
Ensemble Video Object Cut in Highly Dynamic Scenes

Xiaobo Ren, Tony X. Han, and Zhihai He
Department of Electrical and Computer Engineering

University of Missouri, Columbia MO 65211
xr7rf@mail.missouri.edu {hantx, hezhi}@missouri.edu

Abstract

We consider video object cut as an ensemble of frame-
level background-foreground object classifiers which fuses
information across frames and refine their segmentation re-
sults in a collaborative and iterative manner. Our approach
addresses the challenging issues of modeling of background
with dynamic textures and segmentation of foreground ob-
jects from cluttered scenes. We construct patch-level bag-
of-words background models to effectively capture the back-
ground motion and texture dynamics. We propose a fore-
ground salience graph (FSG) to characterize the similar-
ity of an image patch to the bag-of-words background
models in the temporal domain and to neighboring im-
age patches in the spatial domain. We incorporate this
similarity information into a graph-cut energy minimiza-
tion framework for foreground object segmentation. The
background-foreground classification results at neighbor-
ing frames are fused together to construct a foreground
probability map to update the graph weights. The result-
ing object shapes at neighboring frames are also used as
constraints to guide the energy minimization process during
graph cut. Our extensive experimental results and perfor-
mance comparisons over a diverse set of challenging videos
with dynamic scenes, including the new Change Detection
Challenge Dataset, demonstrate that the proposed ensem-
ble video object cut method outperforms various state-of-
the-art algorithms.

1. Introduction
Detecting and segmenting moving objects from the

background is the enabling step in intelligent video analysis

[23, 11]. A number of methods and algorithms have been

developed for background subtraction and moving object

detection [15, 23]. However, accurate and reliable moving

object detection from cluttered and highly dynamic back-

ground remains as a challenging problem. Existing work

has been focusing on and mainly evaluated with indoor and

outdoor facility surveillance videos which often have rela-

Figure 1: Overview of the object detection system using

ensemble video object cut.

tively stable scenes. However, videos captured in natural

environments represent a large class of challenging scenes

that have not been sufficiently addressed in the literature

[11]. These types of scenes are usually cluttered and dy-

namic with swaying trees, ripping water, moving shadows

and sun spots, rain, etc. The key challenge here is how to es-

tablish effective models to capture the complex background

motion and texture dynamics.

In this work, we consider video object segmentation as

an ensemble of frame-level background-foreground object

classifiers which fuses information across frames and re-

fine their segmentation results in a collaborative and iter-

ative manner, as illustrated in Fig. 1. Our approach in-

tegrates patch-level local background modeling with bags

of words, region-level foreground object segmentation with

graph cuts, and temporal domain information fusion among

foreground-background classifiers at neighboring frames.

Our extensive experimental results and performance com-

parisons over a diverse set of challenging videos, including

the recent Change Detection Challenge Dataset [7], demon-

strate that the proposed method outperforms various state-
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of-the-art algorithms.

2. Bag of Words Models for Dynamic Back-
grounds

The remainder of the paper is organized as follows. Sec-

tion 3 reviews the related background segmentation work.

Section 4 provides an overview of the proposed system.

Sections 2 and 5 present the bag-of-words background mod-

els, foreground salience map, and our graph-cut algorithm

for foreground object segmentation. The experimental re-

sults are presented in Section 7. Concluding remarks and

discussions are given in Section 8.

3. Related Work
There is a significant body of research conducted dur-

ing the past two decades on background modeling and fore-

ground object detection. However, the availability of meth-

ods that are robust and generic enough to handle the com-

plexities of most natural dynamic scenes is still very lim-

ited [15, 16]. Early work on background subtraction oper-

ated on the assumption of stationary background [26]. To

handle motion in the background, methods with pixel-level

motion matching and background model relaxation within

the pixel neighborhood have been investigated. For exam-

ple, a non-parametric technique was proposed in [4] for

estimating background probabilities using Kernel density

functions. This method addressed the issue of nominally

moving cameras using a local search for the best match for

each incident pixel in neighboring models. Ren et al. ex-

plicitly addressed the issue of background subtraction in a

non-stationary scene by introducing the concept of a spatial

distribution of Gaussians (SDG) [20]. In [11], distributional

signatures and local warping methods have been studied. In

[10], for each pixel, it builds a codebook consisting of one

or more codewords. Samples at each pixel are clustered into

the set of codewords based on a color distortion metric to-

gether with brightness bounds.

Our work is also related to graph-cut based image seg-

mentation. Considering spatial context and neighborhood

constraints, graph cut optimization has achieved fairly good

performance in image segmentation [2]. Iterated graph cut

is used in [21] to search over a nonlocal parameter space.

Background cut is proposed in [24] which combines back-

ground subtraction and color/contrast based models.

We recognize that, for accurate and robust video object

detection and segmentation in dynamic scenes, background

modeling of the dynamic pixel process at the image patch

level, spatial context analysis and graph cut optimization

at the region-level, and ensemble foreground-background

classification at the sequence level should be jointly consid-

ered. In this work, we propose to establish a new framework

which tightly integrates these three important components

for accurate and robust video object cut in highly dynamic

scenes.

4. Overview of the Proposed Approach

The basic flow of the proposed ensemble video object

cut method is shown in Fig. 1. We first scan the im-

age sequence, perform initial background-foreground im-

age patch classification, and construct bag-of-words (BoW)

background models with Histogram of Oriented Gradients

(HOG) features. This BoW model is able to capture the

background motion and texture dynamics at each image

location. To segment the foreground object, for each im-

age patch, we develop features to describe its texture and

neighborhood image characteristics. Based on the BoW

background models, we analyze its temporal salience. We

also compare the image patch to its neighborhood patches

to form the spatial salience measure. Based on this spa-

tiotemporal salience analysis results, we construct the fore-

ground salience graph. We then apply the graph-cut energy

minimization method to obtain the foreground segmenta-

tion. These background-foreground classification results of

neighboring frames are fused together to further update the

weights of the foreground salience graph. Shape prior in-

formation is extracted from the detected foreground objects

and used as constraints to guide the graph-cut energy min-

imization procedure. This classification-fusion-refinement

procedure is performed in an iterative manner to achieve

the final video object segmentation results.

Most of the existing background models are constructed

at the pixel level [4, 26, 10, 11]. These methods typically

assume that the pixel processes at different pixel locations

are independent of each other. We recognize that, with-

out considering image characteristics in the pixel neighbor-

hood, this type of methods often produce inconsistent de-

cision and are not resilient to image noise and background

motion.

In this work, we propose to develop background

models at the patch level using BoW features. Let

{F1, F2, · · · , FN} be the sequence of images to be ana-

lyzied. Let P
(x,y)
n be the patch extracted from frame Fn

at location (x, y). We extract its HOG feature, denoted by

f
(x,y)
n , from the image patch P

(x,y)
n . We choose the HOG

feature because it is able to effectively capture the texture

information of image patches and is relatively invariant un-

der changes of lighting conditions. We observe that the set

of co-located image patches {P (x,y)
n |1 ≤ n ≤ N} will have

a complicated correlation structure in the high-dimensional

feature space. To capture this correlation structure, we use

the complete-linkage clustering algorithm [5] to cluster im-

age patch features {f (x,y)
n } and obtain the visual words. Us-

ing these visual words, we can then construct a histogram,

denoted by h
(x,y)
n to describe the image patch P

(x,y)
n .

194619461948



5. Foreground Salience Graph and Graph Cut
In foreground object detection, we need to detect those

image patches which are salient in comparison with back-

ground models on both appearance and texture dynamics.

In this work, we propose to construct a foreground salience

graph (FSG) to characterize the salience of an image patch

in the spatiotemporal domain. We will then formulate the

object segmentation as an energy minimization problem

which can be solved using the graph cut method.

5.1. Foreground Salience Graph

The FSG consists of two components: temporal salience

and spatial salience. During the design of these two compo-

nents, we aim to find a balance between global smoothness

and local details in video object segmentation.

Temporal salience map. The temporal salience mea-

sures the dis-similarity between the current image patch

P (x,y) and the background model. Let d(P (x,y), P
(x,y)
k ) be

the feature distance between the current image patch and

co-located background image patch P
(x,y)
k at frame k. We

adopt the χ2-distance

d(P (x,y), P
(x,y)
k ) =

1

2

∑
i

(g(i)− h(i))2

g(i) + h(i)
, (1)

where g and h are the BoW histogram features describing

image patch P (x,y) and its co-located background image

patch W
(x,y)
k , respectively. The temporal salience at loca-

tion (x, y) is the defined as

Dt(P (x,y)) = Dt(x, y) = min
k

d(P (x,y), P
(x,y)
k ). (2)

Fig. 2 shows temporal salience maps for four example

frames from the Camera Trap dataset. The camera data con-

tains very challenging videos with highly dynamic scenes

with large tree waving motion, strong moving shadow and

sunlight spots. A detailed description of this dataset is pro-

vided in Section 7. Here, red and blues pixels represent im-

age patches with large and small temporal salience values,

respectively. We can see that the bag-of-words background

model and the temporal salience map are able to efficiently

characterize the complex background motion

Spatial salience map. As discussed in Section 3, to

achieve consistently accurate and reliable foreground ob-

ject segmentation, we need to consider the spatial context

of the image patch and the image characteristics in its spa-

tial neighborhood. This is particularly important in highly

cluttered and dynamic scenes. To form the spatial salience

measure between two neighboring image patches, P (x,y)

and Q(x′,y′), we analyze both color and texture information.

As illustrated in Fig. 3, at the middle point O, we con-

sider a circular neighborhood, which is partitioned into two

Figure 2: the first row: original sample images from Cam-
era Trap dataset; the second row: temporal salience maps with

red and blue pixels representing large and small temporal salience

values, respectively.

half-discs with an orientation angle θ [1]. In our experi-

ments, the radius of the circle is set to be the same as the

patch width. The partition line (or the angle θ) should be

perpendicular to the line connecting these two patch centers

(x, y) and (x′, y′). We notice that the patch boundary may

not align well with the object boundary. We allow the mid-

dle point O, as well as the partition angle θ to vary within

a small neighborhood. We then find the χ2-distance be-

tween the color histograms of these two half-discs, denoted

by Ds[O, θ](P,Q). The spatial salience measure between

patches P (x,y) and Q(x′,y′) is then defined as

Ds(P (x,y), Q(x′,y′)) = max
O

max
θ

Ds[O, θ](P,Q). (3)

To effectively differentiate the background and foreground

textures, we propose to modulate this spatial salience with

LBP texture weights. More specifically, as illustrated in

Fig. 3, at image location (x, y), we construct its LBP de-

scriptor by comparing its average intensity against its eight

neighbors. We denote the LBP descriptor of the current im-

age as LBP (x, y) and those of the k-th background model

as LBPk(x, y). We define the LBP texture weight as

wH(x, y) = min
k

dH [LBP (x, y), LBPk(x, y)], (4)

where dH [·, ·] represents the Hamming distance between

two LBP binary vectors. This LBP texture weight aims to

find a balance between effectively differentiating the fore-

ground and background image textures and accomondating

background motions.

Foreground Salience Graph. Based on the temporal

and spatial salience measures, we can then construct the

foreground salience graph. We represent the image by an

8-connectivity undirected graph G(V, E), where V is the

set of all image patches in the current frame FN . E rep-

resenting all the adjacent or 8-connected pairs of nodes in

G. This type of links are called N -links [2]. In addition,

for background-foreground segmentation purposes, we also

introduce two terminal nodes, the foreground t and back-

ground nodes s. As illustrated in Fig. 3(b), all nodes in

V are connected to these two terminal nodes. The cor-
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Figure 3: (a) Given an intensity image, at a given location, we can

find the optimum angle θ which maximize the distance between

the histograms of oriented gradients in these two half discs; (b)

LBP texture weights; (c) foreground salience graph.

responding links are referred as T -links. The segmenta-

tion of the image is represented by a set of binary labels

X = {xp|xp ∈ {0, 1}}, where p represents a node in the

graph or an image patch.

We formulate the foreground object segmentation as

a graph-cut energy minimization problem, which aims to

minimize the following global energy function:

E(X) =
∑
p∈V

Ep(xp) · wH(xp) + λ1

∑
(p,q)∈E

ED(xp, xq)

+ λ2

∑
(p,q)∈E

ES(xp, xq). (5)

Here, Ep(xp) represents the T -link energy while

ED(xp, xq) and ES(xp, xq) represent the N -link en-

ergy. λ1 and λ2 are constant parameters that balance the

influence of these three energy terms. wH(xp) is the LBP

texture weight defined in (4). The T -link energy provides

an initial assessment if the image patch belongs to the

background or foreground, which is defined based on the

temporal salience measure:

Ep(xp) =

{
Dt(p)
α1

, xp = 0;

α2(1− Dt(p)
20α1

), xp = 1;
(6)

where α1 and α2 are constants. The N -link en-

ergy represents comparison between neighboring patches.

ED(xp, xq) captures the discontinuity between two neigh-

boring patches in the temporal salience map, which is de-

fined as

ED(xp, xq) = γ · e−βD·|Dt(p)−Dt(q)|, (7)

where βD is a normalization term

βD = [
∑
p∈V

Dt(p)]−1. (8)

Another component of the N -link energy, ES(xp, xq), is

defined based on the spatial salience,

Es(xp, xq) = γ · e−βS ·Ds(p,q), (9)

where βS is a normalization term computed as

βS = [ max
(p,q)∈E

Ds(p, q)]−1. (10)

In this work, we use the min-cut method [2] to minimize

the global energy function in (5). The output of this graph-

cut minimization procedure will be the foreground object

segmentation.

6. Iterative Ensemable Video Object Cut
We recognize that, in cluttered scenes, the initial seg-

mentation often yields incorrect segmentation and object

contours. For example, in the Camera-trap dataset, we find

that some parts of the animal body are well segmented in

some video frames but poorly segmented in other frames

since the foreground object has moved to different back-

ground regions. Motivated by this observation, we propose

to consider the problem of video object cut as an ensem-

ble of frame-level foreground-background classifiers, which

share and fuse the classification information across frames,

helping each other to refine the segmentation in an iterative

manner. To this end, we will explore two major ideas.

6.1. Foreground Probability Map

From the existing foreground-background classifica-

tion results of all frames, we estimate the foreground-

background probability map for each frame. More specif-

ically, with the new background masks, we remove those

false background image patches from the background

model. For each image patch P at location xP , we up-

date its minimum distance Dt(P ) to all background image

patches in the model using (2). With the new foreground

masks, we can also construct bag-of-words models for the

foreground objects. Following the procedure in Section 2,

we can then define the foreground temporal salience mea-

sure Dt
f (P ) for a given image patch P in the current frame,

which will measure the similarity between the current patch

and detected foreground patches. We define the foreground

probability map as

γ(P ) = 1− e−Dt(P )/Dt
f (P ), (11)

which measures the probability of P to be a foreground

patch. We then use γ(P ) as a weighting factor to update

194819481950



the weights of t-link (edges to the foreground) and the N -

link edges as follows:

wi+1
t−link(P ) = wi

t−link(P ) · [1 + c0γ(P )], (12)

wi+1
n−link(P,Q) = wi

t−link(P ) · (1 + c1|γ(P )− γ(Q)|).

6.2. Foreground Shape Priors

The graph cut (or s/t cut) problem can be solved by find-

ing a maximum flow from the source s (background) to the

destination t (foreground). The theorem of Ford and Fulk-

erson [6] states that a maximum flow from s to t saturates

a set of edges in the graph dividing the nodes into two dis-

joint parts {S, T } corresponding to a minimum cut. One

typical approach to solve the max-flow problem is to use

augmenting paths [6], for which fast algorithms are avail-

able [4] with linear running time. The algorithm starts with

zero flow and gradually increases the flow amount as long

as there is an open path from the source to the destination

on the residual graph. The incremental equals to the min-

imum of the residual capacities on the path, as illustrated

in Fig. 4(b). The set of saturation edges corresponds to

the final graph cut result [6]. In our case, the object con-

tour obtained from graph cut segmentation will run across

these saturation edges. Therefore, an incorrect selection of

the saturation edge in the final stage will result in incor-

rect segmentation, causing distorted object shapes or con-

tours. Fig. 4(a) shows one example of incorrect segmenta-

tion, where the leg of the deer is missing in frame while it is

well segmented in another frame. To address this issue, we

propose to use the object segmentation results from other

frames, extract shape prior information of the foreground

object, and use this information to guide the graph cut al-

gorithm. More specifically, to construct the shape prior, we

denote the shape segment with the image patch P by S[P ].
Let θ(S[P ]) be its orientation angle quantized to 8 bins be-

tween 0 and 2π. Let

N [P ] = {Q1, · · · , QK} (13)

be the K nearest neighbor image patches of P . From the ex-

isting segmentation results, we estimate the following con-

ditional probability

p(θ) = p{θ(S[P ]) | θ(S[Q1]), · · · θ(S[QK ])}. (14)

This probability p(θ) attempts to predict the shape seg-

ment orientation based on the foreground object shapes seg-

mented from other frames. Using this probability, we are

able to determine the most likely position of the saturation

edge in the augmenting path. If the residual capacity of this

edge in the residual graph is below a certain threshold, we

can impose early termination of the augmenting process and

set this edge as the saturation edge.

Figure 4: shape prior assisted graph cut.

7. Experimental Results
We evaluate our method with a diverse set of publicly

available challenging videos used in the literature and com-

pare our method with the state-of-the-art methods.

7.1. Datasets

The data used for our performance evaluation consists

of existing benchmark datasets and our in-house wildlife

monitoring videos: (A) WavingTrees [25]; (B) Fountain
[23]; (C) Combination with 9 complex scenes [13, 12];

(D) WaterObject with a jug floating on the rippling water

[27]; (E) RainCar with several cars passing through a heav-

ily raining scene [16]; and (G) the new Change Detection

Challenge dataset [7] for performance evaluations and com-

parisons of moving object detection and segmentation algo-

rithms, where the most recent results are available. We will

also evaluate our method with (F) the Camera Trap dataset

of wildlife monitoring videos. In our on-going work on au-

tomated large-scale wildlife monitoring, we have collected

over 1 million camera-trap images of wildlife species. This

dataset consists of 23 species of wildlife animals captured

by camera-traps, in both daytime color and nighttime in-

frared formats. These are very challenging videos with

highly cluttered and dynamic wooded scenes. This dataset

will be made available online for public use.

In our experiments, we use a patch size of 32×32. The

number of patches used for background modeling ranges

from 2560 to 7680 depending on the video size. The dictio-

nary size is 128. We use a group of 10-15 video frames as a

segmentation unit for ensemble video object cut.

7.2. Quantitative Evaluations

In this section, we provide quantitative evaluations mea-

sured using the F -score:

F =
2× recall × precision

recall + precision
=

2TP

2TP + FN + FP
,
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where TP stands for true positive, FP stands for false pos-

itive, FN stands for false negative [13]. Table 1 shows the

F -score results on the Combination dataset in comparison

with (a) MM03, the Bayes model approach by Li et al. [12];

(b) LBP-P: the pixelwise LBP histogram based approach

by Heikkil et al. [8]; and (c) PKDE: the pattern kernel den-

sity estimation method by Liao [13] with different param-

eter settings. The best performance score is highlighted in

bold. It can be seen that the proposed method outperforms

other methods in the literature on most test sequences. For

sequences Escalator, Fountain, and Shopping Mall, our F -

scores are just slightly lower than the PKDE method [13].

Next, we provide comprehensive performance evalua-

tions on the Dynamic Background videos from the Change

Detection Challenge dataset [7]. The website also pub-

lishes results on this dataset by an extensive list of methods

recently developed in the literature. In this work, we in-

clude the top 7 methods for performance comparison: (a)

CP, the Chebyshev probability approach [17]; (b) Feed-
back, the feedback approach [9]; (c) the ViBe+ method [3];

(d) PSP-MRF, the probabilistic superpixel Markov random

fields approach [22]; (e) KDE, the integrated spatiotem-

poral approach [18]; (f) QCH, the quasi-continuous his-

togram approach [19]; and (g) SC-SOBS, the SOBS al-

gorithm [14]. The definition of Specificity, FPR (False

Positive Rate), FNR (False Negative Rate), PWC (Percent-

age of Wrong Classifications), F-Score, and Precision are

provided on the website [7]. From Table 2, we can see

that our method significantly outperforms other methods.

For example, we have achieved an average precision of

95.34%, much higher than the second best 83.26% [9]. This

is because our method is able to effectively capture and

model the highly dynamic background motion and to ac-

curately locate the object boundary by sharing and fusing

foreground-background classification information between

frames.

7.3. Qualitative Evaluations

In this section, we provide qualitative evaluations of our

ensemble video object cut method and performance com-

parisons with other state-of-the-art methods in the litera-

ture. Fig. 5 shows one example of segmentation results by

our method on the Fountain dataset in comparison with the

Bayesian modeling approach [23]. We can see that both the

Bayesian modeling approach and our approach are able to

accurately model the background water motion. However,

their method tends to under-segment the foreground person

with the low-contrast waist and hair areas being classified

as background. Our method is able to accurately detect

and segment the whole person with graph-cuts by consid-

ering the spatial context. Fig. 6 shows the results on the

Combination dataset in comparison with the ACMMM03

Figure 5: The top row are the original images from Fountain
dataset [23]. The second row are the results obtained by using

Bayesian modeling [23]. The third row are results obtained by the

proposed method.

[12] and LBP-P [8] methods. We can see that the proposed

method yields more accurate and robust foreground object

detection and segmentation than these two methods. Fig. 7

shows how our ensemble video cut method is able to refine

the segmentation results in an iterative manner by sharing

and fusing foreground-background classification informa-

tion between frames.

8. Conclusion
In this work, we have successfully developed a video ob-

ject segmentation scheme for highly dynamic and cluttered

scenes. Our approach integrates patch-level local back-

ground modeling with bags of words, region-level fore-

ground object segmentation with graph cuts, and temporal

domain information fusion among foreground-background

classifiers at neighboring frames. We constructed patch-

level bag-of-words background models to effectively cap-

ture the background motion and texture dynamics. We have

developed a foreground salience graph (FSG) to character-

ize the similarity of an image patch to the bag-of-words

background models in the temporal domain and to neigh-

boring image patches in the spatial domain. We incorpo-

rated this similarity information into a graph-cut energy

minimization framework for foreground object segmenta-

tion. The major novelty of this paper lies in considering the

video object segmentation in challenging natural scenes as

an ensemble of frame-level background-foreground object

classifiers, which fuses information across frames and re-
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Table 1: Performance comparison with the F-score (%) on the Combination dataset with other methods.

Sequences MM03 LBP-P PKDEltp PKDEsiltp PKDEw=2
mb−siltp PKDEw=3

mb−siltp PKDEw=1+2+3
mb−siltp This Work

AirportHall 50.18 50.29 62.13 68.14 65.87 63.60 68.02 81.65
Bootstrap 60.46 52.00 73.86 75.35 69.45 64.87 72.90 76.14
Curtain 56.08 71.42 74.19 91.16 89.37 87.97 92.40 93.63

Escalator 32.95 53.93 67.71 63.90 64.37 60.18 68.66 68.24

Fountain 56.49 75.33 81.05 83.45 81.17 77.60 85.04 84.00

ShoppingMall 67.84 62.92 73.91 79.62 77.75 74.49 79.65 79.46

Lobby 20.35 52.34 77.85 78.80 73.82 67.16 79.21 83.86
Trees 75.40 60.57 42.98 42.54 51.88 61.53 67.83 89.12

WaterSurface 63.66 82.21 41.46 74.30 81.08 83.51 83.15 94.95
Total 59.21 63.46 67.59 75.35 75.24 73.59 78.69 83.45

Table 2: Performance comparison on Dynamic Background videos in the Change Detection dataset with other methods.

Method Avg Recall Avg Specificity Avg FPR Avg FNR Avg PWC Avg F-Score Avg Precision

CP [17] 0.8182 0.9982 0.0018 0.1818 0.3436 0.7656 0.7633

Feedback [9] 0.6955 0.9989 0.0011 0.3045 0.5394 0.6829 0.8326

ViBe+ [3] 0.7616 0.9980 0.0020 0.2384 0.3838 0.7197 0.7291

PSP-MRF [22] 0.8955 0.9859 0.0141 0.1045 1.4514 0.6960 0.6576

KDE [18] 0.8401 0.9908 0.0092 0.1599 1.1501 0.6016 0.5413

QCH [19] 0.8909 0.9896 0.0104 0.1091 1.1301 0.6430 0.5347

SC-SOBS [14] 0.8918 0.9836 0.0164 0.1082 1.6899 0.6686 0.6283

This Work 0.9470 0.9978 0.0022 0.0530 0.3255 0.9496 0.9534

Figure 6: Segmentation results on four videos from the Com-
bination dataset. First row: original image from dataset Air-
portHall, Lobby, Curtain and WaterSurface (from left to right);

Second row: ACMMM03 [12]; Third row: LBP-P [8]; Last row:

proposed MBGC

fine their segmentation results in a collaborative and itera-

tive manner, achieving surprising good performance. Our

extensive experimental results and performance compar-

isons over a diverse set of challenging videos with dynamic

scenes, including the Change Detection Challenge Dataset,

demonstrated that the proposed ensemble video object cut

method outperforms various state-of-the-art algorithms.
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