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Abstract

In the context of shape segmentation and retrieval
object-wide distributions of measures are needed to accu-
rately evaluate and compare local regions of shapes. Lien et
al. [16] proposed two point-wise concavity measures in the
context of Approximate Convex Decompositions of poly-
gons measuring the distance from a point to the polygon’s
convex hull: an accurate Shortest Path-Concavity (SPC)

measure and a Straight Line-Concavity (SLC) approxima-
tion of the same. While both are practicable on 2D shapes,
the exponential costs of SPC in 3D makes it inhibitively ex-
pensive for a generalization to meshes [14].

In this paper we propose an efficient and straight for-
ward approximation of the Shortest Path-Concavity mea-
sure to 3D meshes. Our approximation is based on dis-
cretizing the space between mesh and convex hull, thereby
reducing the continuous Shortest Path search to an effi-
ciently solvable graph problem. Our approach works out-
of-the-box on complex mesh topologies and requires no
complicated handling of genus.

Besides presenting a rigorous evaluation of our method
on a variety of input meshes, we also define an SPC-based
Shape Descriptor and show its superior retrieval and run-
time performance compared with the recently presented re-
sults on the Convexity Distribution by Lian et al. [12].

1. Introduction
Concavity (or convexity) measures for objects find use in

different areas of computer vision and geometry processing

from shape representation (e.g., [24, 12]) to object decom-

position (e.g., [15, 14]).

Concavity (or convexity) is used and interpreted differ-

ently in different contexts and does not have a universally

accepted definition. Furthermore, while global convexity
measures define one value per shape, local convexity mea-
sures yield distributions of values, e.g., on the surface of the

shape.

In the context of local convexity an intuitive measure was

Figure 1. Our algorithm in a nut shell: For an input 3D mesh (top

left) a proper outer hull (yellow, top right) is computed to allow for

a stable discretization (bottom right) of the free space. By a Fast

Marching Method a high accuracy Shortest Path-Concavity mea-

sure is obtained for each point on the input. The two right figures

are shown in a sliced-through view to visualize the interior.

recently defined based on the shortest path distance from

each point on a shape through empty space to its convex

hull. This measure is efficiently computable on 2D poly-

gons but an (exact) 3D mesh generalization is prohibitively

expensive. In this paper we propose a robust, accurate and

efficiently computable approximation of this measure.

1.1. Related Work

Global Convexity Measures. A standard measure for

convexity of a 3D (2D) shape S is the ratio between the

volume (area) enclosed by the shape to that of its convex

hull CS : C(S) = Vol(S) · Vol(CS)−1. While this simple
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measure captures the visual convexity of a shape it has been

argued against it as it is insensitive to deep, thin slits in the

shape.

A new projection-based global convexity measure,

which is able to capture such fine concavities was intro-

duced by Zunic and Rosin for 2D polygons in 2004 [24]

and generalized to 3D meshes by Lian et al. in 2012 [12].

It is based on a view-dependent ratio of areas, namely the

area of the projected silhouette of a mesh over the sum of

all projected face areas. The global measure is taken as the

minimum of this ratio over all orthographic views. In 2D

a careful analysis yielded a bound on the number of dif-

ferent views needing evaluation to guarantee the minimum.

Analyzing the 3D setting is more intricate and [12] propose

to use a Genetic Algorithm to find a minimizing view.

Local Convexity Measures. Local convexity measures

have been well investigated for 2D shapes. Our research

was motivated by the concavity measures defined by Lien

et al. [16] in the context of Approximate Convex Decom-
positions (ACD) of polygons. Here the authors use the con-

cept of bridges (edges on the convex hull) and pockets (con-

cave interior regions of the shape bounded by a correspond-

ing bridge) to define the Shortest Path-Concavity (SPC) and

its approximation: Straight Line-Concavity (SLC). For each

pocket point the concavity is defined as the shortest distance

(in the respective metric) to the closest point on the associ-

ated bridge.

The more accurate SPC measurement can be computed

in linear time (in the number of pocket vertices) in 2D, but

an efficient generalization to 3D is not known [14]. Not only

are the associations between pockets and bridges ambigu-

ous in 3D but also is computing the SPC measure inhibited

by exponential running-time. In the context of robot mo-

tion planning the NP-hardness of continuous shortest paths

was proved by Canny and Reif [5]. Both approximations

[6] and exact algorithms [17] have been proposed, however,

they have at least superquadratic complexity even for the

sub-problem of computing the shortest path between a pair

of given points. Thus, in the 3D setting the less accurate

SLC is commonly used to measure vertex concavity, while

a heuristic is employed to “project” bridge faces onto the

surface. This projection is a geometrically delicate proce-

dure requiring extra case-handling for certain surface cavi-

ties, and the identification of handle loops and reduction of

genus on general polygonal meshes [14].

As an alternative to the problematic bridge/pocket pro-

jection Mamou and Ghorbel simply use the straight line dis-

tance in normal direction to the convex hull [15]. As can be

seen in Figure 2 this is a poor approximation as it depends

only on the straight distance along the local normal direc-

tion and is insensitive to what lies in between.

In the recent Fast-ACD [7] a localized relative concavity

Straight Line-Concavity (SLC) Shortest Path-Concavity (SPC)

Figure 2. A visual comparison between the SPC (right) and the

SLC used in [15] (left) . The SPC accurately computes the shortest

distances to the convex hull without self-intersecting the object.

The SLC distances measured straight through the object are a poor

convexity description depending only the closeness to the convex

hull and not what lies in between. Grey lines mark the convex hull.

is introduced to guide the decomposition.While increasing

the efficiency of the ACD and reducing oversegmentation,

the concavity measure still deviates from the intuitive one

and has not yet been generalized to objects with genus �= 0.

Convexity as Shape Descriptor. Convexity/Concavity

encodes certain characteristics of shapes and can thus be

used to derive shape descriptors for 3D retrieval or match-

ing. It should however be noted that, due to their extrinsic

nature, convexity/concavity measures are not isometry in-

variant and hence, at least on their own, not directly suited

for dynamic poseable shapes.

Recently Lian et al. carried out 3D retrieval experiments

using pure convexity-based and convexity-enriched descrip-

tors [12]. Briefly, their experiments showed two things:

that using a distribution of several values is superior to

using a single valued descriptor and that retrieval perfor-

mance can be improved by using composite descriptors ad-

ditionally enriched by convexity. To obtain a descriptor

the authors form a histogram with 1024 bins of their view-

dependent global convexity measure sampled from 10000
random views. Obtaining these distributions is rather costly,

even for small meshes with 5k vertices the computation

time is in the range of minutes.

Our Contribution. In this paper we present a simple

and robust approach to efficiently approximate the Short-

est Path-Concavity on 3D meshes1. The degree of accuracy

can be adjusted to any desired level. Figure 1 visualizes

the basic steps of the algorithm. Instead of using visibil-

ity trees [8] and bridge-projections as proposed in [16, 14]

we propose to tessellate the space between the mesh M
and its convex hull CM and subsequently compute shortest

path distances within this discretized space. While a simple

graph-based Dijkstra algorithm already yields respectable

results, high accuracy is achieved using the Fast Marching

Method [19]. Our approach requires no extra identification

of handle/tunnel loops and works on meshes of arbitrary

genus – they only need to be free of self-intersections.

1Source code will be available at: http://www.graphics.rwth-aachen.de/
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Figure 3. Visualization of our approximation algorithm for computing Shortest Path-Concavity. (a) shows the input mesh (black) and the

convex hull (orange). In (b) an offset, coarser outer hull has been computed to enable stable Constrained Delaunay Tetrahedralization

(CDT). (The offset is exaggerated for visualization purposes.) The CDT of the free space between the input mesh and the outer hull is

shown in (c). To compute the shortest distances a Fast Marching Method (FMM) is used. (d) shows the initialization of the FMM: the

outer CDT boundary vertices (red) and their inner neighbors (green) are initialized with their distance to the convex hull. Note that while

all boundary vertices have a negative distance, their inner neighbors can have positive distances to the convex hull.

We further claim that a per-point concavity measure is

more shape descriptive than a (sampled) global measure.

In Section 4 we propose a 4-dimensional scale, tessellation
and rotation invariant descriptor derived from our SPC con-

cavity values, and show how it generally outperforms the

1024-dimensional descriptor of [12] both in retrieval gain

and run-time efficiency.

Our experiments demonstrate the efficiency of our

approach. Even for models with 260k vertices less than 3
minutes are needed to compute the distribution of concav-

ity values, more than one order of magnitude faster than

computing the above mentioned descriptor.

This paper is structured as follows: Section 2 describes

the proposed SPC algorithm, and Section 3 discusses tim-

ings and robustness of the approach. Section 4 presents the

SPC-based shape descriptor and shows retrieval results.

2. Efficient Shortest Path-Concavity
For notational convenience we introduce some opera-

tors used throughout this paper. For a closed triangle

mesh M embedded in R
3, let CM denote the convex hull

of, CDT(M) the Constrained Delaunay Tetrahedralization

[21] of, Vol(M) the volume enclosed by, and avgel(M)
the average edge length of the meshM.

The goal of the algorithm is to compute a scalar val-

ued concavity measure C(v) ∈ [0,∞) for every vertex

v ∈ M. The measure should well approximate the shortest

path from v through the volume Vol(CM) \ Vol(M) from

the mesh to the convex hull. From a practical point of view

the algorithm should additionally be easy to implement.

Algorithm Overview. The algorithm first computes CM,

then tessellates the enclosed space by applying a Con-

strained Delaunay Tetrahedralization followed by a Fast

Marching to get the shortest distances fromM to CM. The

first step is simply solved by applying any convex hull al-

gorithm. The result is a mesh CM with CM ∩M �= ∅. Un-

fortunately, the requirement on the constraining surfaces to

be free of intersection posed by common CDT algorithms

rules out a direct tessellation of Vol(CM) \Vol(M) due to

the non-empty intersection. Hence, for the second step, in-

stead of using CM we compute a coarse but tight proper

hull (consisting of well shaped elements at an offset from

CM) and adjust the computation of the distances accord-

ingly. The second step of the algorithm is explained in more

detail in Section 2.1 below. Figure 3 shows an overview.

2.1. Robust CDT of the Empty Space

Even when employing state of the art meshing libraries

(we use TetGen [21]) the nature of the Constrained Delau-

nay Tetrahedralization can still cause problems in practice.

The CDT of a mesh M (the constraining surface) inter-

polates the elements of M. In particular also very skinny

needle and cap triangles are interpolated. Besides the possi-

ble stability issues caused by completely degenerate faces,

this results in either poor quality long/skinny tetrahedra or,

when constraining element quality, to an overly fine tes-

sellation with very many small elements needed to cover

the narrow angled triangle corners. Figure 4 (top row) vi-

sualizes the problem. Additionally, when the constraining

surface(s) (self-)intersect the inside/outside property of the

volume to be tessellated is no longer uniquely defined and

the mesher cannot proceed.

While intersections between constraining surfaces in-

tuitively could be handled by identifying and removing

(stitching together) touching regions, this is a very deli-

cate procedure geometrically, which still does not fix the

problem of “bad” convex hull elements. A (slightly) offset

bounding box could be used as an outer constraining sur-

face instead of the convex hull itself, but this would have

a negative impact on performance, as generally unnecessar-

ily much free space would have to be tessellated between

the bounding box and the mesh.

We overcome these difficulties and obtain a proper and

tight outer mesh by simple geometric operations.
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Figure 4. Computing a Constrained Delaunay Tetrahedralization

of the convex hull directly (top row) can be unstable and leads to

an overly fine tessellation. Using a coarse but tight approximation

of the convex hull avoids these problems (cf. Section 2.1)

2.1.1 A Proper Outer Hull

To stably compute a CDT of the free space, a proper mesh

OCM is needed as an outer constraining surface, having the

following properties: it should lie completely outside (and

not intersect) CM to allow for a stable tessellation, while

at the same time lying close to CM and having large well-

shaped faces to avoid an overly fine tessellation.

Our proposed outer hull OCM is in spirit similar to the

Discrete Oriented Polytopes (k-DOP) typically used in ray-

tracing and collision detection (cf. [9, 23]). However, while

in a ray-tracing setting a fixed set of planes simplifies in-

tersection tests, we can use a set of variable planes derived

from the convex hull for a tighter fit and obtain a more ob-

ject specific outer hull. For this, first the face normals of

CM are grouped into k clusters by weighted k-means clus-

tering on the unit sphere. Each normal is weighted by the

corresponding face area to account for non-uniform tessel-

lation. The k cluster centers then define k planes which we

position to have a certain offset distance dist to their closest

point on CM.

Implementation Details. Computing proper spherical

weighted averages for the clustering can be done using the

method by Buss and Fillmore [4]. However, for our scenario

a weighted Euclidean averaging followed by a re-projection

to the sphere proved sufficient.

To obtain OCM the intersections of the halfspaces de-

fined by the planes need to be determined. While this could

be implemented using plane intersections, the problem can

be solved much more efficiently by utilizing the duality be-

tween convex hulls and halfspace intersections. We trans-

form each of the k planes n�k x = dk to a normalized rep-

resentation 1
dk
n�k x = 1 and take 1

dk
n to be a point in dual

space (cf. [3]). The center of gravity of the convex hull is

used as origin and dk is the distance of plane k to this point.

Now the convex hull of the dual points is computed, and

the plane equations of the faces normalized to get points

in our primal space again. Note that these points lie about

the global origin and need to be translated to the center of

gravity of CM. The face connectivity (the n incident ver-

tices of a primal face) is directly defined by the dual vertex

connectivity (the n faces incident to a dual vertex).

Using a small k we obtain a coarse, but still tight OCM
around CM. In practice k ≈ 25 proved to provide a good

balance. For simplicity we initialize the k-means cluster-

ing with the k = 26 directions corresponding to the cor-

ners, edge, and face centers of the unit cube. The offset

distance is chosen as dist = avgel(M). Figure 4 (bottom

row) shows an example of such an outer hull and compares

the CDT of this hull with that of the convex hull.

Now the space Vol(OCM) \Vol(M) between the coarse

outer hull and the input mesh can be robustly tetrahedralized

as CDT(OCM ∪M).

2.2. Shortest Paths between M and CM
The CDT computed in the previous step tessellates the

space Vol(OCM) \Vol(M) with tetrahedra. We could now

propagate distance fields of each vertex v ∈M in this space

until hitting CM to obtain C(v). It is however much more

efficient to compute a single distance field f from CM and

then set C(v) := f(v). The problem is that CM is not ex-

plicitly represented (as vertices, edges or faces) in the CDT.

Hence, we compute the distance field fromOCM , initialized

with the appropriate (negative) distances to CM. This means

that the zero iso-surface comes to lie (approx.) at CM as if

CM itself had been used as source.

Implementation Details. To initialize the Fast March-

ing, for the outer boundary vertices v ∈ ∂ CDT we set

tag(v) = DONE and initialize them with their clos-

est (negative) distance to the convex hull: dist(v) =
dist(v, CM). For their direct non-boundary neighbors w ∈
N(v), w /∈ ∂ CDT we set tag(w) = CLOSE and also ini-

tialize them with their signed distance to the convex hull:

dist(w) = dist(w, CM). All other vertices are tagged

FAR and their distances initialized with ∞. A priority

queue is set up with the CLOSE vertices sorted in order

of ascending distance. Until the queue is empty, vertices

are popped from the queue and the distances of their neigh-

bors are updated; FAR neighbors are tagged CLOSE and

added to the queue.

3. SPC Results
3.1. Efficiency

Table 1 shows results of our algorithm computed on a va-

riety of meshes. Even for a large mesh with about 260k
vertices the computation takes less than 3 minutes in total.

The most time is spent computing the Constrained De-

lanunay Tetrahedralization. tCDT mainly depends on two
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|M | 11k 12k 13k 14k 18k 18k 21k 21k 27k 35k 50k 51k 260k

tCH 0.57s 0.6s 0.6s 0.64s 0.9s 0.9s 1.0s 1.0s 1.4s 1.8s 2.0s 2.5s 13s
| CM | 0.8k 0.5k 1.7k 1.6k 1.5k 2.7k 1.5k 4.1k 0.9k 1.9k 6.9k 5.9k 2.2k

tOH 0.09 0.04s 0.11s 0.12s 0.09s 0.12s 0.10s 0.26s 0.07s 0.11s 0.39s 0.30s 0.11s

tCDT 2.7s 2.6s 3.9s 2.7s 4.2s 3.9s 4.4s 4.0s 7.1s 9.74s 9.4s 46.1s 88s
|CDT | 17k 16k 25k 18k 26k 24k 27k 27k 41k 52k 56k 178k 524k

tFMM 0.51s 0.47s 0.97s 0.52s 0.96s 0.71s 0.76s 0.72s 1.66s 2.12s 1.6s 8.3s 32.4s

μ 0.0185 0.0390 0.0293 0.0307 0.0418 0.0395 0.0318 0.0958 0.0556 0.0453 0.0121 0.0122 0.0559
σ 0.0186 0.0315 0.0404 0.0357 0.0418 0.0430 0.3215 0.1347 0.0470 0.0422 0.0165 0.0165 0.0470

mskew 0.8692 0.5909 1.6487 1.0637 1.4038 0.9700 1.0066 1.1881 1.1129 0.7735 1.7075 1.6994 0.6914
mkurt 2.5523 2.2539 4.8814 3.0899 5.0331 2.7035 3.2492 2.9053 3.9109 2.4362 5.6484 5.6114 2.3987

Table 1. Results of the SPC computation. The cardinalities |X | always refer to the number of vertices in the respective mesh. The tX show

the timings of the convex hull (CH), the outer hull (OH), the CDT, and the cost of the Fast Marching Method (FMM). The last four rows

show the entries of our SPC based shape descriptor (cf. Section 4).

things: the complexity of the input mesh, as all input ele-

ments are interpolated, and also on the quality of the input

elements. The second and third column (from the right) of

Table 1 demonstrate the dependency on the input element

quality. The CDT time of the right Max Planck head (an

irregular triangle mesh) is almost five times that of the left

head (a regular remeshing [2] of the same), both meshes

have approximately the same number of elements.

3.2. Accuracy

F
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ij
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ra

The Tetrahedral Fast Marching

Method (FMM) is well explained in

[11]. Implementing FMM is similar

to Dijkstra but offers the advantage of

first order accuracy, meaning that (1)

we can use coarse tessellations and still

yield good results, and (2) we can in-

crease accuracy by using a finer tetra-

hedralization (due to the convergence

properties of FMM). The inset figure

shows the smoother distribution of val-

ues computed by Fast Marching (bottom) compared to Di-

jkstra (top) on the same tessellation. Figure 5 (left) further

shows that quite low SPC errors can be achieved already

with rather coarse meshes (compared to a very fine ground

truth computation).

Note also that the shape, size and tightness of the proper

outer hull (cf. Section 2.1.1) does mainly affect computa-

tion times, and not so much the accuracy of the resulting

SPC (and hence also the SPCD) values, as the FMM initial-

ization is done w.r.t. the actual convex hull, not the outer

hull.

3.3. Robustness

The foremost limitation of our algorithm is the inability

to handle intersecting and touching (co-planar) faces of the

Figure 5. The plots show the effect of increasing the resolution

of the CDT mesh on the accuracy of the SPC and that of the

SPC-based descriptor (cf. Section 4). After a certain point the

already low error decreases only slowly. Enabling major time sav-

ings when absolute accuracy is not required.

input. This limitation comes from the employed CDT algo-

rithm [21]. However, even though the CDT algorithm can-

not deal with perfectly co-planar faces, Figure 6 (a) shows

how our method can operate on visually co-planar, very nar-

row slits without problems. Additionally, Figure 6 shows

that it is robust against irregular triangulations such as the

one on the head of Max Plank and the kind of small scale

topological noise which exists in some models.

(a) (b) (c)

Figure 6. The SPC algorithm can robustly be computed on a box

with a thin narrow slit with only 1◦ opening-angle. (a) a cut

through the CDT mesh shows the slit inside, in the closeup the

z-fighting artifacts can be seen. (b) a close-up of the irregular tri-

angulation of the Max Plank head (cf. also Table 1). (c) small

topological holes without self-intersections are also not a problem.
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4. SPC-based Shape Retrieval
Based on the computed convexity values C(v) for each

vertex v ∈ M we now define a 4-dimensional shape de-

scriptor SPCD ∈ R
4 of M based on central moments.

More specifically, the entries are the mean, standard devi-

ation, skewness and kurtosis of the concavity values dis-

tributed overM: SPCD = [μ, σ,mskew,mkurt].
While rotation invariance follows directly from the com-

putation of SPC, more care must be taken regarding tes-
sellation and scale. For the latter we normalize all C(v)
by dividing by a scale dependent value of the mesh. Since

common choices of such normalizations, e.g., the bound-

ing box diagonal, depend on the orientation of the ob-

ject, we instead use the square root of the surface area

s = (
∫
M dx)

1
2 as normalization, i.e., C0(x) = C(x)/s.

Finally, for tessellation invariance it is

important that the measure only de-

pends on the actual shape of the ob-

ject and not the distribution or num-

ber of vertices. The inset figure

shows two different tessellations of

the same shape where naı̈ve sampled-

based measures would yield different

results. To achieve tessellation independence the moments

are computed by integration over the piecewise linear sur-

faceM, by means of some curvature formula per triangle:

μ =

∫
M C0(x)dx
∫
M dx

σ2 =

∫
M C0(x)2dx

∫
M dx

− μ2

mskew =

∫
M(C0(x)− μ)3dx

∫
M dx

1

σ3

mkur =

∫
M(C0(x)− μ)4dx

∫
M dx

1

σ4
.

In our experiments the trapezoidal rule proved sufficient

for this purpose. Refer to Table 1 for examples of these

measures for different shapes. Figure 8 furthermore visual-

izes the (dis-) similarities between different object classes

in form of a confusion matrix. At the retrieval stage the di-

mensions of the SPCD are mean centered and normalized

to a standard deviation of one over all classes (z-score) to

account for the different value ranges. As distance function

we use a weighted L2 norm with a convex combination of

empirically determined weights:

[wμ, wσ, wmskew
, wmkurt

] = [0.41, 0.34, 0.07, 0.17].

4.1. Comparison to State of the Art

We compare the retrieval performance of our SPCD to

the CD descriptor proposed by Lian et al. [12]. There,

the L1 norm of the histogram difference is used to com-

pare two descriptors. For evaluation we use the shapes in

 
 

(a) Canonical Forms

SPCD
CD [12]

 
 

(b) Non-deformed McGill Shapes

SPCD
CD [12]

Figure 7. Average Precision-Recall curves on the canonical forms

(a) and the non-deformed (b) shapes of the first 10 classes of

the McGill Shape Benchmark. The average precision (y-axis) is

higher on the less diverse classes of the canonical forms than on

the non-deformed McGill shapes. The precision of SPCD (red) is

higher on both data sets at low recall rates.

the McGill 3D Shape Benchmark [22] and compare four

quantitative statistical measures (NN, 1-Tier, 2-Tier, DCG,

cf. [20]) as well as graphical comparisons in the form of

precision-recall curves and confusion matrices. The McGill

Benchmark consists of 457 meshes divided into 19 classes,

the first 10 consisting of articulated objects (e.g., ants and

hands) the last 9 of moderately articulated objects (e.g., ta-

bles and airplanes). Lian et al. evaluated their CD shape

descriptor on computed canonical forms [13] (non-rigid de-

formations) of the first 10 classes. We use our reference

implementation of [12] to compare the descriptors on these

canonical forms and also on the whole McGill dataset.

Retrieval Comparison. Table 2 shows how our 4-

dimensional SPCD descriptor derived from point-wise con-

cavity measures outperforms the 1024-dimensional CD on

the canonical forms of the articulated classes. We achieve

a Nearest Neighbor-ratio of 71.7% compared to the 55.2%
of [12]. Note that we used remeshed versions of the data

sets to be free of self-intersections. Hence the slightly dif-

ferent values (mid row) of our reference implementation

compared to the original results in [12]. The precision-

recall curves in Figure 7 (a) confirm these results.

Descriptor NN 1-Tier 2-Tier DCG

SPCD (Our) 71.7% 44.1% 68.7% 81.4%
CD (Rem) 55.2% 40.5% 65.4% 77.5%

CD ([12]) 57.3% 41.3% 67.1% 72.9%

Table 2. Retrieval performance comparison between SPCD and

CD on the canonical forms of the first 10 classes of the McGill

Shape Benchmark. The top and mid row use the same (remeshed)

models. The last row states the original values of [12].

For further analysis of the difference between the two

descriptors we compare the confusion matrices (cf. Figure

8). The confusion matrices visualize the mis-matches be-

tween the classes and reveal classes problematic for both

methods. In particular the octopus class, which is visually
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(a) Shortest Path-Concavity Descriptor (SPCD) (b) Convexity Distribution (CD) [12]

Figure 8. Confusion matrices on the canonical forms of the first

10 classes of the McGill Shape Benchmark – showing for a query

class (row) the percentage of hits in the different classes (columns)

for the proposed SPCD (a) and the CD by Lian et al. (b). The

SPCD produces less spread, with all diagonal entries above 50%.

The rows are normalized to 100% and for a clarity of visualization

only entries ≥ 10% are shown.

similar to ants, crabs and spiders, is not well handled by

either method. By leaving out the octopus class from the

comparison the NN-ratios of both SPCD and CD improve:

to 73.4% and 63.0% respectively.

We also performed four retrieval tests of both descrip-

tors against different subsets of the non-deformed models

of the McGill Shape Benchmark: on all 19 classes, on the

subset of articulated classes, on the moderately articulated

classes and on a set of selected classes. Table 3 shows the

results. Here the SPCD performs better in all four tests,

being significantly better in on the moderately articulated

shapes. On the articulated models the SPCD is still better

than the CD, however, the result is much worse than on the

canonical forms (cf. Table 2). The reason for this is twofold.

Classes NN 1-Tier 2-Tier DCG

All
SPCD 51.2% 26.6% 40.0% 68.2%
CD [12] 45.9% 24.9% 38.5% 66.9%

Articulated SPCD 50.9% 33.9% 50.4% 73.6%
(cf. Table 2) CD [12] 47.0% 30.8% 50.4% 71.6%

Moderate
SPCD 70.2% 37.2% 55.7% 76.5%
CD [12] 62.3% 34.4% 52.1% 74.8%

Selected
SPCD 81.2% 52.0% 70.5% 84.8%
CD [12] 79.1% 46.9% 67.7% 83.0%

Table 3. Retrieval performance comparison of SPCD and CD on

different subsets of the McGill Shape Benchmark.

Taking a closer look at the canonical forms (cf. Figure 9) re-

veals that this deformation produces a quite uniform spread

of limbs compared to the more diverse poses of the original

data set. By reducing the pose-variance the class members

are more similar and can hence be more easily matched.

This can also be seen on the precision-recall curves in Fig-

ure 7 where precision is lower on the non-deformed McGill

shapes. Furthermore, descriptors only utilizing convexity

(local or global) will never be able to perfectly separate sim-

ilar classes such as birds from airplanes or spiders from ants

(cf. Figure 10). This explains the improved performance in

the last row when only considering a selected set of six di-

verse classes: humans, glasses, airplanes, mugs, dolphins

and tables.

C
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Figure 9. The original McGill Shape Benchmark contains more

diverse poses within the classes, leading to a worse retrieval result

than on the set of canonical forms of the same.

Figure 10. The McGill Shape Benchmark contains classes with

very similar objects: e.g., birds, airplanes, spiders and ants.

Efficiency. Computing the 10000 samples for the CD

takes a couple of minutes even for relatively small meshes

with 5k vertices. This is about the same time needed to

compute SPC on a mesh with 260k vertices (cf. Table 1).

Once SPC has been computed, evaluating our SPCD is in-

stantaneous as it requires only a single iteration over the

faces of the M to perform the integration. Also the used

normalization – the square root of the surface area – is effi-

ciently computed in the same iteration.

Applicability. Both methods were evaluated on water-

tight (closed) meshes, in order to guarantee a consistent

and unique concavity measure. Both descriptors can also

be considered invariant to scalings and rotations. However,

while both methods are also robust against different tessel-

lations, our approach is limited by the sensitivity of the used

CDT-algorithm. This poses the additional constraint that

the meshes be free of self-intersections.

Identifying and cleaning general self-intersections, holes

and other inconsistencies is a complex and ambiguous pro-

cedure [1], however, all intersections we encountered in
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our experiments occurred on a very local scale and already

a simple remesher such as [2] got rid off these artifacts.

Accuracy. The FMM provides a very accurate approxi-

mation - using simple Dijkstra-like shortest paths, possibly

even in simpler regular grids, would be possible but would

introduce larger errors and a stronger tessellation depen-

dency. While this can be less critical if the SPC values are

used in an integral manner for building descriptors, it can

strongly disturb scenarios where the SPC field itself is used

directly, e.g. for object decomposition or segmentation.

5. Conclusion

We presented a simple and efficient method for com-

puting point-wise Shortest Path-Concavity values on 3D

meshes. A distribution of such values cannot only be in-

tegral part of segmentation methods, but we further show

that it can be used in shape retrieval, where it significantly

improves on the results presented recently in [12]. Tested on

the full McGill Shape Benchmark the SPCD always demon-

strated a NN ratio greater than 50% and turned out to be

especially effective on moderately articulated shapes.

The efficiency of our method is evaluated on a variety

of different meshes and using a Fast Marching approach

we compute accurate distances already at low CDT reso-

lutions. However, when applied to high resolution, irreg-

ular input meshes the CDT time will eventually become

a bottle-neck. The two Max Planck heads in Table 1 demon-

strate exemplarily how the CDT timings can be reduced

siginificantly by uniformly remeshing the input, without vi-

sually altering the SPC or significantly changing the de-

scriptor values.
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[21] H. Si and K. Gärtner. Meshing piecewise linear complexes

by constrained delaunay tetrahedralizations. In Proc. Int.
Meshing Roundtable, pages 147–163, 2005. 3, 5

[22] K. Siddiqi, J. Zhang, D. Macrini, A. Shokoufandeh,

S. Bouix, and S. Dickinson. Retrieving articulated 3-d mod-

els using medial surfaces. MVA, 19(4):261–275, 2008. 6

[23] G. Zachmann. Rapid collision detection by dynamically

aligned dop-trees. In VRAIS, pages 90–97, 1998. 4

[24] J. Zunic and P. Rosin. A new convexity measure for poly-

gons. IEEE PAMI, 26(7):923 –934, july 2004. 1, 2

216021602162


