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Abstract
Conditional random fields (CRFs) provide powerful

tools for building models to label image segments. They
are particularly well-suited to modeling local interactions
among adjacent regions (e.g., superpixels). However, CRFs
are limited in dealing with complex, global (long-range)
interactions between regions. Complementary to this, re-
stricted Boltzmann machines (RBMs) can be used to model
global shapes produced by segmentation models. In this
work, we present a new model that uses the combined power
of these two network types to build a state-of-the-art labeler.
Although the CRF is a good baseline labeler, we show how
an RBM can be added to the architecture to provide a global

shape bias that complements the local modeling provided
by the CRF. We demonstrate its labeling performance for
the parts of complex face images from the Labeled Faces
in the Wild data set. This hybrid model produces results
that are both quantitatively and qualitatively better than the
CRF alone. In addition to high-quality labeling results, we
demonstrate that the hidden units in the RBM portion of our
model can be interpreted as face attributes that have been
learned without any attribute-level supervision.

1. Introduction
Segmentation and region labeling are core techniques for

the critical mid-level vision tasks of grouping and organiz-

ing image regions into coherent parts. Segmentation refers

to the grouping of image pixels into parts without applying

labels to those parts, and region labeling assigns specific

category names to those parts. While many segmentation

and region labeling algorithms have been used in general

object recognition and scene analysis, they have played a

surprisingly small role in the challenging problems of face

recognition.

Recently, Huang et al. [13] identified the potential role

of region labeling in face recognition, noting that a variety

of high-level features, such as pose, hair length, and gender

can often be inferred (by people) from the labeling of a face

image into hair, skin and background regions. They further

Figure 1. The left image shows a “funneled” or aligned LFW im-

age. The center image shows the superpixel version of the image

which is used as a basis for the labeling. The right image shows

the ground truth labeling. Red represents hair, green represents

skin, and the blue represents background.

showed that simple learning algorithms could be used to

predict high-level features, or attributes [15, 24], such as

pose, from the labeling.

In this work, we address the problem of labeling face

regions with hair, skin, and background labels as an inter-

mediate step in modeling face structure. In region label-

ing applications, the conditional random field (CRF) [16]

is effective at modeling region boundaries. For example,

the CRF can make a correct transition between the hair and

background labels when there is a clear difference between

those regions. However, when a person’s hair color is sim-

ilar to that of the background, the CRF may have difficulty

deciding where to draw the boundary between the regions.

In such cases, a global shape constraint can be used to filter

out unrealistic label configurations.

It has been shown that restricted Boltzmann machines

(RBMs) [28] and their extension to deeper architectures

such as deep Boltzmann machines (DBMs) [25], can be

used to build effective generative models of object shape.

Specifically, the recently proposed shape Boltzmann ma-

chine (ShapeBM) [5] showed impressive performance in

generating novel but realistic object shapes while capturing

both local and global elements of shape.

Motivated by these examples, we propose the GLOC
(GLObal and LOCal) model, a strong model for image

labeling problems, that combines the best properties of

the CRF (that enforces local consistency between adjacent

nodes) and the RBM (that models global shape prior of the
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object). The model balances three goals in seeking label

assignments:

• The region labels should be consistent with the under-

lying image features.

• The region labels should respect image boundaries.

• The complete image labeling should be consistent with

shape priors defined by the segmentation training data.

In our GLOC model, the first two objectives are achieved

primarily by the CRF part, and the third objective is ad-

dressed by the RBM part. For each new image, our model

uses mean-field inference to find a good balance between

the CRF and RBM potentials in setting the image labels and

hidden node values.

We evaluate our proposed model on a face labeling task

using the Labeled Faces in the Wild (LFW) data set. As

shown in Section 4, our model brings significant improve-

ments in labeling accuracy over the baseline methods, such

as the CRF and the conditional RBM. These gains in numer-

ical accuracy have a significant visual impact on the result-

ing labeling, often fixing errors that are small but obvious

to any observer. In addition, we show in Section 5 that the

hidden units in the GLOC model can be interpreted as face

attributes, such as whether an individual has long hair or a

beard, or faces left or right. These attributes can be useful in

retrieving face images with similar structure and properties.

We summarize our main contributions as follows:

• We propose the GLOC model, a strong model for face

labeling tasks, that combines the CRF and the RBM to

achieve both local and global consistency.

• We present efficient inference and training algorithms

for our model.

• We achieve significant improvements over the state-of-

the-art in face labeling accuracy on subsets of the LFW

data set. Our model also produces qualitatively better

labeling than the baseline CRF models.

• We demonstrate that our model learns face attributes

automatically without attribute labels.

We will make the code [1] and part label data set [2] pub-

licly available.

2. Prior Work
2.1. Face Segmentation and Labeling

Several authors have built systems for segmenting hair,

skin, and other face parts [30, 29, 27, 19, 32, 13]. Because

of the variety of hair styles, configurations, and amount of

hair, the shape of a hair segmentation can be extremely vari-

able. In our work, we treat facial hair as part of “hair” in

general, hoping to develop hidden units corresponding to

beards, sideburns, mustaches, and other hair parts, which

further increases the complexity of the hair segments. Fur-

thermore, we include skin of the neck as part of the “skin”

segmentation when it is visible, which is different from

other labeling regimes. For example, Wang et al. [29] limit

the skin region to the face and include regions covered by

beards, hats, and glasses as being skin, which simplifies

their labeling problem.

Yacoob et al. [32] build a hair color model and then adopt

a region growing algorithm to modify the hair region. This

method has difficulty when the hair color changes signifi-

cantly from one region to another, especially for dark hair,

and the work was targeted at images with controlled back-

grounds. Lee et al. [19] used a mixture model to learn six

distinct hair styles, and other mixture models to learn color

distributions for hair, skin, and background.

Huang et al. [13] used a standard CRF trained on images

from LFW to build a hair, skin, and background labeler. We

have implemented their model as a baseline and report the

performance. Scheffler et al. [27] learn color models for

hair, skin, background and clothing. They also learn a spa-

tial prior for each label. They combine this information with

a Markov random field that enforces local label consistency.

Wang et al. [29] used a compositional exemplar-based

model, focusing mostly on the problem of hair segmenta-

tion. Following their earlier work, Wang et al. [30] pro-

posed a model that regularizes the output of a segmenta-

tion using parts. In addition, their model builds a statisti-

cal model of where each part is used in the image and the

co-occurrence probabilities between parts. Using these co-

occurrences, they build a tree-structured model over parts

to constrain the final segmentations. To our knowledge, this

is the best-performing algorithm for hair, skin, and back-

ground labeling to date. In Section 4, we report the results

on two sets of labeled data showing improvements over

these best previous results.

2.2. Object Shape Modeling
There are several related works on using RBMs (or their

deeper extensions) for shape modeling. He et al. [7] pro-

posed multiscale CRFs to model both local and global la-

bel features using RBMs. Specifically, they used multiple

RBMs at different scales to model the regional or global

label fields (layers) separately, and combined those condi-

tional distributions multiplicatively. Recent work by Es-

lami et al. [5] introduced the Shape Boltzmann machine

(ShapeBM), a two-layer DBM with local connectivity in

the first layer for local consistency and generalization (by

weight sharing), and full connectivity in the second layer

for modeling global shapes, as a strong model for object

shapes. Subsequently, Eslami and Williams [6] proposed a

generative model by combining the ShapeBM with an ap-

pearance model for parts-based object segmentation. Our

model is similar at a high-level to these models in that we

use RBMs for object shape modeling to solve image la-

beling problems. However, there are significant technical

differences that distinguish our model from others. First,

201820182020



our model has an edge potential that enforces local consis-

tency between adjacent superpixel labels. Second, we de-

fine our model on the superpixel graph using a virtual pool-

ing technique, which is computationally much more effi-

cient. Third, our model is discriminative and can use richer

image features than [6] which used a simple pixel-level ap-

pearance model (based on RGB pixel values). Finally, we

propose a model combined with an RBM to act as a shape

prior, which makes the training much easier while showing

significant improvement over the baseline models in face

labeling tasks. See 3.2.4 for more discussions.

3. Algorithms
In this section, we briefly describe the CRF and RBM,

followed by our proposed GLOC model. We present the

models in the context of multi-class labeling.

Notation An image I is pre-segmented into S(I) super-

pixels, where S(I) can vary over different images. We de-

note V(I) = {1, · · · , S(I)} as a set of superpixel nodes,

and E(I) as a set of edges connecting adjacent superpixels.

We denote X (I) = {X (I)
V ,X (I)

E }, where X (I)
V is a set of

node features {xnode
s ∈ R

Dn , s ∈ V} and X (I)
E is a set of

edge features {xedge
ij ∈ R

De , (i, j) ∈ E}. The set of la-

bel nodes are defined as Y(I) = {ys ∈ {0, 1}L, s ∈ V :∑L
l=1 ysl = 1}. Here, Dn and De denote the dimensions of

the node and edge features, respectively, and L denotes the

number of categories for the labeling task. We frequently

omit the superscripts “I”, “node”, or “edge” for clarity, but

the meaning should be clear from the context.

3.1. Preliminaries
3.1.1 Conditional Random Fields
The conditional random field [16] is a powerful model for

structured output prediction (such as sequence prediction,

text parsing, and image segmentation), and has been widely

used in computer vision [8, 3, 4, 7]. The conditional dis-

tribution and the energy function can be defined as follows:

Pcrf(Y|X ) ∝ exp(−Ecrf(Y,X )), (1)

Ecrf(Y,X ) = Enode (Y,XV) + Eedge (Y,XE) , (2)

Enode (Y,XV) = −
∑
s∈V

L∑
l=1

Dn∑
d=1

yslΓldxsd,

Eedge (Y,XE) = −
∑

(i,j)∈E

L∑
l,l′=1

De∑
e=1

yilyjl′Ψll′exije,

where Ψ ∈ R
L×L×De is a 3D tensor for the edge weights,

and Γ ∈ R
L×Dn are the node weights. The model param-

eters {Γ,Ψ} are trained to maximize the conditional log-

likelihood of the training data {Y(m),X (m)}Mm=1,

max
Γ,Ψ

M∑
m=1

logPcrf(Y(m)|X (m)).

We can use loopy belief propagation (LBP) [23] or mean-

field approximation [26] for inference in conjunction with

standard optimization methods such as LBFGS.1

3.1.2 Restricted Boltzmann Machines
The restricted Boltzmann machine [28] is a bipartite, undi-

rected graphical model composed of visible and hidden lay-

ers. In our context, we assume R2 multinomial visible units

yr ∈ {0, 1}L and K binary hidden units hk ∈ {0, 1}. The

joint distribution can be defined as follows:

Prbm(Y,h) ∝ exp(−Erbm(Y,h)), (3)

Erbm(Y,h) = −
R2∑
r=1

L∑
l=1

K∑
k=1

yrlWrlkhk

−
K∑

k=1

bkhk −
R2∑
r=1

L∑
l=1

crlyrl, (4)

where W ∈ R
R2×L×K is a 3D tensor specifying the con-

nection weights between visible and hidden units, bk is the

hidden bias, and crl is the visible bias. The parameters

Θ = {W,b,C} are trained to maximize the log-likelihood

of the training data {Y(m)}Mm=1,

max
Θ

M∑
m=1

log

(∑
h

Prbm(Y(m),h)

)
.

We train the model parameters using stochastic gradient de-

scent. Although the exact gradient is intractable to compute,

we can approximate it using contrastive divergence [9].

3.2. The GLOC Model
To build a strong model for image labeling, both local

consistency (adjacent nodes are likely to have similar la-

bels) and global consistency (the overall shape of the object

should look realistic) are desirable. On one hand, the CRF

is powerful in modeling local consistency via edge poten-

tials. On the other hand, the RBM is good at capturing

global shape structure through the hidden units. We com-

bine these two ideas in the GLOC model, which incorpo-

rates both local consistency (via CRF-like potentials) and

global consistency (via RBM-like potentials). Specifically,

we describe the conditional likelihood of labels set Y given

the superpixel features X as follows:

Pgloc(Y|X ) ∝
∑
h

exp (−Egloc(Y,X ,h)) , (5)

Egloc (Y,X ,h) = Ecrf (Y,X ) + Erbm (Y,h) . (6)

1We used LBFGS in minFunc by Mark Schmidt: http://www.di.
ens.fr/˜mschmidt/Software/minFunc.html
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As described above, the energy function is written as a com-

bination of CRF and RBM energy functions. However, due

to the varying number of superpixels for different images,

the RBM energy function in Equation (4) requires nontrivial

modifications. In other words, we cannot simply connect la-

bel (visible) nodes defined over superpixels to hidden nodes

as in Equation (4) because 1) the RBM is defined on a fixed

number of visible nodes and 2) the number of superpixels

and their underlying graph structure can vary across images.

3.2.1 Virtual Pooling Layer
To resolve this issue, we introduce a virtual, fixed-sized
pooling layer between the label and the hidden layers,

where we map each superpixel label node into the virtual
visible nodes of the R × R square grid. This is shown in

Figure 2, where the top two layers can be thought of as

an RBM with the visible nodes ȳr representing a surrogate

(i.e., pooling) for the labels ys that overlap with the grid bin

r. Specifically, we define the energy function between the

label nodes and the hidden nodes for an image I as follows:

Erbm (Y,h) = −
R2∑
r=1

L∑
l=1

K∑
k=1

ȳrlWrlkhk

−
K∑

k=1

bkhk −
R2∑
r=1

L∑
l=1

crlȳrl. (7)

Here, the virtual visible nodes ȳrl =
∑S

s=1 prsysl are deter-

ministically mapped from the superpixel label nodes using

the projection matrix {prs} that determines the contribution

of label nodes to each node of the grid. The projection ma-

trix is defined as follows:2

prs =
Area(Region(s) ∩Region(r))

Area(Region(r))
,

where Region(s) and Region(r) denote sets of pixels cor-

responding to superpixel s and grid r, respectively. Due to

the deterministic connection, the pooling layer is actually a

virtual layer that only exists to map between the superpixel

nodes and the hidden nodes. We can also view our GLOC

model as having a set of grid-structured nodes that performs

average pooling over the adjacent superpixel nodes.

3.2.2 Spatial CRF
As an additional baseline, we describe a modification to the

CRF presented in Section 3.1.1. In some cases, even after

conditioning on class, feature likelihoods may depend on

position. For example, knowing that hair rests on the shoul-

ders makes it less likely to be gray. This intuition is behind

our Spatial CRF model.

2The projection matrix {prs} is a sparse, non-negative matrix of di-

mension R2 ×S. Note that the projection matrix is specific to each image

since it depends on the structure of the superpixel graph.

virtual  
visible layer 

hidden layer 

label layer 
(superpixels) 

r 

s 

s1 s2 

s3 

s1 s2 Area(        ) r / Area(            ) 

virtual  
projection 

(zoom in) 

Overlap between region r  
and its adjacent superpixels 

Figure 2. The GLOC model. The top two layers can be thought

of as an RBM with the (virtual) visible nodes ȳr and the hidden

nodes. To define the RBM over a fixed-size visible node grid,

we use an image-specific “projection matrix” {p(I)rs } that transfers

(top-down and bottom-up) information between the label layer and

the virtual grid of the RBM’s visible layer. See text for details.

Specifically, when the object in the image is aligned, we

can learn a spatially dependent set of weights that are spe-

cific to a cell in an N ×N grid. (Note that this grid can be

a different size than the R ×R grid used by the RBM.) We

learn a separate set of node weights for each cell in a grid,

but the edge weights are kept globally stationary.

Using a similar projection technique to that described in

Section 3.2.1, we define the node energy function as

Enode (Y,XV) = −
∑
s∈V

L∑
l=1

ysl

N2∑
n=1

psn

Dn∑
d=1

Γndlxsd, (8)

where Γ ∈ R
N2×D×L is a 3D tensor specifying the con-

nection weights between the superpixel node features and

labels at each spatial location. In this energy function, we

define a different projection matrix {psn} which specifies

the mapping from the N × N virtual grid to superpixel la-

bel nodes.3

3.2.3 Inference and Learning
Inference Since the joint inference of superpixel labels

and the hidden nodes is intractable, we resort to the mean-

field approximation. Specifically, we find a fully factorized

distribution Q(Y,h;μ, γ) =
∏

s∈V Q(ys)
∏K

k=1Q(hk),

with Q(ys = l) � μsl and Q(hk = 1) � γk, that min-

imizes KL (Q(Y,h;μ, γ)‖P (Y,h|X )). We describe the

mean-field inference steps in Algorithm 1.

Learning In principle, we can train the model parame-

ters {W,b,C,Γ,Ψ} simultaneously to maximize the con-

ditional log-likelihood. In practice, however, it is beneficial

3Note that the projection matrices used in the RBM and spatial CRF

are different in that {prs} used in the RBM describes a projection from

superpixel to grid (
∑S

s=1 prs = 1), whereas {psn} used in the spatial

CRF describes a mapping from a grid to superpixel (
∑N2

n=1 psn = 1).
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Algorithm 1 Mean-Field Inference

1: Initialize μ(0) and γ(0) as follows:

μ
(0)
sl =

exp
(
f node
sl

)
∑

l′ exp
(
f node
sl′
)

γ
(0)
k = sigmoid

⎛
⎝∑

r,l

(∑
s

prsμ
(0)
sl

)
Wrlk + bk

⎞
⎠

where

f node
sl (XV , {psn},Γ) =

∑
n,d

psnxsdΓndl

2: for t=0:maxiter (or until convergence) do
3: update μ(t+1) as follows: μ

(t+1)
sl =

exp
(
f node
sl + f edge

sl

(
μ(t)

)
+ f rbm

sl

(
γ(t)

))
∑

l′ exp
(
f node
sl′ + f edge

sl′ (μ(t)) + f rbm
sl′ (γ

(t))
)

where

f edge
sl (μ;XE , E ,Ψ) =

∑
j:(s,j)∈E

∑
l′,e

μjl′Ψll′exsje

f rbm
sl (γ; {prs},W,C) =

∑
r,k

prs (Wrlkγk + crl)

4: update γ(t+1) as follows:

γ
(t+1)
k = sigmoid

⎛
⎝∑

r,l

(∑
s

prsμ
(t+1)
sl

)
Wrlk + bk

⎞
⎠

5: end for

to provide a proper initialization (or pretrain) to those pa-

rameters. We provide an overview of the training procedure

in Algorithm 2.

First, we adapted the pretraining method of deep Boltz-

mann machines (DBM) [25] to train the conditional RBM

(CRBM).4 Specifically, we pretrain the model parameters

{W,b,C} of the CRBM as if it is a top layer of the DBM

to avoid double-counting when combined with the edge po-

tential in the GLOC model. Second, the CRBM and the

GLOC models can be trained to either maximize the con-

ditional log-likelihood using contrastive divergence (CD)

or minimize generalized perceptron loss [18] using CD-

PercLoss [22]. In fact, Mnih et al. [22] suggested that CD-

PercLoss would be a better choice for structured output pre-

diction problems since it directly penalizes the model for

wrong predictions during training. We empirically observed

that CD-PercLoss performed slightly better than CD.

4Note that our CRBM is different from the one defined in [22] in that

1) our model has no connection between the conditioning nodes X and the

hidden nodes, and 2) our model uses a projection (e.g., virtual pooling)

matrix to deal with the varying number of label nodes over the images.

Algorithm 2 Training GLOC model

1: Pretrain {Γ,Ψ} to maximize the conditional log-

likelihood of the spatial CRF model (See Equations (1),

(2), and (8)).
2: Pretrain Θ = {W,b,C} to maximize the conditional

log-likelihood log
∑

h Pcrbm(Y,h|XV) of the condi-
tional RBM model which is defined as:

Pcrbm(Y,h|XV) ∝ exp (−Enode(Y,XV ; Γ)− Erbm(Y,h; Θ))

3: Train {W,b,C,Γ,Ψ} to maximize the conditional

log-likelihood of the GLOC model (See Equation (5)).

Figure 3. Generated samples from the RBM (first row) and the

closest matching examples in the training set (second row). The

RBM can generate novel, realistic examples by combining hair,

beard and mustache shapes along with diverse face shapes.

3.2.4 Discussion
In many cases, it is advantageous to learn generative mod-

els with deep architectures. In particular, Eslami et al. [5]

suggest that the ShapeBM, a special instance of the DBM,

can be a better generative model than the RBM when they

are only given several hundred training examples. How-

ever, when given sufficient training data (e.g., a few thou-

sand), we found that the RBM can still learn a global shape

prior with good generalization performance. In Figure 3, we

show both generated samples from an RBM and their clos-

est training examples.5 The generated samples are diverse

and are clearly different from their most similar examples

in the training set. This suggests that our model is learning

an interesting decomposition of the shape distributions for

faces. Furthermore, RBMs are easier to train than DBMs in

general, which motivates the use of RBMs in our model. In

principle, however, we can also use such deep architectures

in our GLOC model as a rich global shape prior without

much modification to inference and learning.

4. Experiments
We evaluated our proposed model on a task to label face

images from the LFW data set [14] as hair, skin, and back-

ground. We used the “funneled” version of LFW, in which

images have been coarsely aligned using a congealing-style

joint alignment approach [10]. Although some better auto-

matic alignments of these images exist, such as the LFW-a

data set [31], LFW-a does not contain color information,

which is important for our application.

5We compute the L2 distance between the generated samples and the

examples in the training set.
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(a) Successful examples (b) Failure examples

Figure 4. Sample segmentation results on images from the LFW data set. The images contain extremely challenging scenarios such as

multiple distractor faces, occlusions, strong highlights, and pose variation. The left of Figure 4(a) shows images in which the GLOC model

made relatively large improvements to the baseline. The right of Figure 4(a) shows more subtle changes made by our model. The results in

Figure 4(b) show typical failure cases. The columns correspond to 1) original image which has been aligned to a canonical position using

funneling [10], 2) CRF, 3) spatial CRF, 4) GLOC and 5) ground truth labeling. Note that the CRBM model results are not shown here.

The LFW website provides the segmentation of each im-

age into superpixels, which are small, relatively uniform

pixel groupings.6 We provide ground truth for a set of 2927

LFW images by labeling each superpixel as either hair, skin,

or background [2]. While some superpixels may contain

pixels from more than one region, most superpixels are gen-

erally “pure” hair, skin, or background.

There are several reasons why we used superpixel label-

ing instead of pixel labeling for this problem. First, the su-

perpixel representation is computationally much more effi-

cient. The number of nodes would be too large for pixel

labeling since the LFW images are of size 250×250. How-

ever, each image can be segmented into 200-250 superpix-

els, resulting in the same number of nodes in the CRF, and

this allowed us to do tractable inference using LBP or mean-

field. In addition, superpixels can help smooth features such

as color. For example, if the superpixel is mostly black but

contains a few blue pixels, the blue pixels will be smoothed

out from the feature vector, which can simplify inference.

We adopted the same set of features as in Huang et

al. [13]. For each superpixel we used the following node

features:

• Color: Normalized histogram over 64 bins generated

by running K-means over pixels in LAB space.

• Texture: Normalized histogram over 64 textons which

are generated according to [20].

• Position: Normalized histogram of the proportion of

a superpixel that falls within each of the 8 × 8 grid

elements on the image.7

6Available at http://vis-www.cs.umass.edu/lfw/lfw_
funneled_superpixels_fine.tgz.

7Note that the position feature is only used in the CRF.

Method Accuracy (SP) Error Reduction

CRF 93.23 % –

Spatial CRF 93.95 % 10.64%

CRBM 94.10 % 12.85 %

GLOC 94.95 % 25.41 %

Table 1. Labeling accuracies for each model. We report the

superpixel-wise labeling accuracy in the second column, and the

error reduction over the CRF in the third column.

The following edge features were computed between adja-

cent superpixels:

• Sum of PB [21] values along the border.

• Euclidean distance between mean color histograms.

• Chi-squared distance between texture histograms as

computed in [13].

We evaluated the labeling performance of four different

models: a standard CRF, the spatial CRF, the CRBM, and

our GLOC model. We provide the summary results in Ta-

ble 1. We divided the labeled examples into training, vali-

dation, and testing sets that contain 1500, 500, and 927 ex-

amples, respectively. We trained our model using batch gra-

dient descent and selected the model hyperparameters that

performed best on the validation set. After cross-validation,

we set K=400, R=24, and N=16. Finally, we evaluated that

model on the test set. On a multicore AMD Opteron, aver-

age inference time per example was 0.254 seconds for the

GLOC model and 0.063 seconds for the spatial CRF.

As shown in Table 1, the GLOC model substantially im-

proves the superpixel labeling accuracy over the baseline

CRF model as well as the spatial CRF and CRBM mod-

els. While absolute accuracy improvements (necessarily)

become small as accuracy approaches 95%, the reduction
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in errors are substantial.

Furthermore, there are significant qualitative differences

in many cases, as we illustrate in Figure 4(a). The samples

on the left show significant improvement over the spatial

CRF, and the ones on the right show more subtle changes

made by the GLOC model. Here, we represent the confi-

dence of the guess (posterior) by color intensity. The confi-

dent guess appears as a strong red, green, or blue color, and

a less confident guess appears as a lighter mixture of colors.

As we can see, the global shape prior of the GLOC model

helps “clean up” the guess made by the spatial CRF in many

cases, resulting in a more confident prediction.

In many cases, the RBM prior encourages a more real-

istic segmentation by either “filling in” or removing parts

of the hair or face shape. For example, the woman in the

second row on the left set recovers the left side of her hair

and gets a more recognizable hair shape under our model.

Also, the man in the first row on the right set gets a more

realistic looking hair shape by removing the small (incor-

rect) hair shape on top of his head. This effect may be due

to the top-down global prior in our GLOC model, whereas

simpler models such as the spatial CRF do not have this in-

formation. In addition, there were cases (such as the woman

in the fifth row of the left set) where an additional face in

close proximity to the centered face may confuse the model.

In this case, the CRF and spatial CRF models make mis-

takes, but since the GLOC model has a strong shape model,

it was able to find a more recognizable segmentation of the

foreground face.

On the other hand, the GLOC model sometimes makes

errors. We show typical failure examples in Figure 4(b). As

we can see, the model made significant errors in their hair

regions. Specifically, in the first row, the hair of a nearby

face is similar in color to the hair of the foreground face as

well as the background, and our model incorrectly guesses

more hair by emphasizing the hair shape prior, perhaps too

strongly. In addition, there are cases in which occlusions

cause problems, such as the third row. However, we point

out that the occlusions are frequently handled correctly by

our model (e.g., the microphone in the third row of the left

set in Figure 4(a)).

4.1. Comparison to Prior Work
We also evaluated our model on the data set used in [30].

This data set contains 1046 LFW (unfunneled) images

whose pixels are manually labeled for 4 regions (Hair, Skin,

Background, and Clothing). Following their evaluation

setup, we randomly split the data in half and used one half

for training data and the other half for testing. We repeated

this procedure five times, and report the average pixel accu-

racy as a final result.

We first generated the superpixels and features for each

image, then ran our GLOC model to get label guesses for

each superpixel, and finally mapped back to pixels for eval-

Figure 5. This figure shows some of the latent structure automati-

cally learned by the GLOC model. In each column, we retrieve the

images from LFW (except images used in training and validation)

with the highest activations for each of 5 hidden units, and provide

their segmentation results. The attributes from left to right can be

interpreted as “no hair showing”, “looking left”, “looking right”,

“beard/occluded chin”, “big hair”. Although the retrieved matches

are not perfect, they clearly have semantic, high-level content.

uation (it was necessary to map to pixels at the end be-

cause the ground truth is provided in pixels). We noticed

that even with a perfect superpixel labeling, this mapping

already incurs approximately 3% labeling error. However,

our approach was sufficient to obtain a good pixel-wise ac-

curacy of 90.7% (91.7% superpixel-wise accuracy), which

improves by 0.7% upon their best reported result of 90.0%.

The ground truth for a superpixel is a normalized histogram

of the pixel labels in the superpixel.

5. Attributes and Retrieval
While the labeling accuracy (as shown in Section 4) is

a direct way of measuring progress, we have an additional

goal in our work: to build models that capture the natural

statistical structure in faces. It is not an accident that human

languages have words for beards, baldness, and other salient

high-level attributes of human face appearance. These at-

tributes represent coherent and repeated structure across the

faces we see everyday. Furthermore, these attributes are

powerful cues for recognition, as demonstrated by Kumar

et al. [15].

One of the most exciting aspects of RBMs and their

deeper extensions are that these models can learn latent

structure automatically. Recent work has shown that un-

supervised learning models can learn meaningful structure

without being explicitly trained to do so (e.g., [17, 11, 12]).

In our experiments, we ran our GLOC model on all LFW

images other than those used in training and validation, and

sorted them based on each hidden unit activation. Each of

the five columns in Figure 5 shows a set of retrieved images

and their guessed labelings for a particular hidden unit. In

many cases, the retrieved results for the hidden units form

meaningful clusters. These units seem highly correlated

with “lack of hair”, “looking left”, “looking right”, “beard
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or occluded chin”, and “big hair”. Thus, the learned hidden

units may be useful as attribute representations for faces.

6. Conclusion
Face segmentation and labeling is challenging due to the

diversity of hair styles, head poses, clothing, occlusions,

and other phenomena that are difficult to model, especially

in a database like LFW. Our GLOC model combines the

CRF and the RBM to model both local and global structure

in face segmentations. Our model has consistently reduced

the error in face labeling over previous models which lack

global shape priors. In addition, we have shown that the hid-

den units in our model can be interpreted as face attributes,

which were learned without any attribute-level supervision.
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