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Abstract

Statistical shape models, such as Active Shape Models
(ASMs), suffer from their inability to represent a large range
of variations of a complex shape and to account for the
large errors in detection of model points. We propose a
novel method (dubbed PDM-ENLOR) that overcomes these
limitations by locating each shape model point individually
using an ensemble of local regression models and appear-
ance cues from selected model points. Our method first de-
tects a set of reference points which were selected based
on their saliency during training. For each model point,
an ensemble of regressors is built. From the locations of
the detected reference points, each regressor infers a can-
didate location for that model point using local geometric
constraints, encoded by a point distribution model (PDM).
The final location of that point is determined as a weighted
linear combination, whose coefficients are learnt from the
training data, of candidates proposed from its ensemble’s
component regressors. We use different subsets of reference
points as explanatory variables for the component regres-
sors to provide varying degrees of locality for the models in
each ensemble. This helps our ensemble model to capture
a larger range of shape variations as compared to a single
PDM. We demonstrate the advantages of our method on the
challenging problem of segmenting gene expression images
of mouse brain.

1. Introduction
Statistical shape models are widely used for automated

image segmentation ([9, 11, 10, 31, 1, 2, 29]) and landmark

localization ([32, 25]). They overcome some of the limi-

tations of the deformable shape models by imposing geo-

metric constraints that are learned from a training dataset.

The active shape model (ASM [7]) is one of the most pop-

ular statistical shape models that restricts the shape space

to limit the range of possible shapes the model can form.

However, one of their major limitations lies in their ability

to represent the variations of a complex shape model, espe-

cially when the number of training samples is much smaller

than the dimensions of the shape model. Thus, they pro-

vide a restricted subspace of shapes that can be insufficient

to represent the shape variations. Moreover, it is difficult

to account for the large errors in the detection of the model

points due to the noisy, incomplete or complex appearance

information in the image. Such erroneous detections of a

large number of model points can drive the fitting to an in-

correct solution.

In this paper, we propose a new approach for statistical

model fitting that also provides solutions to the problems of

the model flexibility and the model point detection errors.

Our PDM-ENLOR locates each shape model point individ-

ually using an ensemble of regression models built for that

specific point. Specifically, a set of salient reference points

are first selected to be used as explanatory variables of the

regression models. These reference points are detected us-

ing our PASM-CTX algorithm. Then, each component re-

gression model regresses the location of a model point of

interest from the detected locations of its explanatory vari-

ables by fitting a point distribution model (PDM) [8], which

is built to encode the spatial relationship between the de-

pendent and the explanatory variables. In order to pro-

vide increased flexibility to the shape model and to handle

the non-robust detection of the regression explanatory vari-

ables, the models are built with increasing degrees of local-

ity based on the increasing number of reference points used.

The final location of the point is obtained by combining the

output of all models using non-negative coefficients deter-

mined from the training set. Note that the set of selected

salient reference points is automatically selected during the

training phase and may include points that do not belong

to the boundaries. We evaluate our method on mouse brain

gene expression images to segment sagittal sections from

a mouse brain into 14 anatomical regions. The main chal-

lenges of this problem are the lack of visible edge cues of

the regional boundaries and the shape variation of anatomi-

cal regions across images [16].

The contributions of our work are as follows. First, we

propose a novel method to construct an ensemble of multi-

ple regression models to impose shape constraints of vary-

ing degrees of locality from local-to-global to increase the
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flexibility of the shape model. Our method automatically

constructs an ensemble of local-to-global PDMs and there-

fore, there is no need to determine the suitable degree of

locality. Second, we propose a method to learn the op-

timal coefficients for combining regressors in an ensem-

ble using linear least squares with non-negative constraints.

This data-driven approach is generic and can be applied to

similar problems. Third, our PASM-CTX method to detect

the reference points is the first work that uses similarity-

based features instead of a local gray level model to de-

tect the local best matches in ASM search. This modifica-

tion makes ASM applicable to gene expression image data

whose regional boundaries are indistinct. In addition, since

our method incorporates appearance guidance from only the

points that are likely to be detected correctly, our method

does not require any post-processing step to minimize the

errors in fitting due to unreliable model points.

The rest of the paper is organized as follows. In Sec. 2,

we discuss the related work in literature. In Sec. 3, we

present our method in detail. In Sec. 4, we evaluate the

proposed method on 2D biological image segmentation and

discuss the results. Finally, we conclude our work in Sec. 5.

2. Related work
Many efforts have focused on improving the flexibility

of the point distribution models. One direction is to allow

deviations that are not explained in the training data [9, 22],

but it can result in an invalid shape. Another direction is to

partition the shape model into local sub-shapes models and

fit them individually [11, 10, 31, 24, 3]. However, deter-

mining an appropriate partition of the shape model is a non-

trivial problem. Additionally, the appearance prior in a lo-

cal region may not be strong enough to drive the fitting of a

sub-shape model to any acceptable solution. Instead of par-

titioning the shapes, few recent methods [2, 18] fit a global

shape model for each model point individually using local

weights. The local weights for each model point control the

neighborhood size for fitting that point and they are com-

puted based on the distances between model points. While

this approach avoids the partitioning of the shape model,

determining the neighborhood size that controls the degree

of locality is nontrivial. Moreover, it is very sensitive to the

incorrect detection of the neighboring points.

One of the most common approaches to account for the

non-Gaussian errors in the detection of points is to weigh

each point based on the reconstruction residuals [13, 27, 1].

The performance of these methods degrades rapidly with

the increase in the number of incorrectly detected points

and the extent of error in detection. Lekadir et al. [21] pro-
posed to identify the outlier points (and correct them) with

incorrect detection using a local shape dissimilarity mea-

sure. Similar to other previous methods, this method also

identifies the detection errors as a post processing step after

detection of all feature points. This post processing can be

avoided by explicitly enforcing sparseness condition on the

residuals [30] but only if the number of non-robust points is

small. Yan et al. [29] proposed to detect the salient points

based on prior knowledge about the contrast of the contour

and reconstruct the full shape from the detection of salient

points.

Our methods are closely related to the work of Amberg et
al. [2] and of Yan et al. [29]. Similar to [2], PDM-ENLOR

also locates each model point independently. However, in-

stead of using a single global model, our method explicitly

builds different regression models with different degrees of

locality for each point to increase their flexibility. More-

over, our method automatically determines the suitable lev-

els of local shape constraints for each point separately. Sim-

ilar to [29], the PASM-CTX and PDM-ENLOR detect the

salient points and reconstructs the shape based on the guid-

ance of the salient points to account for the large errors in

detection. However, our methods learn the set of salient

points from training data in advance and exploits informa-

tion from additional supporting salient points, which may

not belong to the boundaries. In addition, PDM-ENLOR

uses salient points selectively in the ensemble of multiple

models to provide further flexibility at local level. Our work

and [16, 20] use data from the same application domain.

However, our approach explicitly incorporates geometric

prior in the form of a statistical shape.

3. Method
3.1. Overview

In this section, we briefly present our method for fitting

a shape model to an image. The shape is explicitly rep-

resented by an ordered set of points. A set of reference

points, which were selected during training phase based on

a saliency criteria, are detected using PASM-CTX. Then,

each point of the boundary shape model is localized inde-

pendently using an ensemble of regression models. Each

regression model is obtained by fitting a PDM, which is

specifically built to represent the spatial relationship of the

model point of interest and a subset of the reference points.

The final location of the model point is determined as a non-

negative linear combination of the candidates proposed by

the regression models for that point. The non-negative co-

efficients are learned from the training data. Specifically,

the final location of a model point pi in the shape model of

interest, is given by:

pi =
k∑

j=1

cijf
i
j(R

i
j), (1)

where k is the number of regression functions built for pi,

Ri
j is a set of reference points used in the function f ij to in-

fer pi and c
i
j is the ensemble coefficient for the regression
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function f ij . Note that, multiple shape models are used in

our method. The shape model of interest that contains sam-

pled points on the boundaries of the object is referred as the

boundary shape model. When the set of reference points is

not a subset of the set boundary points, the shape model that

contains all the boundary points and the reference points is

called the extended shape model while a shape model that

contains a subset of points of the extended shape model is

called the local extended shape model (Fig. 1).

3.2. Reference point selection

Only the points that can be reliably detected should be

used as a reference to guide the inference for the location

of the model points. The reliable points are likely to have

high consistency in appearance across images. The mutual-

saliency concept of two arbitrary points in two images, in-

troduced by Ou et al. [26], was modified to similarity-

saliency concept [20] to evaluate the degree of saliency in

appearance for the corresponding anatomical point in mul-

tiple images. We adopt the similarity-saliency to select the

reference point set. The similarity-saliency score of a point

u with respect to a reference image T computed for a set of

training images I = {Ii}ni=1 is defined as:

γ(u, T, I) =
∑n

i=1 γ(u, T, Ii)

n
(2)

and for a single image I , it is defined as:

γ(u, T, I) =

1
|NC(u,I)|

∑
v∈NC(u,I) ψ(T (u), I(v))

1
|NP (u,I)|

∑
v∈NP (u,I) ψ(T (u), I(v))

, (3)

where the terms NC and NP denote the core neighborhood

region (within a small radius around u) and the peripheral

neighborhood region (an annulus at larger distance from u)
in image I , and ψ(T (u), I(v)) is the similarity metric com-

puted for two image patches (centered at u in image T and

centered at v in image I). The similarity-saliency score of

a salient point should be high (the higher score, the more

salient) and greater than 1.0 (i.e., the average similarity in

NC is higher than that in NP ).

Let L be the set of points associated with an object in

an image. The position of each point in L in every training

image is known (e.g., they are obtained using an annota-

tion process). A set of salient points are selected using the

following steps. First, the similarity-saliency score of each

point with respect to the reference image T over the set of

training images I (Eq. 2) is computed. Then, a set of ref-

erence points whose similarity-saliency score is higher than

a threshold t are selected. The threshold t is determined by

using the histogram of the similarity-saliency scores higher

or equal 1.0. Specifically, the threshold t > 1.0 is selected

such that it separates the points in the first bin from the

other points. We use Sturge’s method [28] to estimate the

number of bins for computing histogram of φ samples as:

1 + 3.3log10(φ). The motivation for removing the first bin

is to obtain more reliable points. However, the similarity-

saliency is an unnormalized score (the ratio of two simi-

larity scores). Therefore, further investigation is needed to

determine suitable techniques to determine the threshold for

selecting the reference points.

Mouse brain gene expression images: For mouse brain

images, L contains all 1,245 vertices of a subdivision mesh,

a geometric model specifically constructed for mouse brain

gene expression images by Ju et al. [15], at subdivision

level 2. The boundary shape model contains all 394 ver-

tices on the boundaries. For the 10-fold experiments, 183

to 196 reference points were selected and depicted as solid

blue circles in Fig. 1. In the mouse brain gene expres-

sion images, the intensity pattern of each anatomical region

may vary significantly from image to image as each im-

age expresses a different gene. Therefore, a special image

called Nissl-stained image (NSI), which was constructed

using a universal gene probe and has maximum similarity

to other gene expression images, is used as a reference im-

age ([16, 20]).

3.3. Regression model definition

In this section, we present how to encode different de-

grees of locality in our ensemble scheme by defining the

explanatory variables Ri
j for regressors in Eq.1. The lo-

cality level j of a regression model f ij(R
i
j) is based on the

spatial relationship between pi and the reference points in

Ri
j . We assume that the neighboring points provide simi-

Figure 1: Illustration of the shape models in mouse brain

gene expression image segmentation. The squares depict

the non-reference boundary points and the solid blue cir-

cles depict the reference points. The boundary shape model

contains all sampled points on the regional boundaries of

14 anatomical regions. The extended shape model contains

all the boundary points and the reference points (i.e., it con-

tains all the points shown in this figure).
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Figure 2: Example of the clusters obtained during training

(10-fold cross validation). The clusters depicted by single-

line ellipses are obtained from the first step of clustering.

The clusters depicted by two ellipses are obtained from the

second step of clustering.

lar geometric constraints to infer a model point. Therefore,

we perform density-based clustering of the reference points.

These clusters of the reference points are then used to con-

struct the regression models for inference of the position of

a target model point.

Clustering of the reference points: This step is per-

formed during the training phase. The clustering should let

the neighboring points belong to the same cluster. There-

fore, in our experiments, we use the algorithm DBSCAN

[12]. This algorithm has two parameters η (the number of

neighbors) and ε (the neighborhood radius). The points that
have less than η neighbors in their ε -neighborhood are the

outliers. To cluster q points in d-dimensional space, we use

the analytical estimation for the neighborhood radius ε ([5]):

ε = d

√
V
ηΓ(d/2 + 1)

q
√
πd

, (4)

where V is the volume of the smallest cuboid that contains

all the points that need to be clustered and Γ is the well-

known Gamma function. Because there can be some ref-

erence points that are isolated from the others and should

not be merged with their neighbors that are far away, we al-

low the clusters to have size of 1. However, we also want

to group the points that are dense neighbors to reduce the

computation cost. Therefore, the clustering is performed in

two steps. First, we set η = 1 so the clustering requires

that each cluster has at least two points. Then, the outliers

from the first step ares clustered again with η = 0 allowing
1-point clusters. Therefore, every reference point belongs

to one of the clusters. The output of this step is k − 1 non-
overlapping clusters Q1, Q2, ..., Qk−1. Figure 2 illustrates

the clusters obtained by our method.

Construction of the regression models:
Let h(i, j) be the index of the cluster that is the jth clos-

est to pi (based on the distance from the center of each clus-

Figure 3: Illustration of

the explanatory variables

for regression functions.

Points denoted by the same

symbol belong to the same

cluster. Multiple f ij mod-

els infer pi from differ-

ent sets Ri
j using corre-

sponding local to global

extended shape models.

ter to pi). We build {Ri
j}kj=1 in a nested-manner (Fig. 3):

Ri
1 = Qh(i,1); R

i
k = Ri

k−1 ∪Qh(i,k), for k : 2→ (k − 1);
andRi

k = Ri
k−1. The smaller value of the locality level j of

the regression model f ij corresponds to a more local model.

Note that, Ri
k and Ri

k−1 are the set of all reference points.

3.4. Shape model point regression

Given an input image, our method first detects the refer-

ence points and then infers the position of each model point

using the constructed regression models. For clarity of pre-

sentation, first we present how to determine candidate loca-

tions using a PDM-based regression function assuming that

the positions of the reference points are already available.

Later, we present the method to detect the reference points.

3.4.1 PDM-based model point regression

In this section, we present how our method infers the po-

sition of a model point pi based on reference points in

Ri
j using a PDM. In PDMs, each shape is represented as

the concatenation of coordinates of all the points x =
[x1, y1, x2, y2, ..., xm, ym]

T , where m is the number of

model points. Given n training shapes, assume that they

were rigidly aligned using Procrustes analysis [14], denote

x̄ as the mean shape and Xn×2m as the data matrix where

each row corresponds to one shape. Principal component

analysis is applied on the covariance matrix of X to trans-

form the aligned shapes into a new space, P, whose axes

are defined by the eigenvectors that are corresponding to

the highest eigenvalues. Then, each shape x is represented

as x = x̄+Pb, where b is the shape parameter. The fitting

of the PDM (x̄,P) to a shape x is given by:

x∗ = argminx ||W[x− (x̄+Pb)]||22, (5)

where the diagonal weight matrix W2m×2m is intro-

duced to emphasize the importance of the model points:

W(2i− 1, 2i− 1) =W(2i, 2i) is the weight of the ith

model point. In standard PDM fitting, the weights of all

model points are uniform. Generally, the shape is rigidly-

aligned before fitting to remove global transformations by

using generalized Procrustes [14].
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For each of the first k − 1 regression models, f ij(R
i
j),

(j = 1, ..., k − 1), a PDM (x̄i
j ,P

i
j) is learnt from training

shapes where each shape contains pi (always being the first

point of the shape) and all points in Ri
j . To use a PDM to

infer the position of an unknown point pi, we reconstruct

the full shape from the known locations of points in Ri
j and

retrieve the point of interest pi. Specifically,

pi = f ij(R
i
j) = [ai∗j (1),a

i∗
j (2)]

T , (6)

where ai∗j is solution of Eq. 5 when using the model

(x̄i
j ,P

i
j) and weight matrix Wi

j with weight equal to 0 for

pi and weight equal to 1 for the other points.

The inference of pi in the first (k−1) regression models

employs only the geometric constraints between pi and the

reference points. To explicitly impose the geometric con-

straints on all the points in the boundary shape model, the

extended shape model is used for training the PDM for the

last regressor f ik(R
i
k).

3.4.2 Reference point detection

ASM is a strategy for searching a shape that fits to the image

evidence in an input image by using a PDM that was learnt

from the training shapes. In the ASM approach, a shape

iteratively evolves in two steps: (i) finding a new shape es-

timate (target shape) whose each model point is detected

as the best match in the local neighborhood of that point

from the previous iteration, and (ii) fitting the target shape

by solving Eq. 5. Due to the indistinct anatomical bound-

aries in gene expression images, the local gray level model

of the traditional ASM formulation is not suitable for the

detection of the model points. Therefore, we introduce a

similarity-based feature as a new feature detector for ASM

to detect the reference points.

While we want to detect only the reference points, the

extended shape model is used to train a PDM for maintain-

ing the global shape constraint. Since the extended shape

model contains context points which are not the points of

interest, we refer our modified ASMmethod as PASM-CTX

(Partial ASM with ConTeXt). At each iteration, we evolve

the shape based on the guidance of the reference points only

(i.e., 0 as weight for non-reference points and 1 as weight

for reference points in the fitting process). At the final iter-

ation, we trust the feature detector than the shape model to

relax the geometric constraint. That means the fitting step

at the last iteration is omitted and the best matches obtained

from feature detectors at that iteration are the final estimates

of the reference points.

Initialization: To obtain a robust initialization for the

specific application, the shape parameters are first com-

puted based on the points on the outer boundary of the brain

(i.e., other model points have zero weights). The reason is

that the outer boundary in mouse brain can be easily ob-

tained quite accurately and it can provide certain informa-

tion about the global shape [15, 4, 17, 20]. Specifically,

after binarizing the image, the contour of the outer shape is

traced, followed by sampling the contour to obtain a set C of
discrete points. At each iteration of ASM search, the target

of an outer-boundary model point is the point in C closest

to it.

Model point detector for ASM: For each model point,

a local image patch around that point in the NSI is used as

the 2D appearance model for detection of the points. The

reason for using the NSI as a reference for appearance com-

parison has been discussed in Sec. 3.2. At each iteration,

a local best match of pi is selected from one of the neigh-

bors that are sampled from a search window centered at that

point. The neighboring point whose image patch around it

in the test image is most similar to the image patch around

pi in the reference image (NSI) is selected as the best match

for pi. The similarity between patches is evaluated us-

ing the similarity function ψ(., .) that was used in Eq. 3.

A multi-resolution approach for sampling the neighbors is

employed. The parameters were selected so that at the fi-

nal step, the sampled neighbors include all the pixels in the

search region.

3.5. Combining the models in ensemble

In this section, we provide the motivation for using an

ensemble of models in Eq. 6 as well as the motivation for

learning the ensemble weights. Finally, we present our

method to learn the ensemble weights.

Using an ensemble of models: A local model can pro-

vide improved geometric constraints due to the locality and

the simplicity of the local shape. However, it can suffer

from non-robust detection of the local reference points. Us-

ing a global model in this case can help if the additional

reference points can be detected more accurately. We as-

sume that the true point can be estimated as a non-negative

linear combination of candidate points.

Learning the ensemble weights: Two popular solutions
to combine the models in ensembles are either to use the

mean position of the candidates or to use the peak of dis-

tribution of the candidates. To select an appropriate voting

rule, prior knowledge of the distribution of the candidates

is needed. The former solution is preferable if the candi-

dates are evenly scattered. The latter solution is preferable if

the majority of the candidates are close to the true solution.

However, density estimation is sensitive to parameter set-

tings and different model points may need different param-

eter sets. Whereas, learning ensemble weights from data

is a data-driven solution that can be generalized for similar

applications. Therefore, we propose to learn the weight co-

efficients from the training data. This approach, however,

depends on the assumption that the behavior of the multiple
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regression functions for each model point is similar across

images. An extreme example under this assumption is when

some points always prefer the global model whereas some

others always prefer the most local models. Therefore, we

can use a universal coefficient set for each point in all im-

ages.

Learning the ensemble weights: For each model point

pi, the coefficient vector ci = [ci1, c
i
2, ..., c

i
k] is obtained

by minimizing the error of the final regression results com-

puted for pi when compared to the true position over all the

training images. The matrix Ai contains the coordinates of

the results obtained from the regression models that infer pi

in all training images:

Ai =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x
∗(1,1)
i x

∗(2,1)
i . . . x

∗(k,1)
i

y
∗(1,1)
i y

∗(2,1)
i . . . y

∗(k,1)
i

. . . . . .

. . . . . .

. . . . . .

x
∗(1,n)
i x

∗(2,n)
i . . . x

∗(k,n)
i

y
∗(1,n)
i y

∗(2,n)
i . . . y

∗(k,n)
i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where (x
∗(j,l)
i , y

∗(j,l)
i ) is the output of f ij on training image

Il. The vector

gi =
[
x
(g,1)
i , y

(g,1)
i , x

(g,2)
i , y

(g,2)
i , . . . , x

(g,n)
i , y

(g,n)
i

]T
contains the coordinates of the annotation position

(x
(g,l)
i , y

(g,l)
i ) of pi on training image Il. Then, the ensem-

ble coefficient vector for point pi is computed as:

ci∗ = argmin
ci

||Aici − gi||22, s. t. cij ≥ 0 (7)

We solve Eq. 7 by using Lawson and Hanson’s method

for least squares with non-negative constraints [19].

4. Experiments and Results
Image data: We evaluated our method on 2D mouse

brain gene expression images [4, 6]. The dataset contains

100 images depicting sagittal sections of postnatal day 7

mouse brains at standard section 9. Each of the images

is rigidly-aligned to the template image (NSI). The anno-

tated shape and the anatomical point set L were extracted

from the manually annotated subdivision mesh at subdivi-

sion level 2 and were provided by [15, 4].

Experimental setup: We performed 10-fold cross-

validation. We quantitatively compared the performance

of the different methods using the Dice similarity coeffi-

cient (DSC) against the manual annotations for each of the

14 anatomical regions in the mouse brain. The statistics

(mean, confidence-interval and statistical test) of the DSCs

were computed on 100 resulting images from all 10 ex-

periments. Although different models, built using different

training data sets, were used to obtain the results, the eval-

uation is fair because we apply the same automatic frame-

work (for training/testing) for all the experiments. To test

if a method A outperforms a method B, we performed a

non-parametric Wilcoxon Signed-Rank test using the DSC

values in order to determine whether the relative median

values are equal (i.e., null hypothesis) or A outperforms B

(i.e., one sided alternative hypothesis). The Bonferonni cor-

rection was used to keep the overall significance level equal

to 0.05. All the tests that reject the null hypothesis in our ex-
periments have p-values smaller than 0.0015 < 0.05

14 . We do

not include in the text the comparison between two methods

on a region if none of them outperforms the other.

For each PDM, we retained components that contributed

at least 2% of the total variance. Thus, the number of com-

ponents kept is in range 1-6, depending on the simplicity

of the local shapes. The patch size to compute the simi-

larity function is 41 × 41. The core neighborhood was de-

fined within a radius of 7 pixels and the peripheral neigh-

borhood annulus was defined by radii of 10 and 15 pixels.

The sampled contour C, used in the robust initialization part,
contained 800 points. At each iteration of ASM, we sam-

pled 11 × 11 neighbors. The search box size is initialized

as 61 × 61 and is decreased 10% after each iteration till it

reaches 11 × 11, after that it is fixed for further iterations.

We used the normalized mutual information (NMI) [23] as

the similarity metric. Same parameter settings were used in

all the experiments in the ASM-based methods (Fig. 4).

Comparison with ASM-based approaches: We com-

pared our proposed PDM-ENLOR with three ASM-

based methods: ASM-SIM, Amberg-SIM and PASM-CTX.

ASM-SIM and Amberg-SIM are modified versions of ASM

and of Amberg et al. [2], respectively. Both methods were

applied to the boundary shape model and used similarity-

based feature for detecting local best matches in ASM

search. Global fitting with uniform weights was used for

ASM-SIM whereas local fitting [2] was used for Amberg-

SIM. In PASM-CTX, partial ASM was used for the ex-

tended shape model. Thus, the reference points detected

in Sec. 3.4.2 are obtained before global fitting step at the

last iteration of PASM-CTX.

For Amberg-SIM, we ran multiple experiments with dif-

ferent values for parameter σ, which controls the locality

degree of the fitting, and reported the best results (Fig. 4).

Smaller value for σ corresponds to more local fitting. We

observed that the performance of the method decreases as

the values for σ become smaller. That can be explained by

the non-robust detections of large number of model points

due to the complex appearance of gene expression images.

In the reported experiment, we set σ equal to the largest

distance between any two points in the shape (σ ≈ 800 in

the context that the image size is 600× 1000) so that, each

point has an influence on the local fitting of all other points.
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The fitting with such high value of σ is similar to the global

model fitting. Thus, neither of Amberg-SIM and ASM-SIM

outperforms the other in any of 14 regions.

The use of appearance guidance from only the reliable

points helps PASM-CTX outperform ASM-SIM in nine re-

gions (6-14) and outperform Amberg-SIM in eight regions

(6-8, 10-14). Those regions have either mostly unreliable

regional boundary points or many reliable interior points.

The improved results of PDM-ENLOR over PASM-

CTX on all 14 regions indicate that the proposed ensem-

ble scheme improves the flexibility of the models. PDM-

ENLOR also outperforms ASM-SIM and Amberg-SIM in

14 regions. The improvement is more pronounced in the

regions 6, 10, 12-14.

Figure 4: A comparison of the mean and confidence-

interval of the DSC scores computed from the results of the

ASM-based methods.

Comparison with previous works on the application:
We also compared our method PDM-ENLOR with two

state-of-the-art works on mouse brain gene expression im-

age data of Kurkure et al. [16], which uses landmark-based

registration, and Le et al. [20], which uses discrete Markov

Random Fields to fit the subdivision mesh that models the

shape. Our method outperforms [20] in all 14 regions and

outperforms [16] in seven regions (2, 3, 8, 9, 11-13) which

lack appearance cues. The improvement of our method is

credited to the ability to incorporate shape prior as well as

the appearance prior in a unified framework.

5. Conclusions
In this paper, we have presented a new approach to im-

prove the model flexibility and to handle the detection errors

for statistical shape fitting problem towards image segmen-

tation. We proposed to locate each model point individu-

ally using an ensemble of PDM-based regression models

which were constructed with increasing degree of locality

to provide more flexibility. We presented automated meth-

ods to construct the local-to-global PDMs and to build an

Figure 5: A comparison of the mean and confidence-

interval of the DSC scores computed from the results of

Kurkure et al. [16], Le et al. [20], and PDM-ENLOR.

ensemble by combining their output linearly using learned

coefficients. Thus, the appropriate degree of locality is de-

termined automatically from the training data. A set of se-

lected salient reference points is used to construct the mod-

els to minimize the errors in fitting due to unreliable model

points. Therefore, there is no need to perform any post-

processing. We demonstrated that the use of appearance

cues from selected model points can significantly improve

the fitting results. Furthermore, our method outperforms the

state-of-the-art methods on a challenging problem of multi-

region segmentation of the mouse brain gene expression im-

ages.
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