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Abstract

For problems over continuous random variables, MRFs
with large cliques pose a challenge in probabilistic in-
ference. Difficulties in performing optimization efficiently
have limited the probabilistic models explored in computer
vision and other fields. One inference technique that han-
dles large cliques well is Expectation Propagation. EP of-
fers run times independent of clique size, which instead de-
pend only on the rank, or intrinsic dimensionality, of poten-
tials. This property would be highly advantageous in com-
puter vision. Unfortunately, for grid-shaped models com-
mon in vision, traditional Gaussian EP requires quadratic
space and cubic time in the number of pixels.

Here, we propose a variation of EP that exploits regu-
larities in natural scene statistics to achieve run times that
are linear in both number of pixels and clique size. We test
these methods on shape from shading, and we demonstrate
strong performance not only for Lambertian surfaces, but
also on arbitrary surface reflectance and lighting arrange-
ments, which requires highly non-Gaussian potentials. Fi-
nally, we use large, non-local cliques to exploit cast shadow,
which is traditionally ignored in shape from shading.

1. Introduction

Probabilistic inference for large loopy graphical mod-

els has become an important subfield with a growing body

of applications, including many in computer vision. One

common method of optimization is belief propagation. BP

estimates marginals by minimizing the Bethe free energy,

which is an approximate distance measure between a fac-

torized distribution and a set of marginals, based on KL-

divergence. The run time of BP is exponential in the clique

size C: each potential requiresO(CMC) operations, where

M is the number of states for each variable. This has lim-

ited the space of probabilistic models that can be explored

by the computer vision community, especially for problems

over continuous-valued variables. Several methods have

been proposed which reduce the run time of BP [17]. Oth-

ers have advanced methods of inference which can be ap-

plied to probabilistic models over discrete variables with

large cliques[10, 24], or large numbers of small cliques [12].

These methods have resulted in significant progress for sev-

eral applications. Nevertheless, efficient inference for large

cliques remains limited to certain forms of potentials, and

remains quadratic or worse in clique size.

In 2001, Minka proposed a generalization of BP known

as Expectation Propagation [14]. EP estimates moments

such as the mean of the distribution (which is also its

minimum mean-squared error point estimate). EP works

by approximating a factorized distribution with a simpler,

tractable distribution from a family of distributions whose

moments can be readily computed. When the approximat-

ing family is a product of independent univariate marginals,

EP is equivalent to BP [14]. Thus, EP is a generalization of

BP that permits the inference to account for correlation and

dependencies between variables.

For continuous variables, the approximating family used

by EP is nearly always Gaussian, due to computational con-

straints. The principal difference between BP and Gaussian

EP can thus be summarized by a trade-off in their respective

approximating families: BP favors flexible non-Gaussian

marginals, while Gaussian EP favors a flexible covariance

structure. Note that the success of either method is not

solely dependent on the quality of the approximating fam-

ily. For example, tree-shaped graphical models can have

strong covariance structure, and so the approximating fam-

ily of BP may be very poor for such models. Nevertheless,

BP performs exact inference on trees. In contrast, Gaus-

sian EP can fail even on univariate graphs if the potentials

are sufficiently non-Gaussian. In a complex graph, how-

ever, accurate covariance models can improve performance

because updates to one variable immediately affect distant

variables known to be correlated.

Despite its success in a variety of applications [15],

Gaussian EP is not common in computer vision. Many com-

puter vision problems are defined over a grid, such as stereo,

shape from shading, image super-resolution, and others.
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BP has produced highly successful approaches to each of

these, but EP is rarely applied to such problems. One pos-

sible reason is that problems in vision are often highly non-

Gaussian. For example, properties of images tend to have

highly kurtotic distributions [8, 20]. Another possible ex-

planation is that for a grid-based graphical model with D
pixels, Gaussian EP requires O(D2) space and a run time

of O(D3). Variations of EP have been proposed to reduce

the run time and apply EP to problems in computer vision

[16, 22]. However, run times remain quadratic or more in

the number of pixels for these variations.

Still, Gaussian EP has properties that would be highly

desirable in computer vision. Its running time is indepen-

dent of clique size, and instead depends polynomially on

the rank (or intrinsic dimensionality) of each potential (de-

fined below). In this paper, we propose an efficient infer-

ence method that retains the computational advantages of

EP, reducing run time and space requirements to linear in

the number of pixels, while remaining linear in clique size.

This is achieved by limiting EP to efficient families of co-

variance structures chosen based on the statistics of natural

scenes. We then test this approach on a problem with highly

non-Gaussian potentials: non-Lambertian shape from shad-

ing (SfS). Our algorithm demonstrates competitive results

on Lambertian SfS, and extends successfully to arbitrary re-

flectances, which is a novel result in SfS. Finally, we use the

method to efficiently perform inference over large cliques

produced by cast shadows and by global spatial priors.

2. Expectation Propagation
The aim of expectation propagation (EP) is to approxi-

mate a factorized probability distribution

P (�x) =
1
Z

N∏
i=1

φi(�xi) �xi ⊆ �x (1)

using an exponential family distribution

P̃ (�x|�θ) ∝ exp
(∑

j
θjτj(�x)

)
(2)

In particular, EP seeks to minimize the KL-divergence

D(P ||P̃ ), which, if achieved, would imply that the ex-

pected value of τj(�x) was equivalent under the two dis-

tributions: EP̃ [τj(�x)] = EP [τj(�x)]. The family P̃ is

chosen so that EP̃ [τj(�x)] can be estimated easily. For

example, if τj(�x) = xi for some j, then EP can be

used to estimate EP [xi], which provides the minimum

mean-squared error point estimate of P . EP achieves

this goal by approximating each potential function φi(�x)
with an exponential family distribution P̃i(�xi|�θ(i)). Rather

than fitting each P̃i to approximate φi directly, EP it-

eratively chooses θ(i) to minimize the KL-divergence

D(φi(�xi)
∏N

j �=i P̃j(�xj |�θ(j)) || P̃ (�x|�θ)), where P̃ (�x|�θ) ∝

∏N
i=1 P̃i(�xi|�θ(i)) and �θ =

∑
i
�θ(i). The process is repeated

until the distribution hopefully converges. Minka showed

that when �x is discrete-valued and the approximating expo-

nential family is a product of independent univariate dis-

crete distributions, then EP is equivalent to classical be-

lief propagation (BP) [14]. Thus, EP differs from BP in

that it can account for covariance and interdependencies be-

tween variables, which may improve performance and re-

quire fewer iterations.

When the elements of the vector �x are real-valued, the

approximating exponential family is nearly always chosen

to be Gaussian: G(�x) ∝ exp(−1
2 (�x− �μ)′S−1(�x− �μ)). For

each factor i, Gaussian EP performs three steps. In step 1,

the parameters of G\i(�x) ∝ ∏N
j �=i Gj(�xj) are computed:

S\i = (S−1 − S−1
i )−1 (3)

μ\i = S\i(S−1μ− S−1
i μi) (4)

In step 2, the posterior distribution parameters S and μ are

updated to match the mean and variance of φi(�xi)G\i(�x).
If φi(�xi)G\i(�x) has a simple analytic form, its mean and

variance can by found by differentiating the log partition

function. Alternatively, sampling may be used. Finally, in

step 3, the parameters Si and μi are updated:

Si = (S−1 − S−1
\i )−1 (5)

μi = Si(S−1μ− S−1
\i μ\i) (6)

These computations can be made more efficient when φi

is of reduced rank. We define φi to have rank K if φi can be

expressed as φi(Vi�x) for a K×D matrix Vi, where D is the

dimensionality of �x. It can be shown that it is sufficient to

store Vi�μi and ViSiV
′
i rather than the full D×D matrix Si

[15]. This allows the step 1 and 3 updates to be completed

in O(K3 + KD2) time, rather than O(D3).
Regardless of the rank of each potential, the covariance

matrix of the posterior S remains full-rank, and must be

stored as a D×D matrix. For large problems with tens of

thousands of variables or more, this becomes limiting. For

problems that seek to infer an image, such as denoising,

stereo, matting, novel view synthesis, or shape from shad-

ing, the number of variables is equal to the number of pixels.

Thus, even for a small 256×256 image, D is over 65 thou-

sand and S could require over 30 gigabytes to store. This

may be one reason why EP has not become commonplace

for these or similar computer vision problems.

If the graphical model underlying equation 1 is sparsely

connected, it may alleviate memory requirements to store

the inverse covariance matrix S−1 rather than S. It can

be shown that S−1 contains non-zero entries only between

variable nodes that share a potential [22]. Suppose that in

step 2 of EP, ViSV ′i and Viμ are found through sampling or

by differentiating the log partition function. The update to
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S−1 and μ can be written:

S−1 = S−1
\i + V ′i ((ViSV ′i )−1 − (ViS\iV ′i )−1)Vi (7)

μ = μ\i + S\iV ′i (ViS\iV ′i )−1(Viμ− Viμ\i) (8)

The bottleneck of this approach is the multiplication by

S\i in equation 8, because we have stored S−1
\i rather

than S\i. This requires solving a sparse system of lin-

ear equations. The complexity of this depends on the

sparsity pattern of S−1
\i . When the underlying graphical

model is highly sparse, such as a nearest-neighbor pairwise-

connected MRFs, each iteration can be performed in time

O(D1.5) [2]. As the graph becomes more dense, run time

approaches O(D3). Thus, using this approach, EP requires

O(K3 + K2D + KDρ(G)) for 1.5 ≤ ρ(G) ≤ 3 for each

potential.

3. Whitened EP
For many problems of computer vision, both the number

of variables D and the number of potentials N grow lin-

early with the number of pixels. In these cases, classical

EP is O(D3), since operations at each pixel require access

to a D×D covariance matrix. The run time when storing

the inverse covariance matrix [22] is at least O(D2.5). It is

preferable for a computer vision algorithm to scale linearly

with the number of pixels (as achieved, typically, by BP).

One desirable property of EP, however, is that the run time

is independent of the size of the cliques; only the rank of the

potentials affects the run time. Low-rank potentials of large

clique size have a wide array of promising applications in

computer vision [17, 10]. One example is the use of strong

spatial priors that can capture complex and long-range de-

pendencies, such as Fields of Experts [20], or priors over

higher-order derivatives [24]. Also, in a multi-scale setting,

potentials at coarse scales require large cliques, but rank

remains the same at any scale. Binocular occlusion [11],

shadow, and unknown global properties all introduce large

cliques that may be formulated with low rank. Difficulty in

performing inference over large-clique potentials has lim-

ited the probabilistic models used in computer vision.

In this section, we propose an algorithm that achieves

both of these goals: run time that is linear in the number of

pixels and in clique size. To begin, observe that the bulk

of the computational expense of EP is involved in comput-

ing the the covariance structure S. When S describes the

covariance structure of an image, a high degree of regular-

ity may be expected. The second order statistics of natu-

ral images [21] and range images [8, 18] are well studied;

one of the most robust statistical trends of natural scenes

is they tend to have power spectra that obeys a power law:

|F [I]|2 = A
fβ for constants A and β. Variations of EP de-

signed for computer vision should make use of such regu-

larities to reduce the computational demands of EP.

Expectation propagation can be made more efficient by

limiting the forms of covariance structure expressible by S.

In order for moment matching to correspond to minimizing

KL-divergence, the approximating family P̃ must be an ex-

ponential family distribution (Eq. 2). Thus, S−1 must be

parameterizable by �θ and expressible as S−1 =
∑

θkBk for

some set of symmetric D×D matrices Bk. Our goal is to

select Bk according to three principles. First, expressible

covariance structure must include the covariance matrix for

natural scenes. Additionally, since scene statistics are typ-

ically stationary, we prefer that local covariance structure

achievable in one region of an image is also achievable in

any region. Thus, for any Bk, there must exist some Bl

that is equivalent to Bk after cyclic permutation by offset

(dx, dy), for any such offset. This means that the number of

Bk must be some multiple of D, and when θk =1 for all k,

S−1 must be circulant. Finally, we seek to choose Bk that

permit EP to run in linear time with respect to image size.

Let S denote the covariance matrix for natural scenes.

Because images are stationary, S must form a circulant ma-

trix, which means that its eigenvectors form a Fourier basis.

Let S = FAF ′, where F is a Fourier basis, and A is a

diagonal matrix whose diagonal is the power spectrum of

natural scenes. Also, let W = FA− 1
2F ′. W is a whiten-

ing matrix for natural scenes: convolving an image with a

column of W will, on average, remove covariance between

pixels. One approach that satisfies our three goals is to con-

strain S to have the form W−1DSW−1, where only DS (a

diagonal matrix) is permitted to vary. To perform EP effi-

ciently with this constraint, it is preferable to maintain DS

and Wμ instead of S and μ. Under this transformation, the

EP update equations for a potential i become:

D\i =(D−1
S −D−1

i )−1 (9)

Wμ\i =D\i(D−1
S Wμ−D−1

i Wμi) (10)

DS =D\i −D\i diag[V ′w(I − (ViSV ′i )(VwD\iV ′w)−1)

(VwD\iV ′w)−1Vw]D\i (11)

Wμ =Wμ\i + D\iV ′w(VwD\iV ′w)−1(Viμ−Viμi) (12)

Di = (D−1
S −D−1

\i )−1 (13)

Wμi = Di(D−1
S Wμ−D−1

\i Wμ\i) (14)

where Vw = ViW−1, and diag denotes the operation of dis-

carding off-diagonal elements. The largest bottleneck above

is computing Vw. However, note that Vi is only non-zero in

C columns, where C is the clique size of the potential. Also,

W−1 corresponds to convolution by a spatially-limited de-

whitening filter, which for natural scenes decays exponen-

tially from its center [21]. Thus, W−1V ′i can be computed

in time linear in C. Moreover, in equations 11 and 12, DS

andWμ only require an update in rows and columns where

W−1V ′i is non-zero. Similarly, Di and Wμi are only non-

zero at those locations. Thus, each update equation can be
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performed in time O(K3 + K2C), giving the whitened EP

technique a total run time of O(NK2C) per iteration.

Recall that when S is constrained to be diagonal, EP is

equivalent to belief propagation [14]. Thus, the proposal

that Gaussian EP might still work effectively if S−1 was

constrained to WD−1
S W is equivalent to the proposal that

BP might work effectively if messages were approximated

by Gaussians as long as the variables were whitened be-
forehand to reduce correlation.

In order to achieve linear time EP with respect to image

size, we are not limited solely to diagonal covariance struc-

ture in whitened image space. If we constrain S to have

the form
∑

i FA
1
2
i F ′DiFA

1
2
i F ′, then EP remains linear in

the number of pixels as long as there exists some whitening

transform W such that FA 1
2
i F ′ and FA− 1

2
i F ′ both corre-

spond to convolution with spatially limited filters.

Note that there are alternative strategies to selecting W
besides choosing the whitening filter of the prior P (�x). The

covariance structure of the posterior distribution may differ

from that of the prior. One alternative strategy would be to

select W so that WW was equal to the average covariance

found using sparse EP (which estimates covariance). In the

shape from shading application of section 4, we found em-

pirically that the benefit of this approach was small.

4. Shape from Shading

Whitened EP permits inference over images in linear

time with respect to both pixels and clique size. To achieve

this, it constrains the approximating distribution to be Gaus-

sian with a covariance matrix WD−1
S W for some diagonal

DS . In this section, we test whether performance remains

competitive using this approach. In particular, we are inter-

ested in whether Gaussian message approximation will be

effective when the potentials φi are highly non-Gaussian.

One highly non-Gaussian problem in computer vision is

shape from shading (SfS). The goal of SfS is to estimate

3D shape from a single image, under the assumption that

albedo is uniform, lighting originates from a single point

from a known direction, and the surface reflectance func-

tion is both uniform and known. If we define p = ∂z
∂x and

q = ∂z
∂y , then i(x, y) = R(p, q), where i is the input image,

and z is a range image corresponding to the true 3D shape.

In recent years, several methods have been developed

that solve the classical SfS problem well as long as surface

reflectance R is assumed to be Lambertian [19, 17, 6, 3, 7].

Still, humans are able to exploit shading cues under far more

general scenarios. In order to compete with human per-

formance, SfS algorithms may need to accommodate non-

Lambertian reflectance (which is highly nonlinear and non-

Gaussian), shadow cues (which are highly non-local and

may produce large cliques), unknown lighting and albedo

properties (which are global properties, possibly requiring

fully connected potentials), and the integration of multi-

ple depth cues. For this reason, more flexible optimization

methods for SfS are desirable. Our hope is that whitened

EP, by permitting efficient inference over large cliques, will

enable new MRF models capable of tackling generalized

depth inference problems. In this section, we demonstrate

how whitened EP handles several of these issues.

MRF Data Likelihood In the past, MRF models for

SfS have inferred surface normals rather than depth [17].

In such models, two variable nodes are used for each pixel:

one for p(x, y) and one for q(x, y). For each pixel, one

potential φR(p, q|i) enforces the surface normal to be con-

sistent with the known pixel intensity i(x, y). However, not

all surface normal maps correspond to a valid surface z. A

depth map z only exists if p and q are integrable, or ex-

hibit zero curl, so that ∂p
∂y = ∂q

∂x . Methods that infer sur-

face normals must include additional MRF potentials that

encourage p and q to obey this relationship. Enforcing in-

tegrability is often the largest computational bottleneck of

probabilistic inference because it requires a clique size of

at least four variables [17]. Also, because the integrability

constraint is usually not perfectly satisfied, error may result.

Finally, once p and q are inferred, computing the surface z
requires an additional post-processing operation which is

sometimes costly. Past methods have used a sparse D×D
matrix pseudoinverse [17].

Alternatively, inferring surface depth z directly avoids

these problems. This has been difficult to do using belief

propagation because it requires a clique size for φR of at

least three. Belief propagation is exponential in clique size,

and φR is not eligible for computational shortcuts such as

the linear constraint node simplification. The SfS solution

of [17] used p and q variables with 300 bins, and would thus

sacrifice a 300-fold speed decrease to infer depth z directly.

In contrast, whitened EP can either infer surface normals

or infer depth directly, and the two objectives require sim-

ilar run times. To infer depth, whitened EP operates over

a MRF whose variable nodes correspond to the whitened

surface depth. Let zw(x, y) = Wz refer to the whitened

surface depth, where W is the linear whitening transform.

Surface derivatives p and q can be recovered from zw by

convolving with the derivatives of inverse whitening filter.

Then, for each pixel (x, y), we can enforce that the surface

normal at that point is consistent with the known pixel in-

tensity i(x, y) with the potential φR(vp ·z, vq ·z | i), where

vp and vq are the derivatives of inverse whitening filter cen-

tered at point (x, y). The clique size of this potential is the

size of the support of vp and vq, and the rank of the poten-

tial is two. Because whitened EP is linear in both clique size

and rank, inference over this potential is efficient. Alterna-

tively, if whitened EP is used to infer surface normals p and

q, the clique size would be twice the support of the inverse

whitened filter.
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err = 0.0013  (8 minutes) err = 0.0016  (24 hours)

a) Ground-Truth b) Whitened EP c) Belief Propagation

err = 0.0003  (132 minutes)

d) Inverse EP

err = 0.0003  (132 minutes)err = 0.0013  (8 minutes) err = 0.0047  (8 minutes)

e) Whitened EP, � = 0

Figure 1. Results of the Whitened EP algorithm for Lambertian SfS, in comparison with other methods. Subfigure c) shows the results of

linear constraint node BP [17]. Subfigure d) shows the results of EP using a full covariance matrix. Each of these methods is able to satisfy

the Lambertian constraint accurately. Whitened EP is able to perform comparably in a substantially less time than other methods and with

greater flexibility towards dense factor graphs or large cliques. Subfigure e) shows the results of diagonal EP without whitening.

In our experiments, we will use whitened EP to infer

depth directly. We use a Laplace distribution for φR to pe-

nalize depth maps z that are not consistent with the known

pixel intensity:

φR(vp ·z, vq ·z|i) = φR(p, q|i) = e−|R(p,q)−i)|/b (15)

where R(p, q)= i is the reflectance map given by the known

surface BRDF and lighting. Example φR are shown in the

left column of figure 2.

MRF Spatial Prior The SfS problem is highly ambigu-

ous: even when lighting direction and albedo are known,

one image is consistent with large families of possible 3D

surfaces which all render identically [6]. A strong spatial

prior P (z) is required to identify a 3D surface that is realis-

tic out of all possibilities that are consistent with the image.

Historically, MRFs over continuous variables have focused

on pairwise-connected spatial priors (cliques of at most

two) due to the high computational costs of large cliques.

Methods that allow spatial priors with larger cliques have

produced substantial performance gains [24, 17]. However,

these methods are limited in the size and form of cliques

achievable by the method.

Whitened EP provides two benefits for spatial priors.

First, inference is linear in clique size, which could allow

the use of large clique spatial priors such as Fields of Ex-

perts [20], which consists of 5×5 potentials of rank one.

Additionally, as with any Gaussian EP method, any Gaus-

sian potential requires no computational cost, regardless of

rank or clique size. This is because for a Gaussian poten-

tial φi(�x), in every iteration of EP the term approximation

Gi(�x) is set equal to φi(�x) [15]. This redundant operation

can be avoided by initializing the posterior approximation

G(�x) to the product of all Gaussian potentials.

In all following SfS experiments, we use a spatial prior

that is implemented as a Gaussian with zero mean and co-

variance matrix equal to the covariance structure of natural

range images S. This prior has full rank and clique size

D, making it impractical to implement using BP. Because

the prior is Gaussian, it requires onlyO(1) in each iteration

to implement using EP. In addition to its efficient run time,

unifying many pairwise potentials into one large potential

increases the fidelity of the Bethe approximation implicit

in message passing algorithms [25]. Finally, this approach

allows us to match the full covariance structure of natural

scenes, including distant non-local covariances. As men-

tioned earlier, a pairwise-connected MRF produces a re-

stricted covariance structure whose inverse matrix S−1 only

contains elements along three unique diagonals [15]. One

consequence of this restriction is that pairwise MRFs cap-

ture the statistics of first-order derivatives, but not of second

or higher-order derivatives. In depth inference algorithms,

this causes pairwise MRFs to overemphasize frontoparallel

planes, and has been regarded as a chief limitation of the

approach [4, 24]. Gaussian potentials permit EP to capture

the second order statistics of all higher-order derivatives and

any other linear feature. The disadvantage of this spatial

prior is that higher-order moments of these features are not

captured, such as the high kurtosis of derivatives. Empir-

ically, we found that Gaussian priors significantly outper-

formed pairwise kurtotic priors when performing SfS using

EP, possibly because SfS is typically performed on single

surfaces rather than cluttered scenes. Note, though, that EP

would remain efficient if both forms of priors were used si-

multaneously. Future research is needed to train MRF mod-

els that make use of both forms of spatial prior simultane-

ously.
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Figure 2. Results of whitened EP under several reflectances and lighting conditions. The left column shows example potential functions

φR(p, q|i). In each case, potentials are highly non-Gaussian. The potential φR(p, q|i) differs at each pixel depending on intensity; here

the chosen intensity is given by the blue dot on each sphere. For each reflectance, inferred surfaces are shown for benchmark SfS images.

Mean-squared image error is reported for each case.

Lambertian SfS We first test our approach on Lamber-

tian SfS, where it can be compared to past Lambertian SfS

algorithms. The full MRF model in each experiment was

P (z) ∝ exp(−1
2
z′S−1z)

∏
x,y

φR(px,y, qx,y|ix,y) (16)

where S is given by an A
fβ power spectrum power law for

range images. The power spectra of range images has been

measured between β = 2 and β = 2.88, depending partly

on the degree of occlusion present within the scene [8, 18]

We chose the compromise value of β = 2.5 for all experi-

ments; performance varied little for values of β between 2
and 3. The strength of the spatial prior, A, was fixed at 100.

In all experiments, whitened EP was run for 10 itera-

tions, which is typically near to convergence. Convergence

is not guaranteed for EP, but no divergence was encountered

for this application. ViSV ′i was found numerically at each

potential by sampling over a 26×26 discrete reflectance

map (resembling fig. 2, left column). Importance sampling

may have produced faster and more accurate results. For

potentials with simpler forms, ViSV ′i may be found analyt-

ically by differentiating the log partition function.

Figure 1 shows the results of Whitened EP on a canonical

benchmark image. For comparison, results are also shown

for BP in 1c (reproduced from [17]). We also implemented

classical EP with a sparse inverse covariance matrix; results

are shown in 1d. The image error is reported below each re-

sult, which gives the mean squared error between the orig-

inal image and the rerendered inferred surface; light inten-

sities were chosen so that the reflectance map ranged from

0 to 1. The performance of all three methods is similar, and

each method is able to infer a 3D surface that is closely con-

sistent with the input image. In each case, improving the

quality of the inferred surface is more likely to require an

improvement to the MRF model (i.e. stronger spatial priors)

than an improvement to the inference method. Among these

methods, whitened EP is fastest and admits a wider class of

MRF models. For the 128×128 penny image, whitened EP

required 8 minutes on a 2.8GHz Xeon, and run-time grows

linearly with the number of pixels, linearly with the clique

size of the potentials, and linearly in their rank. The BP re-

sult required 24 hours, grows linearly with the number of

pixels, quadratically in the clique size, and exponentially in

rank. Sparse EP required 132 minutes, and grows more than
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a) b) c)

Figure 3. Example output for a natural image. a) A penny image

was taken from Wikipedia. b) The output of the Whitened EP

algorithm, rendered under the assumed lighting conditions. Mean

squared image error was 0.0017. c) The inferred surface.

quadratically in the number of pixels. Other Lambertian SfS

algorithms have reported image errors for the penny image

of 0.0071 [9] and 0.0517 [13].

We also tested performance for W = I , or equivalently,

β =0. This approach is equivalent to EP with diagonal co-

variance, or BP with Gaussian approximation of messages.

Results are shown in figure 1e. This method struggled to

identify a 3D surface that was consistent with the input im-

age, even when pairwise priors were reintroduced to the

model. This matches findings from other applications that

if the posterior has correlated variables and S is constrained

to be diagonal regardless, EP can produce poor results [5].

Our results suggests that the constrained covariance family

used by whitened EP provided a sufficient approximation of

the full covariance structure inferred by standard EP.

Non-Lambertian SfS Many of the leading SfS tech-

niques rely explicitly on the exact form of the Lambertian

equation, and do not generalize automatically to alternative

reflectance types [19, 6, 7]. While there has been some suc-

cess in applying methods such as Lax-Friedrichs and fast-

marching to non-Lambertian reflectance [1, 23], these gen-

eralizations must proceed on a case-by-case basis for each

class of reflectance functions. Past SfS methods based on

BP were applicable to arbitrary reflectance functions, but

relied on the simple form of the Lambertian equation to

improve speed (24 hours), and was not tested on other re-

flectances [17].

One concern regarding Gaussian EP methods is that

many computer vision applications require probability dis-

tributions that are highly non-Gaussian. SfS is one example,

and non-Lambertian SfS produces especially non-Gaussian

potentials. Example potentials φR are shown along the left

column of figure 2, and are highly non-Gaussian. In spite

of the non-Gaussianity of the posterior, whitened EP is able

to infer 3D surfaces consistent with the input image un-

der a wide variety of reflectances, including Oren-Nayar re-

flectance for rough surfaces, surfaces with Beckmann spec-

ularities, and surfaces lit from multiple lighting sources (see

results in fig. 2). This is the first method we are aware

of that demonstrates strong performance under arbitrary re-

flectance and lighting. Given the results in figure 2, we ex-

err = 0.0021

err = 0.0004

z1

m1 m2

z2

m3

z3

m4

z4

m5

z5

m6

z6z4 z5 z6

err = 0.0021Ground Truth (input)

Ground Truth (input)

Figure 4. Shape from shading with cast shadows. At top is the

factor graph that enforces all lit pixels to be unshadowed.

pect that in the future SfS will gain more from richer proba-

bilistic models than by higher fidelity with the input image.

Figure 3 shows the algorithm performance on a natural

image, taken from the “Penny” entry in Wikipedia. The

lighting direction was manually estimated at (0, 0.6, 1), and

we used a Beckmann specularity with m = 0.4.

SfS with Cast Shadows Traditionally, past SfS meth-

ods have assumed that images are free of any cast shad-

ows, due to the additional complexity this adds to the infer-

ence process. When cast shadows are present and lighting

originates from a single point source, we must enforce two

rules. First, pixels lying in shadow must be occluded from

the lighting direction. Because we are inferring depth di-

rectly (as opposed to surface normals), this can be enforced

simply by a pairwise potential of rank one. Suppose that

lighting comes from the left, and suppose zunlit is the depth

of a shadowed pixel, and zlit is the depth at the nearest un-

shadowed pixel to its left. Then zlit − zunlit ≥ ΔxLz/Lx,

where Δx is the horizontal distance between the two pixels,

and L is the lighting vector. Computing ViSV ′i here does

not require sampling, and can be found analytically [14].

Secondly, we must also enforce that pixels that are lit

within the image are unshadowed in the inferred shape. This

requires that zleft − zlit < ΔxLz/Lx for all pixels zleft to

the left of zlit. A straightforward implementation would re-

quire a pairwise potential between all pairs of pixels within

the same row, and the run time would be quadratic in the

number of pixels. Alternatively, we can combine all such

constraints into a single potential. EP requires that we find

the mean and variance of G\u(z)φu(z), where φu is the

potential enforcing that all lit pixels are unoccluded from

the light. We can solve for this mean and variance with a

single pass of EP by noticing that φu can be decomposed

into a tree-shaped factor graph. Intuitively, for each lit pixel

167816781680



z(x, y), we temporarily infer latent variables m(x, y):

m(x, y) = min
x′≤x

(z(x′, y) + (x−x′)Lz/Lx) (17)

= min(z(x, y), m(x−1, y) + Lz/Lx) (18)

The factor graph for computing G\u(z)φu(z) is shown at

the top of figure 4. The factor φL(zi, mi, mi−1) shown in

this graph is an indicator function that is one only if equa-

tion 18 is satisfied, and zi < mi−1 + Lz/Lx (indicating

that the pixel is unshadowed). Latent variables mi can be

discarded after the potential is updated.

Note that this approach to enforcing shadow cues would

be expensive using BP because the potential φL is real-

valued with a clique size of three, and is not eligible for

LCN computational shortcuts. Traditional Gaussian EP be-

comes inefficient whenever shadow cues are enforced be-

cause non-local connectivity produces an inverse covari-

ance matrix that is no longer sparse.

Example results for scenes with cast shadows are shown

in figure 4. Importantly, the shadow constraint is satisfied

completely by the inferred surface: all pixels that are lit in

the input image are unshadowed in the inferred surface, and

all black pixels in the input are shadowed in the output.

5. Conclusions
The methods in this paper reduce the run time of EP from

cubic to linear in the number of pixels for visual inference,

while retaining a run time that is linear in clique size. This

is a substantial improvement over BP, which is exponen-

tial in clique size. The computational expense of inference

for large cliques has prohibited the investigation of complex

probabilistic models for vision. Our hope is that whitened

EP will facilitate further research in these directions.

Results for whitened EP on SfS shows that the sacrifice

in performance for this approach is small, even in prob-

lems with highly non-Gaussian potentials. Performance re-

mained strong for surfaces with arbitrary reflectance and

arbitrary lighting, which is a novel finding in SfS. We ex-

pect that efficient inference with large cliques will be espe-

cially beneficial for depth inference, where multi-scale rep-

resentations, complex spatial priors, shadows, occlusions,

and the simultaneous inference of unknown global scene

attributes all necessitate potentials with large cliques.
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