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Abstract

Natural image statistics indicate that we should use non-
convex norms for most regularization tasks in image pro-
cessing and computer vision. Still, they are rarely used in
practice due to the challenge to optimize them. Recently,
iteratively reweighed �1 minimization has been proposed
as a way to tackle a class of non-convex functions by solv-
ing a sequence of convex �2-�1 problems. Here we extend
the problem class to linearly constrained optimization of a
Lipschitz continuous function, which is the sum of a con-
vex function and a function being concave and increasing
on the non-negative orthant (possibly non-convex and non-
concave on the whole space). This allows to apply the al-
gorithm to many computer vision tasks. We show the effect
of non-convex regularizers on image denoising, deconvolu-
tion, optical flow, and depth map fusion. Non-convexity is
particularly interesting in combination with total general-
ized variation and learned image priors. Efficient optimiza-
tion is made possible by some important properties that are
shown to hold.

1. Introduction
Modeling and optimization with variational methods in

computer vision are like antagonists on a balance scale.

A major modification of a variational approach always re-

quires developing suitable numerical algorithms.

About two decades ago, people started to replace

quadratic regularization terms by non-smooth �1 terms [24],

in order to improve the edge-preserving ability of the mod-

els. Although, initially, algorithms were very slow, now,

state-of-the-art convex optimization techniques show com-

parable efficiency to quadratic problems [8].

The development in the non-convex world turns out to

be much more difficult. Indeed, in a SIAM review in 1993,

R. Rockafellar pointed out that: “The great watershed in

optimization is not between linearity and non-linearity, but

convexity and non-convexity”. This statement has been en-

Figure 1. The depth map fusion result of a stack of depth maps is

shown as a 3D rendering. Total generalized variation regulariza-

tion used for the fusion has the property to favor piecewise affine

functions like the roof or the street. However, there is a trade-

off between affine pieces and discontinuities. For convex �1-norm

regularization (left) this trade-off is rather sensible. This paper en-

ables the optimization of non-convex norms (right) which empha-

size the model properties and perform better for many computer

vision tasks.

forced by deriving the worst-case complexity bounds for

general non-convex problems in [17] and makes it seem-

ingly hopeless to find efficient algorithms in the non-convex

case. However, there exist particular instances that still al-

low for efficient numerical algorithms.

In this paper, we show that a certain class of linearly

constrained convex plus concave (only on the non-negative

orthant) optimization problems are particularly suitable for

computer vision problems and can be efficiently minimized

using state-of-the-art algorithms from convex optimization.

• We show how this class of problems can be efficiently

optimized by minimizing a sequence of convex prob-

lems.

• We prove that the proposed algorithm monotonically

decreases the function value of the original problem,

which makes the algorithm an efficient tool for prac-

tical applications. Moreover, under slightly restricted

conditions, we show existence of accumulation points

and, that each accumulation point is a stationary point.
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• In computer vision examples like image denoising, de-

convolution, optical flow, and depth map fusion, we

demonstrate that non-convex models consistently out-

perform their convex counterparts.

2. Related work
Since the seminal works of Geman and Geman [13],

Blake and Zissermann [5], and Mumford and Shah [16]

on image restoration, the application of non-convex poten-

tial functions in variational approaches for computer vi-

sion problems has become a standard paradigm. The non-

convexity can be motivated and justified from different

viewpoints, including robust statistics [4], nonlinear partial

differential equations [20], and natural image statistics [14].

Since then, numerous works demonstrated through ex-

periments [4, 23], that non-convex potential functions are

the right choice. However, their usage makes it very hard

to find a good minimizer. Early approaches are based

on annealing-type schemes [13] and continuation methods

such as the graduated non-convexity (GNC) algorithm [5].

However, these approaches are very slow and their results

heavily depend on the initial guess. A first breakthrough

was achieved by Geman and Reynolds [12]. They rewrote

the (smooth) non-convex potential function as the infimum

over a family of quadratic functions. This transforma-

tion suggests an algorithmic scheme that solves a sequence

of quadratic problems, leading to the so-called iteratively

reweighted least squares (IRLS) algorithm. This algorithm

quickly became a standard solver and hence, it has been ex-

tended and studied in many works, see e.g. [26, 19, 10].

The IRLS algorithm can only be applied if the non-

convex function can be well approximated from above with

quadratic functions. This does not cover the non-convex �p
pseudo-norms, p ∈ (0, 1), which are non-differentiable at

zero. Candes et al. [7] tackled this problem by the so-called

iteratively reweighted �1 (IRL1) algorithm. It solves a se-

quence of non-smooth �1 problems and hence can be seen as

non-smooth counterpart to the IRLS algorithm. Originally,

the IRL1 algorithm was proposed to improve the sparsity

properties in �1 regularized compressed sensing problems,

but it turns out that this algorithm is also useful for com-

puter vision applications.

First convergence results for the IRL1 algorithm have

been obtained by Chen et al. in [9] for a class of non-convex

�2-�p problems used in sparse recovery. In particular, they

show that the method monotonically decreases the energy of

the non-convex problem. Unfortunately, the class of prob-

lems they considered is not suitable for typical computer

vision problems, due to the absence of a linear operator that

is needed in order to represent spatial regularization terms.

Another track of algorithms considering non-convex ob-

jectives is the difference of convex functions (DC) program-

ming [2]. The general DC algorithm (DCA) alternates be-

tween minimizing the difference of the convex dual func-

tions and the difference of the convex functions. In the prac-

tical DCA convex programs obtained by linearizing one of

the two functions are solved alternately. Applying DC pro-

gramming to the function class of the IRL1 algorithm re-

quires an “unnatural” splitting of the objective function. It

makes the optimization hard as emerging proximity opera-

tors are difficult to solve in closed form.

Therefore, we focus on generalizing the IRL1 algorithm,

present a thorough analysis of this new optimization frame-

work, and make it applicable to computer vision problems.

3. A linearly constrained non-smooth and non-
convex optimization problem

In this paper we study a wide class of optimization prob-

lems, which include �2-�p and �1-�p problems with 0 <
p < 1. These are highly interesting for many computer

vision applications as will be demonstrated in Section 4.

The model we consider is a linearly constrained minimiza-

tion problem on a finite dimensional Hilbert spaceH of the

form

min
x∈H

F (x), s.t. Ax = b, (1)

with F : H → R being a sum of two Lipschitz continuous

terms

F (x) := F1(x) + F2(|x|).

In addition we suppose that F is bounded from below,

F1 : H → R ∪ {∞} is proper convex and F2 : H+ → R

is concave and increasing. Here, H+ denotes the non-

negative orthant of the space H; increasingness and the

absolute value |x| are to be understood coordinate-wise.

The linear constraint Ax = b is given by a linear operator

A : H → H1, mapping H into another finite dimensional

Hilbert spaceH1, and a vector b ∈ H1.

As a special case, we obtain the formulation [9]

F1(x) = ‖Tx− g‖22, and F2(|x|) = λ‖x‖pε,p,

where ‖x‖pε,p =
∑

i(|xi| + ε)p is a non-convex norm for

0 < p < 1, λ ∈ R+, T is a linear operator, and g is a vec-

tor to be approximated. This kind of variational approach

comes from compressed sensing and is related but not gen-

eral enough for computer vision tasks. In [9] an iteratively

reweighted �1 minimization algorithm is proposed to tackle

this problem. In the next subsections, we propose a gener-

alized version of the algorithm, followed by a convergence

analysis, which supplies important insights for the final im-

plementation.
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3.1. Iteratively reweighted �1 minimization

For solving the optimization problem (1) we propose the

following algorithm:

xk+1 = arg min
Ax=b

F k(x)

:= arg min
Ax=b

F1(x) + ‖wk · x‖1,
(2)

where wk · x is the coordinate-wise product of the vectors

wk and x, and wk is any vector satisfying

wk ∈ ∂F2(|xk|), (3)

where ∂F2 denotes the superdifferential1 of the concave

function F2. We note that since F2 is increasing, the vector

wk has non-negative components.

The algorithm proceeds by iteratively solving �1 prob-

lems which approximate the original problem. As F1 is con-

vex, (2) is a linearly constrained non-smooth convex opti-

mization problem, which can be solved efficiently [8, 3, 18].

For more details on the algorithmic issue, see Section 4.

3.2. Convergence analysis

Our analysis proceeds in much the same way as [9]:

1. Show that the sequence (F (xk)) is monotonically de-

creasing and converging.

2. Under additional constraints show the existence of an

accumulation point of the sequence (xk).

3. Under additional constraints show that any accumula-

tion point of the sequence (xk) is a stationary point

of (1).

Proposition 1. Let (xk) be a sequence generated by Algo-
rithm (2). Then the sequence (F (xk)) monotonically de-
creases and converges.

Proof. Let xk+1 be a local minimum of F k(x). Accord-

ing to the Karush-Kuhn-Tucker (KKT) condition, there ex-

ist Lagrange multipliers qk+1 ∈ H1, such that

0 ∈ ∂xLFk(xk+1, qk+1),

where LFk(x, q) := F k(x)−〈q,Ax− b〉 is the Lagrangian

function. Equivalently,

A�qk+1 ∈ ∂F k(xk+1) = ∂F1(x
k+1) + wk · ∂|xk+1|.

This means that there exist vectors dk+1 ∈
∂F1(x

k+1), ck+1 ∈ ∂|xk+1| such that

dk+1 = A�qk+1 − wk · ck+1. (4)

1The superdifferential ∂ of a concave function F is an equivalent of

subdifferential of convex functions and can be defined by ∂F = −∂(−F ),
since −F is convex.

We use this to rewrite the function difference as follows:

F (xk)− F (xk+1)

= F1(x
k)− F1(x

k+1) + F2(|xk|)− F2(|xk+1|)
≥ (dk+1)�(xk − xk+1) + (wk)�(|xk| − |xk+1|)
= (A�qk+1)�(xk − xk+1)

+(wk)�(|xk| − |xk+1| − ck+1 · (xk − xk+1))

= (qk+1)�(Axk −Axk+1) + (wk)�(|xk| − ck+1 · xk)

= (qk+1)�(b− b) +
∑
i

wk
i (|xk

i | − ck+1
i xk

i ) ≥ 0,

(5)

which means that the sequence decreases. Here in the first

inequality we use the definitions of sub- and superdifferen-

tial, in the following transition we use (4). In the next-to-

last transition we use that xk and xk+1 are both solutions of

the constrained problem (2) and ck+1 · xk+1 = |xk+1| by

definition of ck+1. The last inequality follows from the fact

that wk
i ≥ 0 and |xk

i | ≥ ck+1
i xk

i , as |ck+1
i | ≤ 1.

The sequence (F (xk)) decreases and, by property of F ,

is bounded from below. Hence, it converges.

Proposition 2. Let (xk) be a sequence generated by Algo-
rithm (2) and suppose

F (x)→∞, whenever ‖x‖ → ∞ and Ax = b, (6)

then the sequence (xk) is bounded and has at least one ac-
cumulation point.

Proof. By Proposition 1, the sequence (F (xk)) is monoton-

ically decreasing, therefore the sequence (xk) is contained

in the level set

L(x0) := {x : F (x) ≤ F (x0)}.
From Property (6) of F we conclude boundedness of the

set L(x0) ∩ {x : Ax = b}. This allows to apply the

Theorem of Bolzano-Weierstraß, which gives the existence

of a converging subsequence and, hence, an accumulation

point.

For further analysis we need F2 to fulfill the following

conditions:

(C1) F2 is twice continuously differentiable in H+ and

there exists a subspace Hc ⊂ H such that for all

x ∈ H+ holds: h�∂2F2(x)h < 0 if h ∈ Hc and

h�∂2F2(x)h = 0 if h ∈ H⊥c .

(C2) F2(|x|) is a C1-perturbation of a convex function, i.e.

can be represented as a sum of a convex function and

a C1-smooth function.

Lemma 1. Let (xk) be a sequence generated by the Algo-
rithm (2) and suppose (xk) is bounded and Condition (C1)

holds for F2. Then

lim
k→∞

(∂F2(|xk|)− ∂F2(|xk+1|)) = 0. (7)
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Proof. See supplementary material.

Proposition 3. Let (xk) be a sequence generated by Algo-
rithm (2) and Condition (6) be satisfied.

Suppose x∗ is an accumulation point of (xk). If the func-
tion F2 fulfills Conditions (C1) and (C2), then x∗ is a sta-
tionary point2 of (1).

Proof. Proposition 2 states the existence of an accumula-

tion point x∗ of (xk), i.e., the limit of a subsequence (xkj ).
From (4) we have:

0 = dkj + ∂F2(|xkj−1|) · ckj −A�qkj .

Combining this with (7) of Lemma 1 we conclude

lim
j→∞

ξj = 0, ξj := dkj + ∂F2(|xkj |) · ckj −A�qkj .

It’s easy to see that ξj ∈ ∂LF (x
kj ). By Condition (C2)

and a property of subdifferential of a C1-perturbation of

a convex function [11, Remark 2.2] we conclude that

0 ∈ ∂xLF (x
∗). From Axkj = b it immediately follows

that Ax∗ = b, i.e., 0 ∈ ∂qLF (x
∗), which concludes the

proof.

4. Computer vision applications
For computer vision tasks we formulate a specific sub-

class of the generic problem (1) as:

min
Ax=b

F (x) = min
Ax=b

F1(x) + F2(|x|)
:= min

Ax=b
‖Tx− g‖qq + Λ�F2(|x|),

(8)

where F2 : H+ → H+ is a coordinate-wise acting increas-

ing and concave function, A : H → H1, T : H → H2 are

linear operators acting between finite dimensional Hilbert

spaces H and H1 or H2. The weight Λ ∈ H+ has non-

negative entries. The data-term is the convex �q-norm with

q ≥ 1. Prototypes for F2(|x|) are

|xi| → (|xi|+ ε)p or |xi| → log(1+ β|xi|), ∀i, (9)

i.e., the regularized �p-norm, 0 < p < 1, ε ∈ R+, or a non-

convex log-function (c.f. Figure 2). In the sequel, the inner

product F2 = Λ�F2 uses either of these two coordinate-

wise strictly increasing regularization-terms. The �p-norm

becomes Lipschitz by the ε-regularization and the log-

function naturally is Lipschitz.

Algorithm (2) simplifies to

xk+1 = arg min
Ax=b

‖Tx− g‖qq + ‖diag(Λ)(wk · x)‖1, (10)

where the weights given by the superdifferential of F2 are

wk
i =

p

(|xk
i |+ ε)1−p

or wk
i =

β

1 + β|xi| , (11)

2Here by stationary point we mean x∗ such that 0 ∈ ∂LF (x∗).
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Figure 2. Top right: Non-convex functions of type (9): �1-norm,

�p-norm with p = 1/2, and log-function with β = 2.

respectively. By construction, Proposition 1 applies and

(F (xk)) is monotonically decreasing. Proposition 2 guar-

antees existence of an accumulation point given Condi-

tion (6) being true. This is crucial for solving the optimiza-

tion problem. The following Lemma reduces Condition (6)

to a simple statement about the intersection of the kernels

ker of the operators T and diag(Λ) with the affine constraint

space.

Lemma 2. Let

kerT ∩ ker diag(Λ) ∩ kerA = {0}. (12)

then F (x)→∞, whenever ‖x‖ → ∞ and Ax = b.

Proof. By Condition (12) we have

kerA = (kerT ∩ kerA)⊕ (ker diag(Λ) ∩ kerA)

⊕ (kerA/((kerT ⊕ ker diag(Λ)) ∩ kerA)). (13)

For any x such that Ax = b this gives x = x0 + e1 +
e2 + e3, where x0 is a fixed point such that Ax0 = b and ei

lie in respective subspaces from the decomposition (13). If

‖x‖ → ∞, then maxi ‖ei‖ → ∞. It is easy to see that then

the maximum of summands in (8) goes to infinity.

Considering Proposition 3; as our prototypes (9) are one-

dimensional it is easy to see that (C1) and (C2) are satis-

fied (c.f. Lemma 3 of supplementary material for details).

Therefore, only Condition (12) needs to be confirmed in or-

der to make full use of the results proved in Subsection 3.2.

In the sequel, for notational convenience, let Iu be the

identity matrix of dimension dim(u) × dim(u). The same

applies for other operators, e.g., Tu be an operator of di-

mensions such that it can be applied to u, i.e., a matrix with

range in a space of dimension dim(u).
Using this convention, we set in (8)

x = (u, v)�, T =

(
Tu 0
0 0

)
, g = (gu, 0)

�,

Λ = (0, (1/λ)v)
�, A =

(
Ku −Iv

)
, b = (0, 0)�,
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where T is a block matrix with operator Tu and zero blocks.

This yields a template for typical computer vision problems:

min
u

λ‖Tuu− gu‖qq + F2(|Kuu|). (14)

The Criterion (12) in Lemma 2 simplifies.

Corollary 1. Let Tu be injective on kerKu. Then, the se-
quence generated by (10) is bounded and has at least one
accumulation point.

Proof. The intersection in Condition (12) equals

kerT ∩ ker diag(Λ) ∩ kerA

= {(u, v)� : u ∈ kerTu} ∩ {(u, 0)�}
∩ {(u, v)� : Kuu = v}

= {(u, 0)� : u ∈ kerTu ∧ u ∈ kerKu},
where the latter condition is equivalent to Tu being injective

on kerKu. Lemma 2 and Proposition 2 apply.

Examples for the operator Ku are the gradient or the

learned prior [15]. For Ku = ∇u
3 the condition from

the Corollary is equivalent to Tu1u �= 0, where 1u is the

constant 1-vector of same dimension as u.

We also explore a non-convex variant of TGV [6]

min
u,w

λ‖Tuu− gu‖qq + α1F2(|∇uu− w|) + α2F2(|∇ww|),
(15)

or as constrained optimization problem

min
u,w,z1,z2

‖Tuu− gu‖qq +
α1

λ
F2(|z1|) + α2

λ
F2(|z2|)

s.t. z1 = ∇uu− w

z2 = ∇ww,

(16)

which fits to (8) by setting

x = (u,w, z1, z2)
�, T =

⎛
⎜⎜⎝
Tu 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

g = (gu, 0, 0, 0)
�, Λ = (0, 0, (α1/λ)z1 , (α2/λ)z2)

�,

A =

(∇u −Iw Iz1 0
0 ∇w 0 −Iz2

)
, b = (0, 0)�.

The corresponding statement to Corollary 1 is:

Corollary 2. If Tu is injective on {u : ∃t ∈ R : ∇uu =
t1u}, then the sequence generated by (10) is bounded and
has at least one accumulation point.

3∇u does not mean the differentiation with respect to u, but the gradi-

ent operator such that it applies to u, i.e, ∇u has dimension 2 dim(u) ×
dim(u) for 2D images.

Proof. The intersection in Condition (12) equals

{(u,w, z1, z2)� : u ∈ kerTu} ∩ {(u,w, 0, 0)�}
∩ {(u,w, z1, z2)� : z1 = ∇uu− w ∧ z2 = ∇ww}

= {(u,w, 0, 0)� : u ∈ kerTu ∧∇uu = w ∧∇ww = 0},
which implies the statement by Lemma 2 and Proposition 2.

4.1. Algorithmic realization

As the inner problem (10) is a convex minimization

problem, it can be solved efficiently, e.g., [18, 3]. We use

the algorithm in [8, 21]. It can be applied to a class of prob-

lems comprising ours and has proved optimal convergence

rate: O(1/n2) when F1 or F2 from (8) is uniformly convex

and O(1/n) for the more general case.

We focus on the (outer) non-convex problem. Let (xk,l)
be the sequence generated by Algorithm (2), where the in-

dex l refers to the inner iterations for solving the convex

problem, and k to the outer iterations. Proposition 1, which

proves (F (xk,0)) to be monotonically decreasing, provides

a natural stopping criterion for the inner and outer problem.

We stop the inner iterations as soon as

F (xk,l) < F (xk,0) or l > mi, (17)

where mi is the maximal number of inner iterations. For

a fixed k, let lk the number of iterations required to satisfy

the inner stopping criterion (17). Then, outer iterations are

stopped when

F (xk,0)− F (xk+1,0)

F (x0,0)
< τ or

k∑
i=0

li > mo, (18)

where τ is a threshold defining the desired accuracy and mo

the maximal number of iterations. As default value we use

τ = 10−6 and mo = 5000. For strictly convex problems

we set mi = 100, else, mi = 400. The difference in (18) is

normalized by the initial function value to be invariant to a

scaling of the energy. When we compare to ordinary convex

energies we use the same τ and mo.

The tasks in the following subsections are implemented

in the unconstrained formulation. The formulation as a con-

strained optimization problem was used for theoretical rea-

sons. In all figures we compare the non-convex norm with

its corresponding convex counterpart. We always try to find

a good weighting (usually λ) between data and regulariza-

tion term. We do not change the ratio between weights

among regularizers as for TGV (α1 and α2).

4.2. Image denoising

We consider the extension of the well-known Rudin, Os-

her, and Fatemi (ROF) model [24] to non-convex norms

min
u

λ

2
‖u− gu‖22 + F2(|Kuu|),

176117611763



Figure 3. Natural image denoising problem. Displayed is the zoom into the right part of watercastle. Non-convex norms yield sharper

discontinuities and show superiority with respect to their convex counterparts. From left to right: Original image, degraded image with

Gaussian noise with σ = 25. Denoising with TGV prior, α1 = 0.5, α2 = 1.0, λ = 5 (PSNR = 27.19), and non-convex log TGV

prior with β = 2, α1 = 0.5, α2 = 1.0, λ = 10 (PSNR = 27.87). The right pair compares the learned prior with convex norm

(PSNR = 28.46) with the learned prior with non-convex norm p = 1/2 (PSNR = 29.21).
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Figure 4. Left to right: Comparison of the energy decrease for the

non-convex log TV and TGV between our method and NIPS [25].

Our proposed algorithm achieves a lower energy in the limit and

drops the energy much faster in the beginning.

and arbitrary priors Ku, e.g., here, Ku = ∇u or Ku from

[15]. Since kerTu = ker Iu = {0} Condition (12) is triv-

ially satisfied for all priors, c.f. Corollary 1 and 2. The reg-

ularizing norms F2(|x|) =
∑

i(F2(|x|))i are the �p-norm,

0 < p < 1, and the log-function according to (9).

Figure 3 compares TGV, the learned image prior from

[15] and their non-convex counterparts. Using non-convex

norms combines the ability to recover sharp edges and being

smooth in between.

Figure 4 demonstrates the efficiency of our algorithm

compared to a recent method, called, non-convex inexact

proximal splitting (NIPS) [25], which is based on smooth-

ing the objective. Reducing the smoothing parameter ε bet-

ter approximates the original objective, but, on the other

hand, increases the required number of iterations. This is

expected as the ε directly effects the Lipschitz constant of

the objective. We do not require such a smoothing epsilon

and outperform NIPS.

4.3. Image deconvolution

Image deconvolution is a prototype of inverse problems

in image processing with non-trivial kernel, i.e., the model

is given by a non-trivial operator Tu �= I in (14) or (15).

Usually, Tu is the convolution with a point spread func-

tion ku, acting as a blur operator. The data-term here reads

‖ku ∗ u− gu‖qq . Obviously ker ku = {0} and Corollaries 1

and 2 are fulfilled. We assume Gaussian noise, hence, we

use q = 2.

We use the numerical scheme of [8] based on the fast

Fourier transform to implement the data-term and combine

it with the non-convex regularizers.

Deconvolution aims for the restoration of sharp discon-

tinuities. This makes non-convex regularizers particularly

attractive. Figure 5 compares different regularization terms.

4.4. Optical flow

We estimate the optical flow field u = (u1, u2)� be-

tween an image pair f(x, t) and f(x, t+1) according to the

energy functional:

min
u,v,w

λ‖ρ(u,w)‖1 + ‖∇ww‖1
+ α1F2(|∇uu− v|) + α2F2(|∇vv|),

where local brightness changes w between images are as-

sumed to be smooth [8]:

ρ(u,w) = ft + (∇ff)
� · (u− u0) + γw.

We define∇uu = (∇u1u1,∇u2u2)�, and v according to the

definition of TGV.

A popular regularizer is the total variation of the flow

field. However, this assigns penalty to a flow field describ-

ing rotation and scaling motion. TGV regularization deals

with this problem and affine motion can be described with-

out penalty. Figure 6 shows that enforcing the TGV prop-

erties by using non-convex norms yields highly desirable

sharp motion discontinuities and convex TGV regulariza-

tion is outperformed.

Since we analysed TGV already for Condition (12) only
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Figure 5. Deconvolution example with known blur kernel. Shown is a zoom to the right face part of romy. From left to right: Original

image, degraded image with motion blur of length 30 rotated by 45◦ and Gaussian noise with σ = 5. Deconvolution using TGV with

λ = 400, α1 = 0.5, α2 = 1.0 (PSNR = 29.92), non-convex log-TGV, β = 1, with λ = 300, α1 = 0.5, α2 = 1.0 (PSNR = 30.15),

the learned prior [15] with λ = 25 (PSNR = 29.71), and its non-convex counterpart with p = 1/2 and λ = 40 (PSNR = 30.54).

the data-term is remaining. We obtain (8) by setting

T =

(
diag((∇ff)

�) γIw
0 ∇w

)
, g = −

(
ft − (∇ff)

� · u0

0

)

and the kernel of T can be estimated as

kerT = {(u,w)� : T (u,w)� = 0}
= {(u,w)� : (∇ff)

� · u = −γw ∧∇ww = 0}
= {(u, t1w)

� : (∇ff)
� · u = −γt1w, t ∈ R}.

For TV and TGV this requires a constant or linear depen-

dency for x- and y-derivative of the image for all pixels.

Practically interesting image pairs do not have such a fixed

dependency, i.e., Lemma 2 applies.

4.5. Depth map fusion

In the non-convex generalization of TGV depth fusion

from [22] the goal is minimize

λ
K∑
i=1

‖u− gi‖1 + α1F2(|∇uu− v|) + α2F2(|∇vv|)

with respect to u and v, where the gi, i = 1, . . . ,K, are

depth maps recorded from the same view. The data-term in

(8) is obtained by setting T = (Tu1
, . . . , TuK

)� and Tui
=

Iui
, the identity matrix. Hence, Condition (12) is satisfied.

Consider Figure 7; the streets, roof, and also the round

building in the center are much smoother for the result with

non-convex norm, and, at the same time discontinuities are

not smoothed away, they remain sharp (c.f. Figure 1).

5. Conclusion
The iteratively reweighted �1 minimization algorithm for

non-convex sparsity related problems has been extended to

a much broader class of problems comprising computer vi-

sion tasks like image denoising, deconvolution, optical flow

estimation, and depth map fusion. In all cases we could

show favorable effects when using non-convex norms.

Figure 6. Comparison between TGV (left) and non-convex TGV

(right) for the image pair Army from the Middlebury Optical Flow

benchmark [1] and two zooms. The TGV is obtained with λ = 50,

γ = 0.04, α1 = 0.5, α2 = 1.0 and the result with non-convex

TGV using p = 1/2, λ = 40, γ = 0.04, α1 = 0.5, α2 = 1.0.

The presentation of an efficient optimization framework

for the considered class of linearly constrained non-convex

non-smooth optimization problems has been enabled by

proving decreasing function values in each iteration, the ex-

istence of accumulation points, and boundedness.
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Figure 7. Non-convex TGV regularization (bottom row) yields a

better trade-off between sharp discontinuities and smoothness than

its convex counterpart (upper row) for depth map fusion. Left:
Depth maps. Right: Corresponding rendering.
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