, since the statistical analysis ignores the rank-2 con-

straint. The SOS algorithm provides poor estimation results
due to its numerical instability as well as its risk of inac-

curacy when the camera motion approaches its singulari-

ties. Our proposed RC8P algorithm is definitely better than
N8P, HyperRen and SOS, and is even sufficiently close to
CLM that minimizes the Sampson error. When higher ac-

curacy is desirable, one can initialize CLM by using RC8P.
Although CLM+RC8P and CLM+N8P have similar per-
formance on the average, we can observe from the maxi-

mum value curves that the maximum RMSE of CLM+N8P
is sometimes clearly larger than that ofCLM+RC8P, which
indicates that initializing CLM by using RC8P success-

fully contributes to avoiding some poor local minimumwith

large RMSE.

The computational efficiency is also of great interest. All

competing algorithms are implemented in MATLAB, and

run on a laptop with 2.8GHz CPU and 4GB RAM. We use

SeDuMi [21] to solve the SDP relaxation problems in SOS.
We report the average running time in milliseconds over 100

independent trials in Fig.4. Although our proposed RC8P
is slower than N8P, it is much faster than the iterative SOS
method. Taking about 100 milliseconds, RC8P is believed
to be fast enough for most practical applications.

4.2. Real Images

We have also conducted numerous experiments using

real images. After building tentative matches by match-

ing SIFT points, we remove potential outliers through

RANSAC. Then, we estimate the fundamental matrix by
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the competing algorithms. Here, we only show the results in

Table 1 for the four image pairs in Fig.3, including two pairs

from the House sequence and the other two from the Notre

Dame Cathedral community image collection5. From Table

1, we can observe again that our RC8P algorithm has bet-
ter accuracy than N8P,HyperRen and SOS. When seeding
CLM by RC8P, it is possible to avoid some poor solutions,
e.g., for pair �2 and pair �4, as shown in Table 1.

5. Conclusions
We have presented a new eight-point algorithm, in which

the rank-2 constraint of a fundamental matrix is directly
enforced in the process of minimization. Unlike the state-
of-the-art sum-of-square relaxation method, our proposed
algorithm does not suffer from additional singularities
caused by improper parametrization. Although we have to
handle seven subproblems, the proposed algorithm is the
first practical eight-point algorithm with rank-2 constraint,
when considering that it is noniterative, fast and capable of
retrieving the global optimum in each subproblem. Numer-
ical experiments, using both synthetic data and real images,
have demonstrated its superiority over the popular normal-
ized eight-point algorithm with posterior rank-2 correction
as well as the convex relaxation method. The MATLAB
source code and a detailed technical report are available at
https://sites.google.com/site/yinqiangzheng/.

We have noted that the most time-consuming operation in our

proposed algorithm is the generalized eigenvalue factorization of

three 120×120 matrix pairs. In fact, we are only interested in the
real eigenvalues (and their corresponding eigenvectors) in a nar-

row interval, rather than a full factorization. It is expected that our

algorithm could be significantly accelerated by using the charac-

teristic polynomial based technique in [4]. We leave the explo-

ration of this acceleration technique as our future work.
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