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Abstract

In this work, we present an efficient multi-scale low-rank
representation for image segmentation. Our method begins
with partitioning the input images into a set of superpix-
els, followed by seeking the optimal superpixel-pair affinity
matrix, both of which are performed at multiple scales of
the input images. Since low-level superpixel features are
usually corrupted by image noises, we propose to infer the
low-rank refined affinity matrix. The inference is guided by
two observations on natural images. First, looking into a
single image, local small-size image patterns tend to re-
cur frequently within the same semantic region, but may
not appear in semantically different regions. We call this
internal image statistics as replication prior, and quantita-
tively justify it on real image databases. Second, the affinity
matrices at different scales should be consistently solved,
which leads to the cross-scale consistency constraint. We
formulate these two purposes with one unified formulation
and develop an efficient optimization procedure. Our exper-
iments demonstrate the presented method can substantially
improve segmentation accuracy.

1. Introduction
Image segmentation is to partition input image into sev-

eral semantically consistent regions. It is one of the most

challenging and actively studied problems in computer vi-

sion. The difficulties are due to the large intra-category vari-

ations as well as the ill-posed nature of segmentation. In

the past literature, many efforts have been devoted to extra

information beyond the input image for solving this prob-

lem [17, 13]. Although impressive results and successes

achieved, these methods have two major limitations. First,

analyzing the statistics of a large number of related images

itself is challenging because the low-level visual features

are usually not powerful enough. Therefore, the quality of

segmentation heavily depends on how well the extra images

match with the given image [17]. Second, fully exploring

the cross-image statistics is obviously time-consuming and

�������	
���	� �����	����������
��
� �����	��������	�����

Figure 1. Illustrations of the discriminative internal image statis-

tics. (a) two input images overlaid with superpixel over-

segmentation results; (b) repeatedly occurred patches (identi-

fied with the same color); (c) segmentation results by our algo-

rithm(unsupevised).

computationally inefficient, which also limits the applica-

tion of these methods.

In this work, we introduce a simple yet efficient inter-

nal image statistics for image segmentation, and integrate

it within a unified low-rank image representation. Our

method is based on the multi-scale image representation.

For each scale of the input image, we partition it into a set of

non-overlapping superpixels [16], and construct an affinity

graph by taking superpixels as graph vertices. As conven-

tionally, each superpixel is represented as one appropriate

appearance feature, e.g., color. Given these superpixel fea-

tures, we assume that intra-class superpixels, namely the su-

perpixels belonging to the same semantic region, are drawn

from one identical low-rank feature subspace. Our goal is

to seek for a low-rank refined superpixel affinity matrix, so

that: the intra-class superpixel affinities are dense, whereas

the inter-class superpixel affinities are all sparse or zeros.

As shown in the previous work [14], low-rank constraint is

helpful to suppressing the effects of data noises and corrup-

tions.

The inference of low-rank refined affinity matrices is

guided by two more purposes. The first one is a discrim-

inative observation on natural images: small-size image
patches (e.g. 6×6 pixels) with certain appearance patterns
tend to recur frequently within the same semantic region,
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but may not appear in semantically different regions. We

call this internal statistics as replication prior.

Fig. 1 illustrates this observation in the middle column,

where the colored rectangles indicate the small-size im-

age patches extracted from the image grid. We can in-

tuitively find that a small-size patch usually has multiple

copies (identified with the same color) in the same semantic

region (shown in the right column). The replication prior

can be used to measure how likely two subregions 1 are

semantically similar. Generally, if every patch within one

subregion has many copies in another one, namely these

two subregions have high replication prior, they will belong

to the same semantic region with high probability, and vice

versa. In later sections, we will further quantitatively jus-

tify that the above observation on fairly small-size patches

is partially true in real image databases. Replication prior

can serve as a discriminative cue for image segmentation. It

is different yet complementary with the low-level features,

e.g. color, gradient, that are directly extracted from image

regions [16].

The second purpose lies on the fact that the desired

superpixel-pair affinities at different scales should be con-

sistently solved, which leads to the so-called cross-scale

consistency constraint. We formulate the pursuit of low-

rank refined affinity matrices and the above two purposes as

a unified constraint nuclear norm and �1-norm minimization

problem. The obtained formulation is a convex quadratic

function and we introduce an efficient optimization proce-

dure based on the augmented Lagrange multiplier (ALM)

method [12]. Taking the solved low-ranked refined super-

pixel affinities, one can call the Normalized Cut method [6]

to address the unsupervised segmentation problem.

The contributions of this work are two-fold. First, we

develop a multi-scale low-rank representation to seek for

the affinity matrix at each scale in parallel, while preserv-

ing the cross-scale consistency. Second, we study a simple

yet efficient internal image statistics, and present a practi-

cal method for image segmentation. The advantages of our

approach are demonstrated by extensive experiments with

comparisons to the popular segmentation algorithms on two

public datasets MSRC [19] and BSD500 [15].

1.1. Relationship to Previous Works

Our approach is closely related to the efforts in image

segmentation for which a broad family of unsupervised

methods have been proposed. The typical ones include

Tu and Zhu’s data driven MCMC algorithm [20], Comani-

ciu and Meer’s Mean-shift [7], and Shi and Malik’s Nor-

malized Cuts method (NCut) and its extension multi-scale

NCut [6]. All these three algorithms directly utilize the low-

1A subregion indicates a part of the whole image, either a semanticless

superpixel or a semantic region (e.g., cars, buildings). A subregion usually

contains multiple small-size patches.

level feature descriptors which makes the segmentation task

painfully unconstrained. In contrast, our method aims to

utilize both the low-level features and the extra discrimina-

tive prior. As aforementioned, extra knowledge or statis-

tics have been studied to address the ill-posed nature of im-

age segmentation [13] [17]. Nevertheless, these algorithms

usually requires hundreds or even thousands of images to

achieve robust segmentation, which leads to the dilemma of

balancing the matching accuracy and the computation cost.

In contrast, the proposed replication prior is a kind of inter-

nal image statistics, which bears the obvious benefit of low

computational demand. Moreover, we will experimentally

show that, to achieve the equally good quality of segmen-

tation by the low-rank refined replication prior, hundreds of

images are required for the external statistics [13].

In computer vision literature, internal image statistics

has been used in various low-level image tasks, e.g., tex-

ture synthesis [8], denoising [3], and super-resolution [10].

Bagon et al. [4] assume that one semantic region can be

well explained by repeatable compositions and utilized this

assumption for interactive image segmentation which re-

quires user input. Recently, Zontak and Irani [23] further

quantitatively evaluate the strength of internal statistics, and

demonstrate its advantages in enhancing the quality of im-

age denoising and super-resolution. Our work extends these

methods, and introduces a practical method to apply the

internal image statistic for image segmentation. The de-

veloped framework can be used for other high-level image

tasks which will be explored in future.

Our method is also motivated by the advances in sub-

space clustering, especially the low-rank representation

(LRR) method, which seeks for the lowest-rank represen-

tation among possible candidates that represent all sam-

ples as the linear combination of the bases in a dictionary.

The bases are assumed to be sampled from either one sin-

gle subspace, e.g., the matrix competition method [5], or a

union of multiple linear subspaces [14]. The advantages of

LRR in robustness have been well demonstrated in compar-

isons to other subspace clustering methods, e.g. sparse sub-

space clustering [21], especially while encountering with

severe corruptions and noises. Our method extends the

LRR method to infer multiple low-rank representations sep-

arately at multiple scales, and simultaneously preserve the

cross-scale consistency.

2. Multi-scale Low-rank Image Representation

Given an image as input, we resize it with several fac-

tors and oversegment each scaled image into a set of non-

overlapping super-pixels. We choose to use the method de-

veloped by Ren and Malik in [16]. Each superpixel com-

prises an ensemble of pixels that are spatially coherent and

perceptually similar with respect to certain appearance fea-
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tures (e.g. color). Let M denote the number of scales, Is

be the scaled image indexed by s = 1, ..,M . We con-

struct an affinity graph by taking the superpixels in Is as

graph vertices. Every two different vertices are connected

by a graph edge, weighted by the likelihood of the asso-

ciated superpixel-pair belonging to the same semantic re-

gion. Thus, the overall quality of segmentation depends

on the pairwise superpixel affinity matrix. Let xs
i ∈ Rd

denote the d-dimension feature descriptor extracted for the

ith superpixel in Is. R denotes a real matrix. One com-

mon method to compute the superpixel-pair affinity [6] is

exp(−‖xs
i−xs

j‖2), where ‖·‖ indicates the Frobenius norm

of a vector or a matrix. Nevertheless, because of various

image noises and clutters, the obtained affinity matrix is al-

ways corrupted and not discriminative enough to produce

high-quality segmentations. We will introduce in the rest

of this section a novel formulation to infer more powerful

superpixel-pair affinities for the input image, and further

discuss how to apply this representation to segmentation

problems in next section.

2.1. Objective-I: Low-rank Image Representation

The major step of our method is to pursue the low-rank

refined affinity matrix from the low-level superpixel fea-

tures. Herein, we assume that superpixels belonging to the

same semantic region are all drawn from the same low-

rank feature subspace, and all superpixels in the same im-

age (also the same scale) lying on a union of multiple sub-

spaces [14]. We aim to represent each superpixel descriptor

as a linear combination of other superpixel descriptors, and

seek for the lowest rank representation of all superpixels in

a joint fashion. Let ns denote the number of superpixels in

Is, and Xs = [xs
1, x

s
2, . . . , x

s
ns ] ∈ Rd×ns

. Each vector xs
i

can be represented as the linear combination of the column

vectors of Xs, denoted as,

xs
i = Xszsi , (1)

where zsi ∈ Rns

is the coefficient vector. Large zsij gener-

ally indicates that xs
i and xs

j have similar projection in the

feature subspaces spanned by the column vectors of Xs,

and vice versa. Thus, we can use zsij to measure the affinity

between superpixels i and j. Denote Zs = [zs1, z
s
2, ..., z

s
ns ]

as the desired affinity matrix. Since the data vectors in Xs

are often noisy or grossly corrupted, we relax Eq. (1) to al-

low a fraction of Xs are corrupted. Padding the coefficient

vectors into matrix form, we have,

Xs = XsZs + Es, (2)

where Es ∈ Rd×ns

denotes the error matrix. The lowest

rank representation of the superpixel affinity matrix Zs can

be solved by following program

min
{Zs},{Es}

M∑
s=1

‖Zs‖∗ + λ‖Es‖1

s.t. Xs = XsZs + Es, (3)

where ‖ · ‖∗ denotes the nuclear norm of a matrix, ‖ · ‖1
denotes the �1-norm of a matrix, and the parameter λ > 0 is

used to balance the effects of the two parts. The �1-norm in

Eq. (3) is used to enforce most of the elements of Es have

zero errors, namely, only partial data vectors are corrupted

and others are clean.

2.2. Objective-II: Replication Prior

The discovered replication prior is from a statistical ob-

servation on natural images: local small-size patches (e.g.
6 × 6 pixels) tend to recur frequently within the same se-
mantic region, yet less frequently within semantically dif-
ferent regions. The small-size patches are collected from

the image grid that evenly partitions the image into non-

overlapping rectangles. Fig. 1 shows the patches in the mid-

dle column. The size of image patches is fairly small so one

superpixel may contain multiple patches. Replication prior

can be used to measure the semantic consistency of two su-

perpixels.

We use patch recurrence density to quantify the replica-

tion prior. From each small-size patch, indexed as p, we

extract a feature descriptor, denoted as fp. Let Λ denote a

subregion and q index the patches in Λ. The empirical den-

sity of p with respect to Λ can be estimated using the Parzen

window method:

D(p,Λ) =
1

|Λ|
∑
q∈Λ

δ(K(‖fp − fq‖2), ζ) (4)

where K is a Gaussian kernel, and |Λ| denotes the num-

ber of patches in Λ. δ(·, ζ) returns the first parameter if it

is larger than the constant ζ, or 0 otherwise. Since Parzen

method does not distinguish between the smaller number of

perfectly similar patches, and the larger number of partially

similar patches, we introduce a constant threshold ζ to de-

press the effects of partially similar patches.

We perform an experiment on the Berkeley Segmenta-

tion Database [15] to justify the replication prior. We use

the test subset of 200 images. Only the original scale (about

480 × 320 pixels) is used. For each patch p, we extract

a 31-dimension histogram of oriented gradient (HOG) [9],

and compute its intra-class density and inter-class density.

The intra-class density of patch p is calculated using Eq. (4)

where Λ is set to be the semantic region in groundtruth that

contains the patch p. Correspondingly, the inter-class den-

sity of patch p is estimated with respect to the semantic re-

gion that does not contain patch p. Since there usually exists
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Figure 2. Discriminative Replication Prior. We compare the mean intra-class patch densities and mean inter-class patch densities under

different patch sizes, including 6× 6, 10× 10, 12× 12, and 14× 14 pixels. The images are from BSD database [15]. See texts for more

details.

more than one semantically different regions for patch p, we

select the highest one (or the most ambiguous one) as the

inter-class density of patch p . Next, we compute for each

image the mean intra-class density and the mean inter-class

density by averaging over all patches. Figures 2 plots the

density comparisons while looking at different patch-sizes,

including 6×6, 10×10, 12×12 and 14×14 pixels, respec-

tively. The horizontal direction indicates the image indices,

and the vertical direction indicates the mean patch densities.

Herein, we only plot the densities of 50 images due to the

space limitation. We can observe that intra-class densities

are usually higher than inter-class densities under different

patch-sizes. Similar observations can also be reached on the

rest 150 images, while looking at different scales. This ex-

periment shows that the discovered replication prior is par-

tially true while using fairly small-size patches.

We utilize the replication prior to measure how likely

two superpixels belong to the same semantic region. Let

Λs
i denote the subregion in Is covered by superpixel i, Qs

denote a ns × ns matrix. We have,

Qs
ij = e

−( 1
|Λs

i
|
∑

p∈Λs
i
D(p,Λs

j)+
1

|Λs
j
|
∑

q∈Λs
j
D(q,Λs

i ))
. (5)

Large Qs
ij indicates the associated suerpixel-pair has low

replication prior, namely the superpixels i and j belong to

different semantic regions with high probability, and vice

versa. Once estimated Qs, we can use it to regularize the

inference of the desired low-rank representations in Eq. (3)

through following program,

min
{Zs},{Es}

∑
s

‖Zs‖∗ + λ‖Es‖1 + βtr(ZsTQs)

s.t. Xs = XsZ + Es (6)

where ZsT indicates the transform of Zs, tr(·) returns the

matrix trace, and β is a constant tuning parameter. Mini-

mizing the term tr(ZsTQs) will encourage the intra-class

superpixel-pairs have higher affinities (in Zs) than the inter-

class superpixel-pairs. In this way, replication prior is used

as a kind of soft constraint to regularize the inference of the

lowest rank affinity matrices from the low-level visual fea-

tures. Eq. (6) provides a general way to fuse two different

yet complementary representations of the same data, which

can be used for other tasks. It is worthy noticing that the

replication prior is based on a high-level semantic statistics,

which, although estimated using low-level appearance fea-

tures, is able to describe how the small-size patches form the

large-size semantic regions and thus provides more knowl-

edge of structure about the solution space to image segmen-

tation.

2.3. Objective-III: Cross-scale Consistency

The objective function in Eq. (6) aims to compute the

optimal superpixel affinity matrix for each scale separately.

But it is crucial to propagate knowledge from one scale to

another scale which has been justified in the past works on

multi-level image methods, e.g., [6]. We can achieve this

by projecting the superpixels at the coarse-level to the fine-

level and introducing a cross-scale consistency constraint.

Formally, let Isi indicate the superpixel at the scale s in-

dexed by i. We project Isi to the coarse-scale s + 1, and

if one super-pixel Is+1
j overlaps with Isi more than half the

area of Is+1
j , we call Is+1

j as the parent of Isi . We im-

pose a cross-scale constraint for every two neighbor scales

(namely the coarse-scale s+ 1 and the fine-scale s): for ev-
ery two superpixels at the coarse-level, their affinity should
be locally average of the affinities between their respective
children at the fine-level. We arrange all elements of Zs in

one column vector

f(Zs) =
[
Zs
11 Zs

12 .. Zs
21 ..

]T ∈ R(ns×ns)×1. (7)

Let hs+1(Isa) indicate the index of the superpixel in Is+1

which is the parent of Isa. Let k =< a, b > index the el-

ements or superpixel-pairs of f(Zs) that formed by Isa and

Isb , and l =< c, d > index the elements of f(Zs+1). For

every two neighbor scales, we first construct a constant ma-

trix, denoted as Cs+1,s, as follows.

i). Set Cs+1,s ∈ R(ns+1×ns+1)×(ns×ns) = 0;
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ii). For ∀k =< a, b >, k = 1, .., ns; ∀l =< c, d >, l =
1, .., ns+1,

if hs+1(Isa) == hs+1(Isb ),

set Cs+1,s(l, k) = 0;

else

if (hs+1(Isa) == c, hs+1(Isb ) == d) or

(hs+1(Isa) == d, hs+1(Isb ) == c)
set Cs+1,s(l, k) = 1;

iii). Normalize Cs+1,s so that the summarization of each

row is 1;

Then, the consistency constraint between the coarse-scale

s + 1 and the fine-scale s can be encoded by minimizing a

least square function,

min
Zs,Zs+1

‖Cs+1,sf(Zs)− f(Zs+1)‖2 (8)

Furthermore, let Z = [f(Z1); f(Z2), . . . , f(ZM )], and

C =

⎡
⎣

C2,1 −12 0

... ...

0 CM,M−1 −1M

⎤
⎦ . (9)

where 1s indicates an identity matrix. We can obtain a com-

pact form of the cross-scale consistency constraint,

min
{Zs}

‖CZ‖2 (10)

Minimizing the above term will enforce the desired super-

pixel affinity matrices at different scales are consistent.

2.4. Unified Formulation

Integrating Eq. (6) and Eq. (10), we can define a unified

formulation as,

min
{Zs},{Es}

M∑
s=1

‖Zs‖∗ + λ‖Es‖1 + βtr(ZsTQs) + γ‖CZ‖2

s.t. Xs = XsZs + Es (11)

where γ is a tuning parameter.

2.5. Optimization

To optimize Eq. (11), we adopt the Augmented La-

grange Multiplier (ALM) method [12] due to its efficiency

in convergence. By introducing the auxiliary variables

{Js}, {P s}, s = 1, ..,M , we convert Eq. (11) to an equiva-

lent problem,

min
M∑
s=1

‖Js‖∗ + λ‖Es‖1 + βtr(P sTQs) + γ‖CZ‖2

s.t. Xs = XsP s + Es, Zs = Js, Zs = P s (12)

Algorithm 1 Optimization Procedure to Eq. (12)

Input: data matrix {Xs}, s = 1, ..,M , parameter λ, β
and γ;

Set Js = Zs = P s = Es = 0, Y s = 0, V s = 0, Us =
0, μ = 10−6; ε = 10−8; ρ = 1.1;

While not converged do (iteration body),

1 Update Js by solving

Js = argmin
Js

1

μ
‖Js‖∗ + 1

2
‖Js − (Zs + V s/μ)‖2

2 Update P s by P s = (XsTXs + 1)−1[XsTXs −
XsTEs + Zs + (XsTY s − βQs + Us)/μ];

3 Update Z by Z = ( γμC
TC + 1)−1B/2, where the

vector B has following structure:

B =
[
f(G1)T f(G2)T ... f(GM )T

]T

with Gs = Js + P s − (V s + Us)/μ, s = 1, ..,M

4 Update {Es} by solving

Es= argmin
Es

λ

μ
‖Es‖1+1

2
‖Es − (Xs −XsP s + Y s/μ)‖2

5 Update the multipliers and parameter as:

Y s = Y s + μ(Xs −XsP s − Es);

V s = V s + μ(Zs − Js);

Us = Us + μ(Zs − P s);μ = ρμ;

6 Check the convergence condition: ∀s, ‖Xs −
XsZs − Es‖ < ε;

The related unconstrained problem of (12) is defined as,

min γ‖CZ‖2 +
∑
s

‖Js‖∗ + λ‖Es‖1 + βtr(P sTQs)

+ < Y s, Xs −XsP s − Es > +
μ

2
‖Xs −XsP s − Es‖2

+ < V s, Zs − Js > +
μ

2
‖Zs − Js‖2

+ < Us, Zs − P s > +
μ

2
‖Zs − P s‖2, (13)

where μ > 0 is the penalty parameter, {Y s}, {V s} and

{Us} are augmented Lagrange multipliers.

The ALM algorithm alternately solves the objective

function in Eq. (12) w.r.t. {Zs}, {Es}, {Js}, or {P s}, with

other variables fixed. All the subproblems have closed-form

solutions, and the entire ALM procedure will converge Q-

linearly, as shown in [12], while μ increasing. Algorithm 1
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summarizes the optimization procedure. Note that: i) the

optimal solution to the objective functions in Step-1 and

Step-4 can be solved by the soft-threshold (or shrinkage)

method in [12]; ii) the subproblems in Step-3 can be solved

analytically; and iii) the update factor ρ is set to be 1.1 to

obtain a series of increasing μ.

3. Implementation
We apply the proposed low-rank refined image represen-

tation for unsupervised image segmentation.

Suppose the optimal superpixel affinity matrices are

solved from Eq. (11), denoted as Zs∗, s = 1, ..,M . We

first project Zs∗ to the pixel-level as follows: if two pixels

in Is belong to the same superpixel, we set their affinity to

be 1; otherwise, we set their affinity to be the correspond-

ing superpixel-pair affinity. We define the affinity between

neighboring pixels at scale s using the linear combination

of a set of Gaussian kernels:

W s
ij =

3∑
k=1

wkKk
ij (14)

where Kk is a Gaussian kernel in a specific feature space,

wk is linear combination weight. Here, i, j index the pix-

els, not superpixels, in images. In particular, K1is an ap-

pearance kernel, defined as K1
ij = exp(−α1Δa

ij − α2Δl
ij).

Δa
ij indicates the Euclidean distance between the color vec-

tors at pixel i and pixel j. Δl
ij indicates the geometrical

distance between pixel i and j. K2 is the smoothness ker-

nel, defined as K2
ij = exp(−α3Δl

ij). These two kernels,

following previous works [6, 19, 11], are used to repre-

sent the appearance and smoothness relationships between

neighboring pixels. The third kernel is to utilize the repe-

tition prior and takes the form of: K3
ij = exp(−α4Δr

ij),

where Δr
ij = exp(−Zs∗

ij/2σ
2). The settings of the param-

eters α1, α2, α3, α4, w1, w2, w3, σ are described in Section

4. We apply the multi-scale NCut (MNCut) method [6] on

W s
ij , s = 1, 2, ..., to achieve the final segmentation.

4. Experiments
In this section, we apply the discovered replication

prior and the proposed multi-scale low-rank representation

(MsLRR) for image segmentation and evaluate them on

publicly available image databases.

4.1. Evaluation Settings

We use two databases, MSRC [19] and Berkeley Seg-

mentation Database (BSD) [15]. MSRC contains 591 im-

ages.We divide the dataset into two equal-size subsets and

use one for testing. BSD contains 500 images among which

200 images are used for test. There are five groundtruths

per image, and we use the first one for evaluation. All im-

ages are resized with three factors 0.8, 1.0, and 1.5, and

over-segmented into superpixels using the method in [16].

The number of superpixels is set to be 80, 120 and 150,

respectively. We extract for each superpixel three types

of feature descriptors, including 12-dimension color his-

togram in each channel of RGB, 59-dimension Local Bi-

nary Pattern and 31-dimension Histogram of Oriented Gra-

dient [19]. These descriptors are first normalized by their

respective �2-norms and then concatenated to form one sin-

gle descriptor vector (i.e. xs
i ).

We use two segmentation metrics, Covering Rate (CR),

namely the percentage of per-pixel agreement between the

obtained results w.r.t the groundtruth, and Variation of in-
formation (VI) [1]. Smaller value of VI indicates better

performance.

4.2. Exp-I: Unsupervised Image Segmentation

We apply the proposed approach to segment a given

image. For comparisons, we implement four variants of

the proposed method. 1) MsLRR-I, that sets β = 0 and

γ = 0 in Algorithm 1. It degenerates to seeking for the

low-rank refined affinity matrices at multiple scales sepa-

rately. 2) MsLRR-II, that sets β = 0, and only uses the

regularization term of cross-scale consistency constraint. 3)

MsLRR-III, that sets γ = 0, and only uses the regulariza-

tion term of replication prior . 4) MsLRR-IV, that utilizes

both regularization terms. We also implement two popular

image segmentations methods, the Multi-scale Normalized

Cut method (MNCut) [6] and the Mean-Shift method [7].

Moreover, we compute the superpixel-pair affinities based

on feature descriptors, namely letting Δr
ij = exp(−|xi −

xj |2/2σ2) in Eq. (14) , and call MNCut to segment im-

ages. We refer to this algorithm as MNCut-SP and the

original method [6] as MNCut. We perform various algo-

rithms under a variety of scale parameters and report the

best result. This evaluation strategy is also used in previous

works [2] [18]. For MsLRR and MNCut based algorithms,

the number of segments is set within {2, 3, . . . , 15}. The

minimum region area of MeanShift algorithm is set within

{1500, 2000, . . . , 10000} pixels. For MsLRR algorithms,

we set β = 0.001, and γ = 0.001 if the related regular-

ization term is used. Set λ = 0.0001. The patch-size is

fixed to be 6 × 6 pixels. The threshold ζ for patch density

estimation is fixed to be 0.4. Set w1, w2, w3 as 0.4, 0.3, 0.3
respectively. Set α1, α2, α3, α4 as 0.6, 0.4, 0.1, 0.1 respec-

tively, and σ = 1. We fix these parameters throughout the

evaluations.

Table 1-(a) reports the performance comparisons of var-

ious unsupervised segmentation algorithms on MSRC [19]

and BSD [15] databases. We also compare the available re-

sults of other state-of-the-art segmentation algorithms, that

refer to as UCM [2], TBES [18] and CTM [22]. We can
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obtain following observations. 1) The proposed MsLRR al-

gorithms can achieve comparable accuracies as the state-of-

the-art methods UCM [2], and TBES [18], and much better

results than other baseline methods. 2) MsLRR-IV clearly

outperforms MsLRR-II and MsLRR-III, while the later two

algorithms achieve higher accuracies than MsLRR-I on

both databases. These comparisons well justify the effec-

tiveness of MsLRR and the internal replication prior. 3)

From the comparisons between MsLRR-II and MsLRR-I,

one can see that the cross-scale consistency is helpful to

achieving robust segmentation.

Table 1. Performance comparisons of unsupervised segmentation

algorithms on MSRC [19] and BSD500 [15]

(a) Segment single image

MSRC BSD

Metrics CR (%) VI CR (%) VI

MNCut [6] 60.64 1.59 52.31 2.18

UCM [2] – – – 2.11

CTM [22] – – - 2.02

MNCut-SP 62.94 1.48 57.97 1.91

Mean Shift [7] 62.37 1.54 58.81 1.83

TBES [18] – 1.49 – 1.76

MsLRR-I 64.34 1.45 61.82 1.68

MsLRR-II 68.31 1.36 63.31 1.53

MsLRR-III 66.53 1.39 62.24 1.59

MsLRR-IV 69.97 1.32 63.87 1.47
(b) Using unlabeled images from the training subsets

MsLRR-V 68.78 1.34 62.57 1.56

(c) Using unlabeled images from the Internet

MsLRR-V 71.42 1.29 64.32 1.42

All experiments are running on a workstation with In-

tel Quad-Core 3.07 GHz CPU and 24 GB memory. The

algorithms are implemented on MATLAB platform. Algo-

rithm 1 usually converges in 100 iterations. It takes about

20 seconds to process one image given superpixel features

extracted offline. We show several exemplar comparisons

of segmentation results on BSD [15] in Figures 3, where

each row shows the original image in column 1 and cor-

responding segmentation results obtained by MsLRR-IV,

MeanShift [7] and MNCut [6] in columns 2, 3 and 4, re-

spectively. Different semantic regions are indicated with

different colors.

4.3. Exp-II: Internal Replication Prior and External
Image Statistics

We further evaluate the effectiveness of the discovered

replication prior by comparing it with the external image

statistics. As aforementioned, there are several external

statistics based methods, and we choose to implement the

most recent one by Liu et al. in [13]. They proposed to

Figure 3. Exemplar comparisons of results by various methods on

BSD500 [15]

extract superpixel co-occurrence frequencies from an extra

unlabeled image corpus and utilize this knowledge for im-

age segmentation. Our formulation in (11) can integrate

this knowledge by re-defining the matrix Qs as Qs
ij =

exp{−cij}where cij indicates the co-occurrence frequency

of superpixels i and j. The details of calculating superpixel

co-occurrence from unlabeled images are referred to the pa-

per [13]. We call this implementation as MsLRR-V, which

has the same setting as MsLRR-IV except that the defini-

tions of Qs are different.

We evaluate the algorithms MsLRR-IV and MsLRR-V

on the test subsets of MSRC [19] and BSD500 [15] (see

the introductions in Exp-I). The training subsets are used

as the unlabeled image corpus for extracting the superpixel

co-occurrence, as in [13]. In addition, we also use the

unlabeled image corpus collected from Internet by Liu et
al. [13], which contains 2300 images. All images are over-

segmented into superpixels [16], and we use the same su-

perpixel descriptors as in Exp-I.

Table 1 (b) and (c) report the quantitative results by

MsLRR-V. From the comparisons in Table 1, one can ob-

serve that MsLRR-IV is able to achieve comparable accu-

racies as MsLRR-V that uses extra unlabeled images. To

achieve the equally good quality of segmentation, MsLRR-

V requires hundreds of unlabeled images. Furthermore,

in BSD500 database, MsLRR-V using 300 unlabeled im-

ages (in Table 1-b) is inferior to the same algorithm us-

ing 2300 unlabeled images (in Table 1-c). We can obtain

similar observations in MSRC dataset. These comparisons

partially demonstrate that, external image statistics requires

fairly large-scale unlabeled image corpus to achieve the ro-

bustness, which is consistent with the claims in previous

works [13] [23]. In contrast, the proposed replication prior

is extracted from the image itself, and thus has less limita-

tions in real applications.
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5. Summary
In this work, we studied a simple yet efficient internal

image statistics and presented a practical method, the multi-

scale low-rank representation (MsLRR), for image segmen-

tation. MsLRR aims to infer the low-rank refined superpixel

affinity matrices at different scales of the input image in par-

allel, and meanwhile, to impose the cross-scale constraint

to make the desired affinity matrices consistent. Extensive

experiments on image databases well demonstrate the effec-

tiveness of the proposed method.
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