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Abstract

Segmenting 3D endfiring transrectal ultrasound (TRUS)
prostate images efficiently and accurately is of utmost im-
portance for the planning and guiding 3D TRUS guided
prostate biopsy. Poor image quality and imaging artifacts
of 3D TRUS images often introduce a challenging task in
computation to directly extract the 3D prostate surface. In
this work, we propose a novel global optimization approach
to delineate 3D prostate boundaries using its rotational
resliced images around a specified axis, which properly en-
forces the inherent rotational symmetry of prostate shapes
to jointly adjust a series of 2D slicewise segmentations in
the global 3D sense. We show that the introduced chal-
lenging combinatorial optimization problem can be solved
globally and exactly by means of convex relaxation. In this
regard, we propose a novel coupled continuous max-flow
model, which not only provides a powerful mathematical
tool to analyze the proposed optimization problem but also
amounts to a new and efficient duality-based algorithm. Ex-
tensive experiments demonstrate that the proposed method
significantly outperforms the state-of-art methods in terms
of efficiency, accuracy, reliability and less user-interactions,
and reduces the execution time by a factor of 100.

1. Introduction

Prostate adenocarcinoma (PCa) is one of the most fre-
quently diagonosed cancers in North America with over
200, 000 new cases diagnosed each year [11]. Currently,
3D endfiring transrectal ultrasound (TRUS) is the most
commonly used imaging modality for image-guided biopsy
of PCa due to its real-time imaging capability, low cost

and simplicity [15]. Segmenting the acquired 3D endfir-
ing TRUS prostate images efficiently and accurately, espe-
cially in an automated or semi-automated way, is highly de-
sired in a 3D endfiring TRUS guided prostate biopsy system
[3], due to the arduous and time consuming effort associ-
ated with manual 3D prostate segmentation. In addition,
through the segmentation results of 3D prostate TRUS and
MR images, the 3D surface-based TRUS-MRI registration
technique provides an effective way to target biopsy needles
toward regions of the prostate containingMR identified sus-
picious lesions, as an alternative to the more expensive and
inefficient, MRI-based prostate biopsy [5, 12]. However,
poor TRUS image quality, such as US speckle, shadowing
by calcifications, missing edges or texture similarities be-
tween the inner and outer regions of the prostate [22] etc,
makes it challenging to implement an automated or semi-
automated 3D prostate TRUS segmentation in practice.

1.1. Previous Approaches

In general, the proposed automated or semi-automated
approaches to 3D TRUS prostate segmentation can be sum-
marized by two categories: the direct 3D segmentation
methods and 3D resliced segmentation methods. Essen-
tially, most direct 3D segmentation methods [10, 17, 13, 9]
propose to evolve an initialized 3D surface to the correct
prostate boundaries, with or without optimized shape defor-
mations, which worked well for the reported applications.
However, direct computation over the large 3D TRUS data
volumes makes them significantly time-consuming; more-
over, intensive user interactions are required to initialize
and conduct such direct 3D segmentation approaches. In
contrast, 3D resliced segmentation methods ‘cut‘ the input
3D TRUS image into a parallel or rotational sequence of
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2D slices and reduce the 3D US segmentation to a series
of 2D slicewise segmentations, while the spatial correlation
between two adjacent slicewise segmentations is enforced.
Comparing to direct 3D segmentation methods, such 3D
resliced methods enjoy some significant advantages in nu-
merics: clearly, each of the reduced 2D segmentation sub-
problems is much simpler than the original 3D segmenta-
tion problem, and, it is also much computationally cheaper
to incorporate 2D shape information into the 3D segmenta-
tion procedure. Especially, the rotational-resliced segmen-
tation approaches, recently proposed in [8, 14], sever the
input 3D TRUS image into n slices with equal angular spac-
ing about the specified rotational scan axis, as illustrated in
Fig.1(a), and make use of the approximate rotational sym-
metry of prostate shapes around the given axis to assist the
3D prostate segmentation. Since most information about
the prostate boundary is available in every single rotational-
resliced 2D image, these methods successfully avoid the
difficulties of extracting the correct prostate base and apex,
which is encountered by the other approaches; thus, im-
proved segmentation accuracy and robustness.

The rotational-resliced segmentation approaches [8, 14]
propose to first segment the initial slice and propagate its
result as a spatial region constraint to facilitate segmenting
its adjacent slice in clockwise or counter-clockwise direc-
tion; then, repeat propagating the obtained result as the re-
gion prior to the segmentation of the next adjacent slice and
so on, until all the slices are segmented. The 3D prostate
surface is, therefore, reconstructed from all the extracted
2D contours. However, such ’propagation’ procedures of-
ten carry the following drawbacks: first, the segmentation
errors appearing in one slice are also propagated to the seg-
mentation of its following slices, thus causing an accumu-
lated error in all the succeeded segmentations; second, the
segmentation result of any slice has no effect on refining the
segmentation of its preceded slices, hence it is impossible to
adjust all the 2D slicewise segmentations jointly in a global
way to improve the segmentation accuracy and robustness;
last but not least, sequentially segmenting the n 2D slices
is not efficient in numerics, and each slicewise segmenta-
tion is implemented by active contour [8] or level-set [14],
whose results highly depend on the initializations and are
often trapped by a local optimum.

1.2. Contributions

In this paper, we propose a novel global optimization ap-
proach to segmenting 3D rotational-resliced prostate TRUS
images, which successfully addresses the main disadvan-
tages of the previous approaches by simultaneously seg-
menting the n 2D image slices while globally optimizing
the introduced rotational symmetry prior. We show that the
introduced challenging combinatorial optimization problem
can be globally optimized bymeans of convex relaxation. In

addition, we introduce the novel coupled continuous max-
flow model as the dual formulation of the given convex re-
laxed optimization problem. With help of the new coupled
continuous max-flow model, we prove the proposed com-
binatorial optimization problem can be solved globally and
exactly. Hence, the globally optimal segmentation of the n
2D slices w.r.t. the rotational symmetry prior can be accord-
ingly achieved. Meanwhile, we derive a new and efficient
coupled continuous max-flow based algorithm by the mod-
ern convex optimization theory, which can be directly im-
plemented on GPU for a substantial speed-up in computa-
tion. Extensive experiments demonstrate that the proposed
method significantly outperforms the state-of-art methods
in terms of efficiency, accuracy and reliability, with less in-
teractions and reducing execution time by a factor of 100.
Moreover, the learned 2D shape prior can be easily inte-
grated into the proposed method.

The conception of continuous max-flow, proposed and
used in this study and [20, 21, 2], is name-wise similar
to continuous maximal flow introduced in [1]; but it stems
from a different optimization theory in terms of convex du-
ality, hence derives the different algorithm scheme based on
augmented multipliers.

2. Global Optimization to 3D Prostate TRUS
Segmentation

Let V be the input 3D prostate endfiring transrectal ultra-
sound (TRUS) image, which is resliced rotationally around
a given axis to n 2D images S1 . . .Sn. The ellipsoid-like
shape of the prostate allows to specify the resliced rota-
tion axis, such that the extracted prostate regions on ev-
ery two adjacent slices are spatially consistent, namely the
rotational symmetry prior. In this section, we propose a
novel and efficient global optimization approach to simulta-
neously extract the n prostate contours of the input slices S1
. . .Sn by jointly enforcing their rotational symmetry prior.
We show the proposed combinatorial optimization problem
can be exactly and globally solved by convex relaxation; for
which we introduce a new spatially continuous max-flow
model and prove its equivalence to the convex relaxed opti-
mization formulation under the perspective of primal and
dual. We demonstrate that the new spatially continuous
max-flow model carries great advantages to the proposed
3D prostate TRUS segmentation approach in both optimiza-
tion analysis and algorithmic scheme.

2.1. Optimization Formulation with Rotational
Symmetry Prior

Slicewise Continuous Min-Cut Formulation Let Ri, i =
1 . . . n, denote the prostate region of the 2D slice Si, and
ui(x), i = 1 . . . n, be the labeling function of the prostate
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(a) (b) (c)

Figure 1. Initialization: (a) reslice the 3D prostate image; (b) rotation-axis (white dash-line) is specified to reslice the input 3D image and
align each 2D slice; (c) the illustration of n slices from the top view: the initial slice and the last slice are colored in red and spatially
correlated by left-right flipping, where L is the length from the left side to the right side.

regionRi such that

ui(x) =

{
1 , for ∀x ∈ Ri

0 , otherwise
, i = 1 . . . n .

The segmentation of each slice Si, i = 1 . . . n, can
be formulated as the spatially continuous min-cut problem
which minimizes the following energy function

Ei(ui) := 〈1− ui, C
s
i 〉+

〈
ui, C

t
i

〉
+

∫
Ω

gi(x) |∇ui| dx (1)

over the corresponding labeling function ui(x) ∈ {0, 1}.
In (1), for each slice Si, i = 1 . . . n, two cost functions
Cs

i (x) and C
t
i (x) are defined, which evaluate the costs to

label the pixel x ∈ Si as the prostate region and background
respectively; the weighted total-variation function measures
the length of each region indicated ui(x) ∈ {0, 1}.

Rotational Symmetry Prior In this work, the n slices S1
. . .Sn are simply aligned along the resliced rotation axis,
such that the rotation axis vertically bisects each slice (see
the white dot line in Fig.1(b)). We propose to enforce the
rotational symmetry prior of the segmented prostate regions
Ri, i = 1 . . . n, by penalizing the spatial inconsistence of
the extracted regions within two neightbour slices (see Fig.
1(c)), i.e.

(S1,S2) , (S2,S3) , . . . , (Sn−1,Sn) , (Sn,S1) .

Specifically, we penalize the area difference of two adja-
cent prostate regions, i.e. minimize

πi(u) :=

∫
Ω

|ui+1 − ui| dx , i = 1 . . . n− 1 , (2)

and the area difference of Rn and R1 within the last and
first slices defined as

πn(u) :=

∫
Ω

|un(L− x1, x2)− u1(x1, x2)| dx (3)

where x := (x1, x2) and the spatial comparison is per-
formed by left-right flipping the horizontal coordinate of the
last slice, as illustrated by the two red lines in Fig.1(c).

Optimization Formulation Now we propose to extract the
3D prostate surface from the input 3D image by segmenting
the n 2D image slices while incorporating their rotational
symmetry prior. In view of (1), (2) and (3), it can be formu-
lated as follows

min
u1...n(x)∈{0,1}

n∑
i=1

Ei(ui) + α
n∑

i=1

πi(u) . (4)

2.2. Convex Relaxation and Coupled Continuous
Max-Flow Model

In this study, we show that the proposed optimization
problem (4) can be globally and exactly solved by its convex
relaxation

min
u1...n(x)∈[0,1]

n∑
i=1

Ei(ui) + α

n∑
i=1

πi(u) (5)

where the binary-valued constraints u1...n(x) ∈ {0, 1} in
(4) is replaced by its convex relaxation u1...n(x) ∈ [0, 1].
Hence, (5) amounts to a convex optimization problem for
which a global optimum exists.

We now study the convex relaxation problem (5) under
the primal and dual perspective of convex optimization. We
introduce the novel coupled continuousmax-flowmodel and
demonstrate that it is dual or equivalent to the studied con-
vex minimization problem (5). With help of the introduced
coupled continuous max-flow model, we prove the com-
puted global optimum of the convex relaxation problem (5)
also solve its original combinatorial optimization problem
(4) globally and exactly. In addition, the coupled continu-
ous max-flow model derives a new and efficient algorithm
to (5) without directly tackling its challenging nonsmooth
function terms, i.e. the total variation functions in (1) and
the L1-norm functions in (2) and (3).
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(a) (b)

Figure 2. Flow-maximization configurations: (a) shows the flow-maximization configuration between two adjacent slices; (b) shows the
flow-maximization configuration between the last and first slices.

Coupled Continuous Max-FlowModelWe first introduce
the new spatially continuous configuration of flows (as il-
lustrated in Fig. 2 (a) and (b)), such that

• For each image slice Si, i = 1 . . . n, two additional
flow terminals: the source si and the sink ti, are added;
we link the source si to each pixel x in Si and there is
a flow psi (x) streaming from si to x; we also link each
pixel x ∈ Sk to the sink ti and there is a flow ptk(x)
streaming from x to ti; within Si, there is a local vector
flow field qi(x) ∈ R

2 around x.

• Between two adjacent slices Si and Si+1, i = 1 . . . n−
1, we link x ∈ Si to the same pixel x ∈ Si+1 and there
is a flow ri(x) streaming in both directions. Between
the last slice Sn and the first slice S1, we link the pixel
x := (x1, x2) ∈ S1 to the pixel (L−x1, x2) ∈ Sn and
there is a flow rn(x) streaming in both directions.

With the above flow settings (shown in Fig. 2 (a) and
(b)), we introduce the new coupled continuous max-flow
model, which maximizes the total amount of flows stream-
ing from the n sources s1 . . . sn, such that

max
ps,pt,q,r

n∑
i=1

∫
Ω

psi (x) dx (6)

subject to the following flow constraints

• Capacity constraints on source and sink flows:

psi (x) ≤ Cs
i (x) , p

t
i(x) ≤ Ct

i (x) ; i = 1 . . . n ; (7)

• Capacity constraints on spatial flows:

|qi(x)| ≤ gi(x) , i = 1 . . . n ; (8)

• Capacity constraints on coupled flows:

|ri(x)| ≤ α , i = 1 . . . n ; (9)

• Flow conservation constraints: all the flows at each
pixel of every slice are balanced, i.e. for each of the

last n−1 slices Si, i = 2 . . . n, at each position x ∈ Si,
it must suffice

ρi(x) :=
(
div qi−p

s
i +p

t
i+ri−ri−1

)
(x) = 0 ; (10)

and for the first slice S1, at each position x :=
(x1, x2) ∈ S1, the total flow balance is evaluated by

ρ1(x) :=
(
div q1−p

s
1+p

t
1+r1

)
(x)−rn(L−x1, x2)

and it must suffice

ρ1(x) = 0 . (11)

Primal and Dual Formulations Introduce the multiplier
functions ui(x), i = 1 . . . n, to the linear equalities (11)
and (10) w.r.t. the flow conservation conditions, we then
have the equivalent primal-dual model of (6) such that

min
u1...un

max
ps,pt,q,r

n∑
i=1

∫
Ω

psi (x) dx +

n∑
i=1

〈ui, ρi〉 (12)

subject to the flow capacity constraints (7) - (9).
By variational analysis, we can prove the following du-

alities or equivalences:

Proposition 1. The proposed coupled continuous max-flow
model (6) is dual or equivalent to the convex relaxation
problem (5), and also the primal-dual model (12), i.e.

(6) ⇐⇒ (5) ⇐⇒ (12) . (13)

2.3. Global and Exact Optimization of (4)

With help of the coupled continuous max-flow model
(6), we can prove

Proposition 2. Let (u∗1(x), . . . u
∗
n(x)) ∈ [0, 1] be the global

optimum of the convex relaxation problem (5), the thresh-
olds uγi (x) ∈ {0, 1}, i = 1 . . . n, by any γ ∈ [0, 1), where

uγi (x) =

{
1 , when u∗k(x) > γ
0 , when u∗k(x) ≤ γ

, i = 1 . . . n , (14)

solve the original binary-constrained co-segmentation
problem (4) globally and exactly.

The main proof steps of Prop. 1 and Prop. 2 are referred
to [20, 21, 2] and omitted here due to the limit space.
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3. Coupled Continuous Max-Flow Algorithm

Through Prop. 2, we see that the global optimum of the
challenging combinatorial optimization problem (4) can be
achieved by thresholding the optimum of its convex relax-
ation (5) with any parameter γ ∈ [0, 1). On the other hand,
in view of Prop. 1, it is also easy to see that the optimum of
such convex relaxation problem (5) is just given by the opti-
mal multipliers to the corresponding flow conservation con-
ditions (10)-(11). Indeed, this allows to directly derive the
coupled continuous max-flow algorithm based on the cou-
pled continuous max-flow formulation (6) and the modern
augmented Lagrangian algorithm [4], which computes both
the maximum total flows from the n sources and the opti-
mum continuous labeling functions u1...n(x) ∈ [0, 1]. Es-
pecially, we will see the new coupled continuous max-flow
algorithm is efficient and successfully avoids directly tack-
ling the non-smooth function terms of (5).

In view of (12), we define the augmented Lagrangian
function as follows:

Lc(u, p
s,t, q, r) :=

n∑
i=1

{∫
Ω

psi (x) dx+〈ui, ρi〉−
c

2
‖ρi‖

2
}

where c > 0 is constant. By means of the augmented
Lagrangian algorithm, we propose the coupled continuous
max-flow algorithm such that, at each k-th iteration,

1. Maximize Lc(u, p
s,t, q, r) over the spatial flows

|qi(x)| ≤ g(x), i = 1 . . . n, while fixing the other vari-
ables (u, ps,t, r)k , which amounts to

qk+1
i := argmax

|qi(x)|≤g(x)

−
c

2

∥∥div qi − F k
i

∥∥2
,

where F k
i (x) is fixed. This can be computed by the

gradient-projection iteration:

qk+1
i = Proj|qi(x)|≤g(x)(q

k
i + τ∇(div qki − (F k

i )) ;
(15)

where τ > 0 is some step-size for convergence [6].

2. Maximize Lc(u, p
s,t, q, r) over the source flows

psi (x) ≤ Cs
i (x), i = 1 . . . n, while fixing the other

variables (u, pt, q, r)k, which amounts to

(psi )
k+1 := argmax

ps

i
(x)≤Cs

i
(x)

∫
Ω

psi dx−
c

2

∥∥psi −Gk
i

∥∥2
,

whereGk
i (x) is fixed. This can be solved exactly by:

(psi )
k+1(x) = min(Gk

i (x) + 1/c, Cs
i (x)) . (16)

3. Maximize Lc(u, p
s,t, q, r) over pti(x) ≤ Ct

i (x), i =
1 . . . n, while fixing the other variables (u, ps, q, r)k ,
which amounts to

(pti)
k+1 := argmax

pt

i
(x)≤Ct

i
(x)

−
c

2

∥∥pti −Hk
i

∥∥2
,

whereHk
1 (x) is fixed. This can be solved exactly by:

(pti)
k+1(x) = min(Hk

i (x), C
t
i (x)) . (17)

4. Maximize Lc(u1,2, p
1,2
s , p1,2t , q1,2, r) over the coupled

flow field |r(x)| ≤ β by fixing (q1,2, p1,2s , p1,2t )k+1 and
(u1,2)

k, which gives

rk+1 := argmax
|r(x)|≤β

−
c

2

∥∥r + Jk
1

∥∥2
−
c

2

∥∥r − Jk
2

∥∥2
,

where Jk
1 = div qk+1

1 − (p1s)
k+1 +(p1t )

k+1− (u1)
k/c

and Jk
2 = div qk+1

2 − (p2s)
k+1 + (p2t )

k+1 − (u2)
k/c.

It can be computed exactly by

rk+1 = (J2 − J1)/2 ;

5. Update the labeling functions uk+1
i (x), i = 1 . . . n, by

uk+1
1 (x) = uki (x)− c ρ

k+1
i (x) . (18)

Let k = k + 1 and repeat the above steps until conver-
gence is achieved.

In practice, the experiments show only one gradient-
projection iteration (15) is needed to achieve convergence,
which greatly improves numerical efficiency.

4. Experiments and Results

Settings: Twenty 3D endfiring TRUS prostate images
were used to validate the proposed method. These im-
ages were acquired with a rotational scanning 3D TRUS-
guided prostate biopsy system, which made use of a com-
mercially available end-firing TRUS transducer (Philips,
Bothell WA). Each 3D image had 448×448×350 voxels of
size 0.19× 0.19× 0.19mm3, and was resliced rotationally
to 30 2D slices with a reslicing step angle of 6◦. A mean
shape (green contour in Fig.1 (b)) was used to initialize the
segmentation of the first slice by visually coinciding its cen-
ter (red dot in Fig.1 (b)) with the prostate centroid. The
mean shape was learned from twenty manually segmented
2D prostate transverse images, which were not used in the
validation procedure.

Our segmentation method was evaluated using the fol-
lowing metrics by comparing our computation results to
manual segmentations: Dice similarity coefficient (DSC),
the mean absolute surface distance (MAD) and maxi-
mum absolute surface distance (MAXD) [9]. The pro-
posed method, denoted by MGO, was also compared to
other rotational-resliced segmentation methods: active con-
tour based method (MAC) [8] and level set based method
(MLS) [14]. The proposed coupledmax-flow algorithmwas
implemented using GPU (CUDA, NVIDIA) and the user
interface in Matlab. The experiments were conducted on
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a Windows desktop with Intel i7-2600 CPU and NVIDIA
GTX 580 GPU.

Shape Priors: In this study, a 2D statistical shape
model, learned by principal component analysis (PCA)
[7, 16, 18, 19] over a dataset with Nd samples, was intro-
duced to facilitate segmenting the first slice, hence all the
slices in turn. The signed distance function (SDF) ψ(x) was
chosen as the representation of the sampled prostate contour
to build such a shape prior, where the mean and variance of
all contour samples were approximated by PCA:

The mean SDF ψ̄ was subtracted from each ψ and placed
as a column vector in a Nd × m-dimensional matrix Q
where m is the number of spatial dimensions. Using sin-
gular value decomposition (SVD), we have Q = UΣV T

such that U is a matrix whose column vectors represent the
set of orthogonal modes of shape variation, and Σ is a di-
agonal matrix of corresponding singular values. An object
shape can be approximated by the k principal components
and a k-dimensional coefficient vector (where k < m) αi:
ψ̃ = Ukαi + ψ̄, where Uk is a Nd × k matrix consisting
of the first k columns of matrix U . Under the assumption
of a Gaussian distribution of object represented by αi, the
probability of a certain shape is computed as:

p(αi) =
1√

(2π)k|Σk|
exp[−

1

2
αT
i Σ

1
kαi] (19)

We define all the cost functions Cs
i (x) := − logφfg(x)

and Ct
i (x) = − logφbg(x), i = 1 . . . n, where φfg(x) and

φbg(x) are the intensity PDFs w.r.t. foreground and back-
ground, estimated by sampled pixels in one slice or learned
through the training data. For the first slice S1, its two cost
functions are updated as:

{
C̃s

1(x) = Cs
1(x) + w1ũ1(x)α

T
i Σ

1
kαi

C̃t
1(x) = Ct

1(x) + w1(1− ũ1(x))α
T
i Σ

1
kαi

(20)

wherew1 > 0 is constant and ũ1(x) is the labeling function
of the segmentation of S1 from the previous iteration.

Accuracy: Careful initializations were required by the
MAC andMLS methods, where four to eight points on the
prostate boundary in the first slice were selected to con-
struct the initial contour by the cardinal splines [8]. In
contrast, only an approximate center point was selected
to initialize the proposed MGO method. The validation
shown in Table. 1 clearly indicates that, compared to the
MLS method and the MAC method, the proposed MGO

method achieved the best accuracy result in terms of DSC:
93.7± 2.1%, MAD: 1.12± 0.4mm (5.9± 2.1 voxels) and
MAXD: 3.15± 0.65mm (16.6± 3.4 voxels), as well as the
least user interactions (Fig. 3 illustrates an example com-
puted by the proposedMGO method). Also, Table. 1 shows
that the active contour based method (MAC) performed the
poorest with our dataset; the MLS method can also obtain

(a) (b)

(c) (d)

Figure 3. 3D prostate segmentation (green contour) by the pro-
posed MGO method and manual segmentation (red contour): (a)
transverse view; (b) sagittal view; (c) coronal view; (d) orthogonal
view overlapped with the manual segmentation surface.

a comparable segmentation accuracy to the MGO method,
due to the contributions of several additional energy terms
such as anchor points, shape constraint and strong statisti-
cal information about the local region; however, the MLS

method took much longer computational time and interac-
tions than theMGO method.

Reliability: It should be noted that the segmentation ac-
curacy of the methods MAC and MLS relies on the seg-
mentation accuracy of the first slice. Segmentation errors
appearing in one slice will be introduced to the segmenta-
tion of the next slice and so on, thereby larger errors can
be accumulated to affect the segmentation of the 3D TRUS
image. In the experiments ofMAC andMLS , the first slice
and its initial contour should be carefully determined by the
user in order to decrease the associated segmentation errors
as much as possible. However, due to poor image quality,
it is still challenging to locate the correct prostate bound-
ary in some cases based only on the information of a single
slice, even incorporating some high-level interaction (ini-
tial boundary points). For examples, when it appears that
the overlapped area between the prostate and urethral en-
trance (the arrow shown in Fig. 4 (a)) or seminal vesicle
(the arrow shown in Fig. 4 (b)), it is hard to distinguish
the correct prostate boundary even for radiologists without
the image information about its neighboring slices. Fig.
4 shows the segmentation results of MAC and MLS with
poor initialization: their segmentations of the first slice with
the same initialization are illustrated in Fig.4(a) and (b), re-
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(a) (b)

(c) (d)

Figure 4. Segmentation results with poor initialization. Green:
MGO ; red: manual segmentation; blue: MLS ; purple: MAC . (a)
segmentation for the first slice which contains the urethral region
(arrow shows); (b) segmentation for the first slice which contains
the seminal vesicle region (arrow shows); (c) DSC for all resliced
slices based on the segmentation in (a); (d) DSC for all resliced
slices based on the segmentation in (b);

spectively. With the result for the first slice, the segmenta-
tion accuracy for all slices, computed by MAC , decreases
greatly with the progress of the propagation (blue curve in
Fig.4(c) and (d)). The MLS method can decrease the ac-
cumulated errors by propagating in two different directions,
however, its DSC values demonstrate the same trend as the
MAC method in each direction (purple curves in Fig.4 (c)
and (d)). In contrast, the proposed MGO approach makes
use of the global rotational correlation between all adjacent
slices, which jointly adjusts the segmentation of each slice
in a global way, hence performs much more reliably with
the poor image quality and initialization (green curves in
Fig. 4(c) and (d)) compared to the other two methods.

Reproducibility: To evaluate the variability of the pro-
posed method, 10 3D images were randomly selected. Each
image was segmented three times by the same observer for
assessing intra-observer variability. A DSC of 93.0± 2.5%
and a coefficient-of-variation (CV ) [23] of 2.7% was ob-
tained. ANOVA analysis with a single factor showed that
there is no statistically significant difference between these
three segmentations (p = 0.95, F = 0.32). These ten im-
ages were also segmented three times by three untrained
observers who were blinded to patient identity for assessing
inter-observer variability. The proposed method yielded a
DSC of 93.5 ± 2.1%, 92.6 ± 3.1% and 92.3 ± 3.2%, and
a COV of 2.3%, 3.3% and 3.5%, respectively. ANOVA
analysis with a single factor failed to demonstrate a statis-

(a) (b) (c)

(d)

Figure 5. A prostate segmentation result from a 3D MR image.
Green boundary: algorithmic result, red boundary: manual seg-
mentation result. (a) transverse view; (b) sagittal view; (c) coronal
view; (d) orthogonal view overlapped with the segmented surface.

tically significant difference between these three segmenta-
tions (p = 0.51, F = 0.82).

Efficiency: The mean computation time of the proposed
MGO method was determined by 5 repeated experiments
for each 3D TRUS image. As shown in Table.1, the shortest
computation time was required by the proposedmethod: the
mean segmentation time was 0.45± 0.1s, significantly less
than 55± 3.5s for theMLS method and 22.5± 2.6s for the
MAC method. The total processing time was about 2.45s
including about 2± 1s for initialization.

Application in 3D Prostate MRIs: We also applied
the proposed method to segment 2 3D T2-weighted MR
prostate images using a body coil, which were acquired
at a size of 291 × 341 × 38 voxels with a voxel size of
0.27 × 0.27 × 2.2 mm3. For simplicity, the rotational axis
and first slice were manually determined in the transverse
view. Our method obtained the DSC accuracy of 89.2%
and 90.5%, respectively. Fig. 5 shows that the segmenta-
tion boundary agrees well with the manual segmentation,
even in the sagittal view (Fig. 5 (b)), and coronal view (Fig.
5 (c)) where the resolution is lower than the transverse view.

5. Conclusions

In this paper, we propose a novel global optimized
resliced approach to the computationally challenging 3D
endfiring TRUS prostate images by enforcing the inherent
rotational symmetry of prostate shapes, which jointly seg-
ments a series of 2D reslices in a global sense. Moreover,
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Table 1. Overall performance results for twenty patient images
DSC (%) MAD (mm (vx)) MAXD (mm (vx)) Time (s) Initial points

MAC 86.5± 4.5
2.28± 0.82
(12.0± 4.3)

6.23± 2.68
(32.8± 14.1)

22.5± 2.6 4− 8

MLS 93.0± 3.6
1.18± 0.36
(6.2± 1.9)

3.44± 0.80
(18.1± 4.2)

55± 3.5 4− 8

MGO 93.7± 2.1
1.12± 0.4
(5.9± 2.1)

3.15± 0.65
(16.6± 3.4)

0.45± 0.1 1

we proposed a novel coupled continuous max-flow model,
which not only provides a powerful mathematical tool to
analyze the proposed optimization problem but also directly
derives a new and efficient duality-based algorithm in nu-
merical practices.
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