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Abstract

This paper presents an approach for large-scale event

retrieval. Given a video clip of a specific event, e.g., the

wedding of Prince William and Kate Middleton, the goal

is to retrieve other videos representing the same event from

a dataset of over 100k videos. Our approach encodes the

frame descriptors of a video to jointly represent their ap-

pearance and temporal order. It exploits the properties of

circulant matrices to compare the videos in the frequency

domain. This offers a significant gain in complexity and ac-

curately localizes the matching parts of videos.

Furthermore, we extend product quantization to complex

vectors in order to compress our descriptors, and to com-

pare them in the compressed domain. Our method outper-

forms the state of the art both in search quality and query

time on two large-scale video benchmarks for copy detec-

tion, TRECVID and CCWEB. Finally, we introduce a chal-

lenging dataset for event retrieval, EVVE, and report the

performance on this dataset.

1. Introduction

This paper introduces an approach for specific event re-

trieval. Examples of events are news items such as the

wedding of prince William and Kate, or re-occurring events

such as the eruption of a geyser. Indexing this type of video

material on-line and in archives will benefit to many. Home

users will enhance their viewing experience via automatic

linking of their digital library. Professional users will find

video data in large archives, that are often indexed with ir-

relevant keywords and, thus, inaccessible.

Searching for specific events is related to video copy de-

tection [13] and event category recognition [16], but there

are substantial differences with both. The goal of video

copy detection is to find deformed videos, e.g., by compres-

sion, cam-cording or picture-in-picture combinations. De-

tecting event categories requires a classification approach

that captures the large intra-class variability. The method

introduced in this paper is tailored to specific event re-

trieval, as it is flexible enough to handle significant view-

point change while still producing a precise alignment in

time. Our first contribution is to encode the frame descrip-

tors of a video into a temporal representation and to exploit

the properties of circulant matrices to compare videos in the

frequency domain. The second contribution is a dataset for

specific event retrieval in large user-generated video con-

tent. This dataset, named EVVE, has been collected from

Youtube and comprises a set of manually annotated videos

of 13 events, as well as 100,000 distractor videos.

Many techniques for video retrieval represent a video as

a set of descriptors extracted from frames or keyframes [4,

11, 20]. Searching in a collection is performed by compar-

ing the query descriptors with those of the dataset. Then,

temporal constraints are enforced on the matching descrip-

tors, by e.g., partial alignment [22] or classic voting tech-

niques, such as temporal Hough transform [4], which was

popular in the TRECVID video copy detection task [19].

Such approaches are costly, since all frame descriptors of

the query must be compared to those of the database before

performing the temporal verification. Another possibility is

to summarize a video in a “Seam image” [23]. This works

for near-duplicate search but cannot handle severe transfor-

mations like large viewpoint changes.

In contrast, the technique proposed in this paper mea-

sures the similarity between two sequences for all possi-

ble alignments. Frame descriptors are jointly encoded in

the frequency domain, where convolutions cast into effi-

cient element-wise multiplications. This encoding is com-

bined with frequency pruning to avoid the full computation

of all cross-similarities between the frame descriptors. The

comparison of sequences is improved by a regularization

in the frequency domain. Computing a matching score be-

tween videos only requires component-wise operations and

a single one-dimensional inverse Fourier transform, avoid-

ing the reconstruction of the descriptor in the temporal do-

main. As a byproduct of the comparison, the approach pre-

cisely aligns the compared sequences. Similar techniques

have been used in other contexts such as registration or wa-

termark detection. However, they are usually applied to

the raw signal such as image pixels [3, 6] or audio wave-

forms [10]. Recently, transforming a multi-dimensional sig-

nal to the Fourier domain to speed up detection was shown

useful [5], but to our knowledge, it is new to analyze the

temporal aspect of global image descriptors in this way.
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The tradeoff between search quality, speed and mem-

ory usage is optimized with the product quantization tech-

nique [9], which is extended to complex vectors in order to

compare our descriptors in the compressed Fourier domain.

The paper is organized as follows. Section 2 introduces

the EVVE dataset and its evaluation protocol. Section 3 de-

scribes frame descriptors, Section 4 describes our temporal

circulant encoding technique and Section 5 presents our in-

dexing strategy. The experiments in Section 6 demonstrate

the excellent results of our approach for event retrieval on

the EVVE dataset. Our approach also significantly outper-

forms state-of-the-art systems for efficient video copy de-

tection on the TRECVID and CCWEB benchmarks.

2. EVVE: an event retrieval dataset

This section introduces the EVVE (EVent VidEo) dataset

which is dedicated to the retrieval of particular events. This

differs from recognizing event categories such as “birth-

day party” or “grooming an animal”, as in the TRECVID

Multimedia event detection task [16]. Figure 1 presents the

13 events. Several of them are localized precisely in time

and space as professional reporters and spectators have cap-

tured the same event simultaneously. An example is the

event “Concert of Madonna in Rome 2012”. In this case,

the videos overlap visually and can be aligned. EVVE also

includes events for which relevant videos might not corre-

spond to the same instance in place or time. For instance,

the event ”The major autumn flood in Thailand in 2011” is

covered by videos of the flood in different places, and “Aus-

terity riots in Barcelona” includes shots of riots at different

places and moments. Finally, there are re-occurring events,

which are well localized but re-occur temporally, such as

“Eruption of Strokkur geyser in Iceland” and “Jurassic Park

ride in Universal Studios theme park”. All videos have

been collected from Youtube. Each event was annotated

by one annotator, who first produced a precise definition of

the event. For example, the event “The wedding of Prince

William and Kate Middleton” is defined as:

Images of Kate & William together on the wedding day in an official setting

(either in the church, in the car or waving at the crowd from the balcony). A

single image eg. in a slideshow is counted as positive. It is positive even if

the main topic of the video is something else (eg. another wedding). Spoken

text without a relevant image is annotated as negative.

The human annotators have marked the videos as either

positive or negative. Ambiguous videos were removed.

Distractors. In addition to the videos collected for the spe-

cific events, we have also retrieved a set of 100,000 “dis-

tractor” videos by querying Youtube with unrelated terms.

These videos have all been collected before September

2008, which ensures that the distractor set does not con-

tain any of the relevant events of EVVE, since all events

are temporally localized after September 2008 (except the

Event #q #pos

(#1) Presidential victory speech of Barack Obama 2008 14 29

(#2) Wedding of Prince William and Kate Middleton 44 88

(#3) Arrest of Dominique Strauss-Kahn 9 19

(#4) Concert of Shakira in Kiev 2011 19 39

(#5) Concert of Johnny Hallyday stade de France, 2012 87 174

(#6) Concert of Madonna in Rome, 2012 51 104

(#7) Concert of Die toten Hosen, Rock am Ring, 2012 32 64

(#8) Egyptian revolution: Tahrir Square demonstrations 36 72

(#9) Bomb attack in the main square of Marrakech, 2011 4 10

(#10) Major autumn flood in Thailand, 2011 73 148

(#11) Austerity riots in Barcelona, 2012 13 27

(#12) Eruption of Strokkur geyser in Iceland 215 431

(#13) Jurassic Park ride in Universal Studios theme park 23 47

negatives: 1123 + 100,000 distractors

Figure 1. Illustration of the 13 events in our EVVE dataset.

The number of queries (#q) and number of positives

(#pos) are given for each event. The dataset is available

at http://lear.inrialpes.fr/data.
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re-occurring events #11 and #12). The distractor videos rep-

resenting a similar but distinct event, such as videos of other

bomb attacks for Event #9, are counted as negatives.

EVVE: Evaluation protocol. Evaluation is performed in

a standard retrieval scenario, where we submit one video

query at a time and the algorithm returns a list of videos

ranked by similarity scores. We do not use audio or meta-

data in this paper, but they are provided along with the

dataset. We evaluate the average precision (AP) for each

query. The mean AP [18] (mAP) is computed per event,

by averaging the individual APs for this event. As a syn-

thetic measure of the overall performance, we compute the

average of the mAPs over the 13 different events (avg-mAP

measure).

3. Frame description

We represent a video by a sequence of high-dimensional

frame descriptors, as described in this section.

Pre-processing. All videos are mapped to a common for-

mat, by sampling them at a fixed rate of 15 fps and resizing

them to a maximum of 120k pixels, while keeping the as-

pect ratio.

Local description. Local SIFT descriptors [14] are ex-

tracted for each frame on a dense grid [15], every 4 pixels

and for 5 scale levels. We square root the SIFT components

and reduce the descriptor to 32 dimensions with principal

component analysis (PCA) [1, 7]. We chose to use dense

sampling rather than interest points, as this increases the

accuracy without impacting the storage size after they are

aggregated.

Descriptor aggregation. The SIFT descriptors of a frame

are encoded using MultiVLAD [8], a variant of the Fisher

vector [17]. Two VLAD descriptors are obtained from two

different codebooks of size 128, and concatenated. Power-

law normalization is applied to the vector and it is reduced

by PCA to dimension d (a parameter of our approach). The

vector is normalized using the PCA’s covariance matrix and

L2-normalized.

Our implementation performs the entire description step

in real time (15 fps) on a single processor core.

4. Circulant temporal aggregation

The method introduced in this section aims at comparing

two sequences of frame descriptors q = [q1, . . . , qm] ∈
R

d×m and b = [b1, . . . , bn] ∈ R
d×n. We first consider the

metric

sδ(q, b) =
∞∑

t=−∞

〈qt, bt−δ〉 , (1)

where the vectors qt (resp., bt) are zero when t < 1 and

t > m (resp., t > n). This is an extension of the corre-

lation used for pattern detection in scalar signals [12]. The

metric sδ(q, b) reaches a maximum in δ when the q and b

are aligned if the following assumptions are satisfied:

Assumption 1: There is no (or limited) temporal accelera-

tion. This hypothesis is assumed by the “temporal Hough

transform” [4] when only the shift parameter is estimated.

Assumption 2: The inner product is a good similarity be-

tween individual frames. This is the case for Fisher and our

Multi-VLAD descriptors (Section 3), but not for other type

of descriptors to be compared with complex kernels.

Assumption 3: The sum of similarities between the frame

descriptors reflects the similarity of the sequences. In prac-

tice, this assumption is not well satisfied, because the videos

are very self-similar in time, so the similarity proposed in

Eqn. 1 is suboptimal. In the case of the temporal Hough

transform, this problem is avoided by considering only the

per-frame nearest neighbors.

The encoding technique for sequences of vector descrip-

tors presented in this section, is referred to as Circulant

Temporal Encoding (CTE). It strongly relies on Fourier-

domain processing and includes regularization techniques

that address the limitations mentioned in Assumption 3 (see

Subsection 4.2).

4.1. Circulant encoding of vector sequences

Eqn. 1 can be decomposed along the dimensions of the

descriptor. Using the column notation q = [q�
�1, . . . , q

�
�d]
�

and b = [b�
�1, . . . , b

�

�d]
�, the vector of scores for all possible

values of δ is given by

s(q, b) = [. . . s0(q, b), s1(q, b) . . . ] =

d∑
i=1

q
�i ⊗ b

�i (2)

where ⊗ is the convolution operator. Assuming sequences

of equal lengths (n = m), s(q, b) can be computed in

the Fourier domain [12]. Denoting by F the 1D-Discrete

Fourier transform and F−1 its inverse, the convolution the-

orem states that:

s(q, b) =

d∑
i=1

F−1 (F(q
�i)
∗ �F(b

�i)) (3)

where � is the element-wise multiplication of 2 vectors.

Denoting Qi = F(q
�i) ∈ C

m and Bi = F(b
�i) ∈ C

n,

the linearity of the Fourier operator gives:

s(q, b) = F−1

(
d∑

i=1

Q∗i � Bi

)
, (4)

which is more efficient to compute than Eqn. 3 because it

requires a single inverse FFT instead of d, while performing

the same number of component-wise multiplications.
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In practice, we rely on the Fast Fourier Transform (FFT)

and its inverse, which are very efficient, especially for se-

quences whose length is power of two. As a common

practice, the descriptor sequences are padded with zeros to

reach the next power of two [12]. Unless stated otherwise,

we consider hereafter that the sequences have been prepro-

cessed to have the same length m = n = 2�.

4.2. Regularized comparison metric

As mentioned above, due to the temporal consistency

and more generally the self-similarity of frames in videos,

the values of the score vector s(q, b) are noisy and its peak

over δ is not precisely localized. This is shown by compar-

ing the query to itself. Ideally, one would expect a Dirac-

like response: sδ(q, q) = 0 for δ �= 0, and s0(q, q) = 1.

This behavior can be achieved through an additional filter-

ing stage in the Fourier domain. Formally, we search a set

of filters W = {W1, . . . ,Wd},Wi ∈ R
n satisfying

sW (q, q) = F−1

(
d∑

i=1

Wi �Q
∗
i �Qi

)

= [1, 0, . . . 0] = e1. (5)

For the sake of simplicity, we compute Wi assuming that

the contributions are shared equally across dimensions:

F−1 (Wi �Q
∗
i �Qi) =

1

d
e1 ∀i = 1..d (6)

Wi �Q
∗
i �Qi =

1

d
F (e1) =

1

d
[1, 1, . . . 1], (7)

Wi =
1

d

1

Q∗i �Qi
, (8)

where all operations are performed element-wise. The fil-

ter W can be interpreted as a peak detector in s(q, b). In

practice, its spectrum resembles that of a Laplacian filter.

One major drawback is that the denominator in Eqn. 8

may be close to zero, magnifying the noise and introduc-

ing instability in the solution. To tackle this issue, Bolme

et al. [2] proposed to average the filters obtained from inde-

pendent samples, which helps when some frequencies have

small energy for some dimensions. In our case, we could

average the filters Wi, since they are decorrelated by the

PCA (Section 4). Unfortunately, averaging does not always

suffice, as many videos contain only one shot composed of a

single frame: the components associated with high frequen-

cies are almost 0 for all dimensions. Therefore, we propose

instead to incorporate a regularization term into Eqn. 5 and

to minimize over Wi:

λ ‖Wi‖
2
+

∥∥∥∥F−1 (Wi �Q
∗
i �Qi)−

1

d
e1

∥∥∥∥
2

, (9)

where the regularization coefficient λ ensures the stability

of the filter. Notice that setting λ = 0 amounts to solv-

ing Eqn. 7 and leads to the solution proposed in Eqn. 8.

A closed-form solution to this minimization problem in the

Fourier domain, obtained by leveraging properties of circu-

lant matrices, consists of adding λ to the denominator in

Eqn. 8 [6]. This leads to a regularized score between two

video sequences q and b:

sλ(q, b) =
1

d
F−1

(
d∑

i=1

Q∗i � Bi

Q∗i �Qi + λ

)
. (10)

Both regularization techniques, i.e., averaging the filters

and using a regularization term, are complementary and

hence combined. The choice of λ is discussed in Section 6.

4.3. Boundary detection

The strategy presented above produces a set of scores

sλ(q, b) = [. . . , sλδ (q, b), . . . ] between two videos se-

quences q and b for all possible temporal shifts. The time

shift δ∗ = argmaxδ∈Z s
λ
δ (q, b) gives the optimal alignment

of the videos, and sλδ∗(q, b) is their similarity score.

In some applications such as video alignment (see Sec-

tion 6), we also need the boundaries of the matching seg-

ments. For this purpose, the database descriptors are recon-

structed in the temporal domain from F−1(b
�i). A frame-

per-frame similarity is then computed with the estimated

shift δ∗:

St = 〈qt, bt−δ∗〉 .

The matching sequence is defined as a set of contiguous t
for which the scores St are high enough.

Note that, unlike the computation of sλδ∗(q, b), this pro-

cessing requires d distinct 1D inverse FFT, one per compo-

nent. Yet, on large datasets this does not impact the overall

efficiency, since it is only applied to a short-list of videos

with the highest scores.

5. Indexing strategy and complexity

This section discusses the steps used to efficiently en-

code the descriptors in the Fourier domain. The goal is to

implement the method presented in Section 4 in an approxi-

mate manner. Beyond the complexity gain already obtained

from our Fourier-domain processing, this considerably im-

proves the efficiency of the method while reducing its mem-

ory footprint by orders of magnitude. As shown in Sec-

tion 6, this gain is achieved without significantly impacting

the retrieval quality.

5.1. Frequency-domain representation

A database video b of length n is represented

in the Fourier domain by a complex matrix B =
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[B�1 , . . . ,B
�
d ]
� = [f0, . . . ,fn−1] ∈ C

d×n. Our input de-

scriptors are real-valued, so only half of the components are

stored, as fn−i is the complex conjugate of f i.

Frequency pruning is applied to reduce the video repre-

sentation by keeping only a fraction β 
 1 of the low-

frequency vectors f i, i = 0 . . . βn − 1 (in practice, β is an

inverse power of 2). We keep a fraction rather than a fixed

number of frequencies for all videos, as this would make

the localization accuracy dependent on the sequence length.

Descriptor sizes. If m ≤ n, we precompute a Fourier de-

scriptor for different zero-padded versions of the query, i.e.,

for all sizes 2� such that m ≤ 2� ≤ nmax, where nmax is

the size of the longest database video.

We handle the case m > n by noticing that the Fourier

descriptor of the concatenation of a signal with itself is

[f0, 0,f1, 0,f2, 0, . . . ]. Therefore, expanded versions of

database descriptors can be generated on the fly and at no

cost. This asymmetric processing of the videos was chosen

for efficiency reasons. Unfortunately, this introduces an un-

certainty on the alignment of the query and database videos:

δ∗ can be determined modulo n only.

5.2. Complex PQ-codes and metric optimization

In order to further compress the descriptors and to effi-

ciently compute Eqn. 10, we propose two extensions of the

product quantization technique [9], which is a compression

technique that enables efficient compressed-domain com-

parison and search. The original technique proceeds as

follows. A given database vector y ∈ R
d is split into

p sub-vectors yj , i = 1 . . . p, of length d/p. The sub-

vectors are separately quantized using k-means quantiz-

ers qi(.), i = 1 . . . p. This produces a vector of indexes

[q1(y1), . . . , qp(yp)]. Typically, qi(yi) ∈ [1, . . . , 28].
The comparison between a query descriptor x and the

database vectors is performed in two stages. First, the

squared distances between each sub-vector xj and all the

possible centroids are computed and stored in a table T =
[tj,i] ∈ R

p×256. This step is independent of the database

size. Second, the squared distance between x and y is ap-

proximated as

d(x, y)2 ≈

p∑
j=1

tj,qj(yj), (11)

which only requires p look-ups and additions.

We adapt this technique to our context in two ways. First,

it is extended to complex vectors in a straightforward man-

ner. We learn the k-means centroids for complex vectors

by considering a d-dimensional complex vector to be a 2d-

dimensional real vector, and this for all the frequency vec-

tors that we keep: Cd ≡ R
2d and f j ≡ yj . At query time,

the table T stores complex values.

As a second extension, we use product quantization to

compute more structured quantities than distances. In-

stead of storing partial squared distances or Hermitian prod-

ucts, we directly pre-compute the partial sums involved in

Eqn. 10 to further improve the efficiency. This is possible

because Eqn. 11 only requires that the metric is separable

(such as a sum, a product or a max).

As a result, our table T directly stores the partial sums

for all possible centroids, which in our case includes the

processing associated with the regularization filter. As with

the regular product quantization technique, a single com-

parison only requires p look-ups and additions of complex

numbers. The memory used for T is twice that of the origi-

nal technique (2× 256× p) because of the complex values.

This is a constant that does not depend on the database size.

Interestingly, the product quantization vocabularies do

not need to be learned on representative training data: they

can be trained on random Gaussian vectors in R
(2d/p). This

is because the PCA whitening applied to generate bj and

the Fourier transform applied on b
�i decorrelate the signal,

which is close to Gaussian when it is encoded by PQ.

5.3. Summary of search procedure and complexity

Each database video is processed offline as follows:

1. The video is pre-processed and each frame is described

as a d-dimensional Multi-VLAD descriptor.

2. This vector is padded with zeros to the next power of

two, and mapped to the Fourier domain using d inde-

pendent 1-dimensional FFTs.

3. High frequencies are pruned: Only n′ = β × n fre-

quency vectors are kept. After this step, the video is

represented by n′ × d-dimensional complex vectors.

4. These vectors are separately encoded with a complex

product quantizer, producing a compressed representa-

tion of p× n′ bytes for the whole video.

At query time, the submitted video is described in the

same manner. The complexity at query time depends on the

number N of database videos, the dimensionality d of the

frame descriptor and the video length, that we assume for

readability to be constant (n frames):

1. O(d× n log n) – The query frame descriptors are

mapped to the frequency domain by d FFTs.

2. O(256× p×n′) – The PQ table T associated with the

query is pre-computed (n′ = nβ 
 n).

3. O(N × p× n′) – Eqn. 10 is evaluated for all database

vectors using the approximation of Eqn. 11, directly

in the compressed domain using n′p look-ups from T
and additions. This produces a n′-dimensional vector

for each database video.
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dataset query database

videos videos hours frames

CCWEB 24 13129 551 29.7M

CCWEB + 100k 24 113129 5921 320M

TRECVID CCD 08 2010 438 208 11.2M

EVVE 620 2375 166 8.9M

EVVE + 100k 620 102375 5536 299M

Table 1. Statistics on the datasets used in this paper.

4. O(N × n′ log n′) – This vector is mapped to the tem-

poral domain using a single inverse FFT. Its maximum

gives the time shift δ∗ and the score sλδ∗ .

As described in Section 5.1, the operations 1 and 2 are

repeated for all sizes n = 2� found in the dataset. This

doubles the runtime of the operations applied to n = nmax.

Only the steps 3 and 4 depend on the database size. They

dominate the complexity for large databases.

6. Experiments

In this section we evaluate our approach, both for video

copy detection and event retrieval. To compare the contribu-

tions of the frame descriptors and of the temporal matching,

we introduce an additional descriptor obtained by averaging

the frame descriptors (see section 3) over the entire video.

This static descriptor is compared using the dot product and

denoted by Mean-MultiVLAD (MMV).

6.1. Video copy detection

This task is evaluated on two public benchmarks, the

CCWEB dataset [21] and the TRECVID 2008 content based

copy detection dataset (CCD) [19], see Table 1. CCWEB

contains 24 query videos, mostly focusing on near-duplicate

detection. The transformed versions in the database corre-

spond to user re-posts on video sharing sites. Large-scale

performance is evaluated on CCWEB+100K obtained by

adding the distractors from the EVVE dataset. Performance

is reported as the mAP over all queries.

The 2008 campaign of the TRECVID CCD task is the last

for which video-only results were evaluated. We present

results on the camcording subtask, which is most relevant

to our context of event retrieval in the presence of signifi-

cant viewpoint changes. We report results with the official

NDCR measure.

Compression parameters. The spatial and temporal com-

pression is parametrized by the dimensionality d after PCA,

the number p of PQ sub-quantizers and the frame descrip-

tion rate β, which defines the ratio between the number of

frequency vectors and the number of video frames. As a

general observation across all datasets and experiments, we

notice that higher values of d yield better performance, for

all values of p. Yet d should be kept reasonably small to

method PQ β perf. memory search

usage time

CCWEB

HIRACH [21] 0.952 - -

MFH [20] 0.954 0.5 MB -

MMV no - 0.971 26.9 MB 1.5 ms

MMV 64 - 0.969 0.8 MB 0.7 ms

MMV 16 - 0.962 0.2 MB 0.5 ms

CTE no 1/64 0.996 2,960 MB 66.1 ms

CTE no 1/1024 0.995 207 MB 4.8 ms

CTE 64 1/1024 0.994 3.6 MB 1.0 ms

CTE 16 1/1024 0.992 0.9 MB 0.5 ms

CCWEB + 100,000 distractors

MFH [20] 0.866 5.3 MB 533 ms

MMV 16 - 0.887 1.8 MB 23 ms

CTE 16 1/1024 0.960 9.6 MB 75 ms

TRECVID CCD 08 – Camcording

Best official result 0.079 10,000 MB 16 min

Douze & al. [4] 0.224 300 MB 191 s

MMV no - 0.967 0.9 MB 4 ms

CTE no 1/8 0.049 8,600 MB 9.4 s

CTE no 1/32 0.077 2,150 MB 2.2 s

CTE 64 1/8 0.049 134 MB 8.9 s

Table 2. Results for video copy detection. For CCWEB, the per-

formance is measured with mAP (higher = better). For TRECVID

the measure is NDCR (lower = better). Search times are given for

one core and are averaged across queries.

avoid increasing the cost of the PCA projection. We thus

fix the PCA output dimension to d = 512 in all our experi-

ments and vary the number of sub-quantizers and the rate β.

Impact of the regularization parameter. The choice of

λ depends on the task and the evaluation metric. For near-

duplicate retrieval as well as for event retrieval, Figure 2

shows that intermediate values of λ yield the best per-

formance. In contrast, we observe that small values of

λ produce the best NDCR performance for the TRECVID

copy detection task. This is probably due to the fact that

the NDCR measure strongly favors precision over recall,

whereas any matching tolerance obtained by a larger λ also

produces more false positives. In all our experiments, we

set λ=0.1 for the near-duplicate and event retrieval tasks,

and λ=0.001 for the TV08 benchmark.

Comparison with the state of the art. Table 2 reports our

results for near-duplicate and copy-detection for different

compression trade-offs and compares our results to the state

of the art. On CCWEB, both the temporal and non-temporal

versions of our method outperform the state of the art for

comparable memory footprints. The good performance of

MMV assesses the quality of the image descriptors. CTE

compresses the vector sequence by a factor 1024 along the

temporal axis and by a factor 128 in the visual axis, which

amounts to storing 4 bits per second of video. The results
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Figure 2. Impact of the parameter λ on the performance

for the large-scale version of the dataset are not strictly com-

parable with those of the original paper [20] because the

distractor videos are different (they do not provide theirs).

On the TRECVID 2008 dataset, our approach signifi-

cantly outperforms that of Douze & al. [4] in performance,

speed and memory usage. MMV cannot be realistically

evaluated on this dataset because it can not output bound-

aries for the matching segments. To compute its NDCR

score, we disregard the boundaries, which are normally

used to assess the correct localization of the matching seg-

ment within a video clip. Despite this advantage, MMV per-

forms poorly (NDCR close to 1), due to the small overlap

between queries and database videos (typically 1%), which

dilutes the matching segment in the video descriptor.

Remark: The performance of CTE mainly depends on the

length of the subsequence shared by the query and retrieved

videos: Pairs with subsequences shorter than 5 s are cor-

rectly found with 62% accuracy, subsequences between 5s

and 10s with 80% accuracy and longer subsequences with

93% accuracy.

Timings. Even for the largest dataset, i.e., CCWEB with

100k distractors, the bottleneck remains the descriptor com-

putation, which is performed faster than real-time on one

processor core (1-2 minute per query on TRECVID and

CCWEB). Table 2 shows that the search itself takes 23 ms

and 75 ms on average for MMV and CTE, respectively,

which is orders of magnitude faster than other methods with

comparable accuracies.

6.2. Event detection

The evaluation is carried out on the EVVE dataset, see

Section 2 for details about the experimental protocol. The

parameters are fixed to p = 64, λ = 0.1 and β = 1/16. On

EVVE+100k, this generates a database size of 943 MB and

an average query time of 11 s. The detailed results are pre-

sented per event in Table 3 for both the temporal and non-

temporal versions of our algorithm. Interestingly, MMV

performs similarly to CTE on average, at a much lower

memory and computational cost, which means that some

events are better captured by using a global descriptor of

visual appearance. For instance, videos from the Shakira

concert always feature the crowd in the foreground and the

Event EVVE EVVE+100,000 distractors

number MMV CTE MMV+CTE MMV CTE MMV+CTE

#1 0.531 0.803 0.694 0.411 0.637 0.566

#2 0.338 0.413 0.394 0.195 0.177 0.229

#3 0.087 0.128 0.111 0.050 0.069 0.068

#4 0.455 0.409 0.486 0.413 0.335 0.449

#5 0.234 0.262 0.260 0.148 0.102 0.164

#6 0.254 0.257 0.281 0.193 0.118 0.210

#7 0.199 0.166 0.202 0.156 0.086 0.160

#8 0.126 0.108 0.132 0.056 0.025 0.058

#9 0.124 0.252 0.212 0.115 0.174 0.159

#10 0.366 0.297 0.371 0.158 0.043 0.157

#11 0.239 0.139 0.246 0.174 0.062 0.174

#12 0.773 0.714 0.774 0.282 0.219 0.300

#13 0.604 0.693 0.719 0.499 0.569 0.600

avg-mAP 0.334 0.352 0.376 0.220 0.202 0.254

Table 3. EVVE dataset: Retrieval performance (mAP) per event

same concert scene behind, so averaging the frame descrip-

tors provides a robust visual summary of the event.

MMV and CTE are complementary. We therefore com-

bine both methods to capture events that are characterized

by exactly repeatable small sequences such as the victory

speech of Obama—event #1 (best retrieved with CTE) as

well as events that are visually consistent, but not tempo-

rally, such as major autumn flood in Thailand in 2011—

event #10 (best recognized by MMV). This is done by

adding the normalized scores obtained from MMV and CTE

for each database video and for each query. This combi-

nation achieves a significant improvement in performance

(column MMV+CTE in Table 3) and is obtained at no cost,

since the computation of MMV is a byproduct of our CTE

scheme (i.e., only using f0, see Section 5.1). Note that CTE

also outputs the matching video parts, which is important

for the video alignment described in the next section.

6.3. Automatic video alignment

For some events from EVVE, many people have filmed

the same scene, e.g., for concerts or for re-occuring events.

We use the CTE method to automatically align the videos

on a common timeline. We match all possible videos pairs

(including all query and database videos), which results in

a time shift δ∗ for all pairs (see Section 4.3).

Aligning the videos consists in estimating the starting

time of each video on the common timeline, so that the time

shifts are satisfied. Because of mis-matches, edited input

videos, etc., the estimation needs to be robust to outliers.

We solve the problem by iterating a linear-least squares es-

timation that identifies the outliers, which are then removed.

During this process, groups of independent videos emerge,

where each group corresponds to a distinct scene. We use

this to display different viewpoints of an event on a shared

timeline, as depicted in Figure 3.
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Eruption of Strokkur geyser in Iceland

Concert of Madonna in Rome, 2012

Figure 3. Example of correctly aligned video for two events. Each row is a different video, and each column corresponds to temporally

aligned frames from the videos. Note the strong variability across matching videos.

7. Conclusion

This paper proposed a method to jointly encode in a sin-

gle vector the appearance information at the image level and

the temporal sequence of frames. This video representation

provides an efficient search scheme that avoids the exhaus-

tive comparison of frames, which is commonly performed

when estimating the temporal Hough transform.

Extensive experiments on two video copy detection

benchmarks show that our approach improves over the state

of the art with respect to accuracy, search time and mem-

ory usage. Moving towards the more challenging task of

event retrieval, our approach efficiently retrieves instances

of events in a large collection of videos, as shown for the

EVVE event retrieval dataset introduced in this paper.

Acknowledgments. This work was partially funded by

Quaero, (supported by OSEO, French State agency for in-

novation), and by the European integrated project AXES.

We thank Jonathan Delhumeau for helping with the annota-

tion of EVVE.

References

[1] R. Arandjelovic and A. Zisserman. Three things everyone should

know to improve object retrieval. In CVPR, 2012.

[2] D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui. Visual

object tracking using adaptive correlation filters. In CVPR, 2010.

[3] L. G. Brown. A survey of image registration techniques. ACM Com-

puting Surveys, 24(4):325–376, Dec. 1992.

[4] M. Douze, H. Jégou, C. Schmid, and P. Pérez. Compact video de-
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