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Abstract

In this paper, we describe a method to represent and dis-
cover adversarial group behavior in a continuous domain.
In comparison to other types of behavior, adversarial be-
havior is heavily structured as the location of a player (or
agent) is dependent both on their teammates and adver-
saries, in addition to the tactics or strategies of the team.
We present a method which can exploit this relationship
through the use of a spatiotemporal basis model. As players
constantly change roles during a match, we show that em-
ploying a “role-based” representation instead of one based
on player “identity” can best exploit the playing structure.
As vision-based systems currently do not provide perfect de-
tection/tracking (e.g. missed or false detections), we show
that our compact representation can effectively “denoise”
erroneous detections as well as enabling temporal anal-
ysis, which was previously prohibitive due to the dimen-
sionality of the signal. To evaluate our approach, we used
a fully instrumented field-hockey pitch with 8 fixed high-
definition (HD) cameras and evaluated our approach on
approximately 200,000 frames of data from a state-of-the-
art real-time player detector and compare it to manually
labelled data.

1. Introduction
When a group of individuals occupies a space, such as

a crowd in a foyer or a gathering at a public square, recog-

nizable patterns of interaction occur opportunistically (e.g.

people moving to avoid collisions [23]) or because of struc-

tural constraints (e.g. divergence around lamp-posts [17]).

When these individuals form competitive cliques, as seen

in games on a sports field, distinct and deliberate patterns

of activity emerge in the form of plays, tactics, and strate-

gies. In the former case, each individual pursues an individ-

ual goal on their own schedule; in the latter, the teams en-

gage in adversarial goal-seeking usually under the synchro-

nized direction of a captain or a coach. Identifying these
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Figure 1. We can identify a player by their name or number

(e.g. 1, 2 or 3) or via their formation role (e.g. left wing LW, cen-

ter forward CF and right wing RW). Given two snapshots of play

at time t and t′, using player identity (1, 2, and 3) the two snap-

shots will look different as the players have swapped positions.

However, if we disregard identity and use role (LW, CF, RW), the

arrangements are similar which yields a more compact representa-

tion and allows for generalization across games.

emergent patterns of play is critical to understanding the

evolving game for fans, players, coaches, and broadcasters

(including commentators, camera operators, producers, and

game statisticians).

The behavior of a team may be described by how its

members cooperate and contribute in a particular situation.

In team sports, the overall style of a team can be charac-

terized by a formation: a coarse spatial structure which the

players maintain over the course of the match. Additionally,

player movements are governed by physical limits, such as

acceleration, which makes trajectories smooth over time.

These two observations suggest significant correlation (and

therefore redundancy) in the spatiotemporal signal of player

movement data. A core contribution of this work is to re-

cover a low-dimensional approximation for a time series of

player locations. The compact representation is critical for

understanding team behavior. First, it enables the recov-

ery of a true underlying signal from a set of noisy detec-

tions. Second, it allows for efficient clustering and retrieval

of game events.
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A key insight of this work is that even perfect tracking

data is not sufficient for understanding team behavior. A

formation implicitly defines a set of roles or individual re-

sponsibilities which are then distributed amongst the play-

ers by the captain or coach. In dynamic games like soccer

or field hockey, it may be opportunistic for players to swap

roles (either temporarily or permanently). As a result, when

analyzing the strategy of a particular game situation, players

are typically identified by the role they are currently playing

and not necessarily by an individualistic attribute like name

(e.g. Figure 1).

In this paper, we have two contributions: 1) we present a

representation based on player role which provides a more

compact representation compared to player identity, and al-

lows us to use subspace methods such as the bilinear spa-

tiotemporal basis model [4] to “denoise” noisy detections

(which is common from a vision system); and 2) we show

that we can effectively discover team formation and plays

using the role representation. Identifying formations and

plays quickly from a large repository could enhance sports

commentary by highlighting recurrent team strategies and

long term trends in a sport. The process of post-game anno-

tation, which coaches and technical staff spend hours per-

forming manually, could be automated enabling more de-

tailed data mining. Additionally, understanding plays in re-

altime, is a step towards a fully automated sports broadcast-

ing system. We demonstrate our ideas on approximately

200k frames of data acquired from a state-of-the-art real-

time player detector [10] and compare it to manually la-

belled data.

2. Related Work
Recent work in the computer vision community has

evolved from action and activity recognition of a single per-

son [19, 1], to include entire groups of people [14, 15, 26].

Research into group behavior can be broken into two areas:

1) crowd analysis, and 2) group analysis. Crowds consist of

individuals attempting to achieve goals independent of other

individuals in the group. Most of the research in this area

has focussed on multi-agent tracking [5, 23] and anomaly

detection [32].

Due to the host of military, surveillance and sport ap-

plications, research into recognizing group behavior has

increased recently. Outside of the sport realm, Suk-

thankar and Sycara recognized group activities for dynamic

teams [30]. Sadilek and Kautz [27] used GPS locations of

multiple agents in a “capture the flag” game to recognize

low-level activities. Recently, Zhang et al. [34] used a “bag

of words” and SVM approach to recognize group activities

in a prison setting. Sport related research mostly centers

on low-level activity detection with the majority focussed

on American Football. In the initial work by Intille and

Bobick [14], they recognized a single football play, using

a Bayesian network to model the interactions between the

players trajectories. Li et al. [21] and Siddiquie et al. [28],

used spatiotemporal models to classify different offensive

plays. Li and Chellapa [20] used a spatio-temporal driving

force model to segment the two groups/teams using their

trajectories. Researchers at Oregon State University have

looked at automatically detecting offensive plays from raw

video and transfer this knowledge to a simulator [29]. For

soccer, Kim et al. [16] used the global motion of all players

in a soccer match to predict where the play will evolve in

the short-term. Beetz et al. [7] proposed a system which

aims to track player and ball positions via a vision system

for the use of automatic analysis of soccer matches. In bas-

ketball, Perse et al. [24] used trajectories of player move-

ment to recognize three types of team offensive patterns.

Morariu and Davis [22] integrated interval-based temporal

reasoning with probabilistic logical inference to recognize

events in one-on-one basketball. Hervieu et al. [13] also

used player trajectories to recognize low-level team activ-

ities using a hierarchical parallel semi-Markov model. In

addition to these works, plenty of work has centered on an-

alyzing broadcast footage of sports for action, activity and

highlight detection [33, 12]1.

3. Adversarial Player Movements

In this work, we investigate the behaviors of several in-

ternational field hockey teams. Games from an interna-

tional hockey tournament of 24 games was recorded using

eight stationary HD cameras mounted on the stadium light-

ing which collectively covered the entire 91.4m ×55.0m

playing surface. A state-of-the-art player detector [10] gen-

erated a series O of observations where each observation

consisted of an (x, y) ground location, a timestamp t, and a

team affiliation estimate τ ∈ {α, β}.

At any given time instant t, the set of detected player lo-

cations Ot = {xA, yA, xB , yB , . . . } is of arbitrary length.

Generally, the number of detections Nt at time t is not

equal to the number of players P because some players may

not have been detected and/or background clutter may have

been incorrectly classified as a player.

Typically, the goal is to track all 2P players over the du-

ration of the match. In field hockey, that corresponds to 20
players (P = 10 per team ignoring goalkeepers) and two 35
minute long halves. The task of tracking all players across

time is equivalent to generating a vector of ordered player

locations pτ
t = [x1, y1, x2, y2, . . . , xP , yP ]

T for each team

τ from the noisy detections Ot at each time instant. The

particular ordering of players is arbitrary, but must be con-

sistent across time. Therefore, we will refer to pτ
t as a static

labeling of player locations. It is important to point out that

1These works only capture a portion of the field, making group analysis

difficult as all active players are rarely present in the all frames.
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Figure 2. The dynamic nature of the game requires players to

switch roles and responsibilities on occasion, for example, the left

halfback LH overlaps with the inside left IL to exploit a possible

opportunity.

Match ID Game No. Frames

1 USAvsRSA-1 3894

2 USAvsRSA-2 8839

3 USAvsJPN-1 4855

4 USAvsJPN-2 7418

Table 1. We manually labelled player location, identity and role

at each frame for parts of four games from an international field-

hockey tournament.

pτ
t is not simply a subset ofOt. If a player was not detected,

an algorithm will somehow have to infer the (x, y) location

of the unseen player based on spatiotemporal correlations.

We focus on generic team behaviors and assume any ob-

served arrangement of players from team α could also have

been observed for players from team β. As a result, there

is a 180◦ symmetry in our data. For any given vector of

player locations pτ
t , there is an equivalent complement

�
pτ
t

from rotating all (x, y) locations about the center of the field

and swapping the associated team affiliations.

3.1. Formations and Roles
In the majority of team sports, the coach or captain des-

ignates an overall structure or system of play for a team. In

field hockey, the structure is described as a formation in-

volving roles or individual responsibilities (see Fig. 2). For

instance, the 5:3:2 formation defines a set of rolesR = {left

back (LB), right back (RB), left halfback (LH), center half-

back (CH), right halfback (RH), inside left (IL), inside right

(IR), left wing (LW), center forward (CF), right wing (RW)}.

Each player is assigned exactly one role, and every role is

assigned to only one player. Generally, roles are not fixed.

During a match, players may swap roles and temporarily

adopt the responsibilities of another player. Mathemati-

cally, assigning roles is equivalent to permuting the player

ordering pτ
t . We define a P × P permutation matrix xτt at

time t which describes the players in terms of roles rτt

rτt = xτt p
τ
t (1)

By definition, each element xτt (i, j) is a binary vari-

able, and every column and row in xτt must sum to one. If

xτt (i, j) = 1 then player i is assigned role j. In contrast to
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Figure 3. Plot showing the reconstruction error as a function of the

number of eigenvectors used to reconstruct the signal using the

L∞ norm for non-mean and mean-normalized features for both

identity and role representations on train (seen) and test (unseen)

data.

pτ
t , we refer to rτt as a dynamic labeling of player locations.

Because the spatial relationships of a formation are de-

fined in terms of roles (and not individualistic attributes like

name) and players swap roles during the game, we expect

the spatiotemporal patterns in {rτ1 , rτ2 , . . . , rτT } to be more

compact compared to {pτ
1 ,p

τ
2 , . . . ,p

τ
T }. Additionally, we

expect a team to maintain its formation while moving up

and down the field. As a result, position data r̃τt expressed

relative to the mean (x, y) location of the team should be

even more compressible. To test these conjectures, we

manually tracked all players over 25000 time-steps (which

equates to 8× 25000 = 200, 000 frames across 8 cameras),

and asked a field hockey expert to assign roles to the player

locations in each frame. A breakdown of the manually la-

belled data is given in Table 1.

For brevity, we explain the analysis in terms of

roles rτt since the original player ordering pτ
t is just

a special non-permuted case xτt = I. We ran PCA

on the temporal data series produced by both teams

{rτ1 , rτ2 , . . . , rτ25000,�rτ1 ,�rτ2 , . . . ,�rτ25000}. This was to mea-

sure how well the low-dimensional representation r̂τt
matches the original data rτt using the L∞ norm of the resid-

ual Δr = r̂τt − rτt

‖Δr‖∞ = max(‖Δr(1)‖2, . . . , ‖Δr(P )‖2) (2)

where ‖Δr(p)‖2 is the L2 norm of the pth x and y com-

ponents of Δr. We chose the L∞ norm instead of the L2

norm because large deviations may signify very different

formations, e.g. a single player could be breaking away to

score. Figure 3 illustrates how both pτ
t and rτt are quite

compressible on the training data. However, when we test

on unseen data (with role labels), the dynamic role-based

ordering rτt is much more compressible than the static or-

dering pτ
t . Relative positions are more compressible than

absolute positions in both orderings.

3.2. Incorporating Adversarial Behavior

A player’s movements are correlated not only to team-

mates but to opposition players as well. Therefore, we an-

ticipate that player location data can be further compressed
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Figure 4. Examples showing the difference between the mean for-

mations using the: (left) identity and (right) role representations

on one of the matches.

if the locations of players on teams A and B are concate-

nated into a single vector rAB
t = [rAt , r

B
t ]

T.

In Figure 4, we show the mean formations for the iden-

tity and role representation. We can see that the role rep-

resentation has a more uniform spread between the players,

while the identity representation has a more crowded shape,

which highlights the constant swapping of roles during a

match. In terms of compressibility, Table 2 shows that us-

ing an adversarial representation gains better compressibil-

ity for both cases, and that using both a role and adversarial

representation yields the most compressibility.

3.3. Bilinear Spatiotemporal Analysis
The representation of time-varying spatial data is a well-

studied problem in computer vision (see [9] for overview).

Recently, Akhter et al. [4], presented a bilinear spatiotem-

poral basis model which captures and exploits the depen-

dencies across both the spatial and temporal dimensions in

an efficient and elegant manner, which can be applied to our

problem domain. Given we have P players per team, we

can form our role-based adversarial representation, x, as a

spatiotemporal structure S, given 2P total players sampled

at F time instances as

SF×2P =

⎡
⎢⎣
x1
1 . . . x1

2P
...

...

xF
1 . . . xF

2P

⎤
⎥⎦ (3)

where xi
j denotes the jth index within the role representa-

tion at the ith time instant. Thus, the time-varying structure

matrix S contains 2FP parameters. This representation of

the structure is an over parameterization because it does not

take into account the high degree of regularity generally ex-

hibited by motion data. One way to exploit the regularity

in spatiotemporal data is to represent the 2D formation or

shape at each time instance as a linear combination of a

small number of shape basis vectors bj weighted by co-

efficients ωi
j as si =

∑
j ω

i
jb

T
j [11, 8]. An alternative

representation of the time-varying structure is to model it

in the trajectory subspace, as a linear combination of tra-

jectory basis vectors, θi as sj =
∑

i a
j
iθi, where aji is the

coefficient weighting each trajectory basis vector [31, 2].

As a result, the structure matrix can be represented as either

S = ΩBT or S = ΘAT (4)

Compressibility

Representation Identity Role

Single Team 30% 25%

Adversarial Teams 20% 15%

Table 2. Showing the compressibility of different representations.

Compressibility in this context refers to the percentage of features

required to represent 95% of the original signal.

where B is a P ×Ks matrix containing Ks shape basis vec-

tors, each representing a 2D structure of length 2P , and Ω,

is an F × Ks matrix containing the corresponding shape

coefficients ωi
j ; and Θ is an F ×Kt matrix containing Kt

trajectory basis as its columns, and A is a 2P ×Kt matrix

of trajectory coefficients. The number of shape basis vec-

tors used to represent a particular instance of motion data is

Ks ≤ min{F, 2P}, and Kt ≤ {F, 2P} is the number of

trajectory basis vectors spanning the trajectory subspace.

Both representations of S are over parameterizations be-

cause they do not capitalize on either the spatial or temporal

regularity. As S can be expressed exactly as S = ΩBT and

also S = ΘAT , then there exists a factorization

S = ΘCBT (5)

where C = ΘTΩ = ATB is a Kt × Ks matrix of spa-

tiotemporal coefficients. This equation describes the bilin-

ear spatiotemporal basis, which contains both shape and

trajectory bases linked together by a common set of coef-

ficients.

Due to the high degree of temporal smoothness in the

motion of humans, a predefined analytical trajectory basis

can be used without significant loss in representation. A

particularly suitable choice of a conditioning trajectory ba-

sis is the Discrete Cosine Transform (DCT) basis, which

has been found to be close to the optimal Principal Com-

ponent Analysis (PCA) basis if the data is generated from a

stationary first-order Markov process [25]. Given the high

temporal regularity present in almost all human motion, it

has been found that the DCT is an excellent basis for trajec-

tories of faces [3, 4] and bodies [6]. Figure 5 shows that due

to the highly structured nature of the game, and the fact that

humans motion is over short periods of time is very simple,

we can gain enormous dimensionality reduction especially

in the temporal domain. From this, we can effectively rep-

resent 5 second plays plays with no more than Kt = 3 and

Ks = 33 with an maximum error of less than 2 meters. In

terms of dimensionality reduction, this means we can rep-

resent temporal signals using 3× 33 = 99 coefficients. For

5 second plays, this means a reduction of over 60 times. We

found greater compressibility could be achieved on longer

plays.
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Figure 5. Plot showing the mean reconstruction error of the test

data as the number of temporal basis (Kt) and spatial basis (Ks)

vary for 5 second plays (i.e. Ktmax = 150). We magnified the

plot to only show the first 10 temporal basis to highlight that only

only Kt = 3 is required to represent coarse player motion.

4. The Assignment Problem
In the previous section, roles were specified by a human

expert. We now address the problem of automatically as-

signing roles to an arbitrary ordering of player locations pτ
t .

Assuming a suitably similar vector r̂τ of player locations in

role order exists, we define the optimal assignment of roles

as the permutation matrix xτ�t which minimizes the square

L2 reconstruction error

xτ�t = argmin
xτt

‖r̂τ − xτt p
τ
t ‖22. (6)

This is the linear assignment problem where an entry

C(i, j) in the cost matrix is the Euclidean distance between

role locations

C(i, j) = ‖r̂τ (i)− pτ
t (j)‖2. (7)

The optimal permutation matrix can be found in poly-

nomial time using the Hungarian (or Kuhn-Munkres) algo-

rithm [18].

4.1. Assignment Initialization

To solve the assignment problem, we need a reference

formation to compare to. Using the mean formation (see

Figure 4) is a reasonable initialization as the team should

maintain that basic formation in most circumstances. How-

ever, in different areas of the field there are subtle changes in

formation due to the what the opposition are doing as well

as the game-state. To incorporate these semantics, we used

a codebook of formations which consists of every formation

within our training set. However, this mapping is difficult to

do as the input features have no assignment. Given we have

Hit Rate

Protoype Team A Team B

Identity
Mean Formation 38.36 29.74

Codebook 49.10 37.15

Role
Mean Formation 49.47 50.30

Codebook 74.18 69.70

Table 3. Accuracy of the assignment using a mean formation as

well as a codebook of possible formations.
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Figure 6. Confusion matrix showing the hit-rates for correctly as-

signing identity (top row) and role (bottom) for Team1 (left) and

Team 2 (right) on the test set.

the assignment labels of the training data, we can learn a

mapping matrix W from the mean and covariances of the

training data to its assignment labels via the linear transform

X = WTZ. Given we have N training examples, we can

learn W by concatenating the mean and covariance into an

input vector zn, which corresponds to the labeled formation

xn. We compile all these features into the matrices X and

Z, and given these, we can use linear regression to learn W
by solving

W = XZT (ZZT + λI)−1 (8)

where λ is the regularization term. Using this approach,

we can estimate a labelled formation from the training set

which best describes the current unlabeled one. In terms of

assignment performance on the test set, this approach works

very well compared to using the mean formation for both

the identity and role labels as can be seen in Table 3. Fig-

ure 6 shows the confusion matrices for both Team A and

Team B for both representations. It worth noting that the

role representation gave far better results than the identity

representation, which is not surprising seeing that only spa-

tial location is used. In terms of the role representation (bot-

tom two plots), it can be seen that there is little confusion

between the 3 defenders (LB, CH, RB) and the 3 forwards

(LW, CF, RW). However, the midfield 4 (LH, RH, IL, IR) tend

to interchange position a lot causing high confusion. No-

ticeably, there is a discrepancy between Team A and Team

B which is understandable in this case as Team B inter-

changes positions more than twice the amount than Team

A upon analysis of the ground-truth.
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Figure 7. Players are detected by interpreting background subtrac-

tion results in terms of 3D geometry, where players are coarsely

modeled as cylinders. Based on these detections, we assign player

role for each team.

Raw Detections With Assignment

Precision Recall Precision Recall

Detections 77.49 89.86 91.90 80.46

Team A 72.54 86.14 86.69 74.17

Team B 79.84 89.66 92.91 82.85

Table 4. Precision-Recall rates for the raw detections (left) and

with the initialized assignments (right).

5. Interpreting Noisy Data
In practice, we will not obtain perfect data from a vision-

system so our method has to be robust against both missed

and false detections. To evaluate our approach, we em-

ployed a real-time state-of-the-art player detector [10] that

detects player positions at 30fps by interpreting background

subtraction results based on the coarse 3D geometry of a

person (Figure 7). Once the locations of all players were

determined, we classified the players into their respective

teams using a color model for each team. Each player im-

age was represented as a histogram in LAB color space and

K-means clustering using the Bhattacharyya distance was

performed to learn a generalized model for each team and

camera. The precision and recall rates for the detector and

the team affiliation are given in the left side of Table 4. In

this work, we consider a detection to be made if a player

was was within two meters of a ground-truth label.

5.1. Assigning Noisy Detections
To determine whether or not we should make the assign-

ment or discard the detection, some type of game context

feature is required (i.e. the part of the field most of the play-

ers are located). To do this, we employed a similar strategy

to the one we proposed in Section 4.1. However, instead of

learning the mapping from the clean features Z, we learn
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Figure 8. As the centroids of both the clean (solid) and noisy

(dashed) of both teams (blue=team1, red=team2) are roughly

equivalent, we learn a mapping matrix using linear regression to

find a formation from the training set which can best describe the

noisy test formation.

from the noisy features Znoisy. As the player detector has

systematic errors (there are some “black-spots” on the field

due to reduced camera coverage, or game situations where

players bunch together), we include the number of players

detected from the system as well as the mean and covari-

ance in our noisy game context feature znoisy, which we

can then use to learn Wnoisy. We are able to do this as we

make the assumption that the clean centroid is good approx-

imation to the noisy centroid which was found was a valid

one as can be seen in Figure 8. Using this assumption, we

can obtain a reasonable prototypical formation to make our

player assignments.

Using the estimated prototype, we then make an assign-

ment by using the Hungarian algorithm. This is challenging

however, as we may have missed or false detections which

alters the one-to-one mapping between the prototype and

input detections. To counter this, we employed an “exhaus-

tive” approach, where if we have fewer detections than the

number of players in the prototype, we find all the possible

combinations that the labels could be assigned then use the

combination which yielded the lowest cost from the assign-

ments made. Conversely, if we had more detections than

the number of players, we find all the possible combinations

that the detections could be and then use the combination of

detections which had the lowest cost.

For example, given we have only 9 detections for a

team, we first find the 10 possible combinations that proto-

type could be (i.e. [1, . . . , 9], [2, . . . , 10], [1, 2, 4, . . . , 10],

Correct Incorrect Missed Hit Rate

Team A 41.89 32.89 25.22 56.02

Team B 45.92 35.56 18.53 56.36

Table 5. Detection rates assigning roles to the noisy data. The

column on the far right gives the effective hit-rate (i.e. missed

detections omitted) of the correct assignments.
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Figure 9. Given our noisy detections (black), using our bilinear

model we can estimate the trajectory of each player over time. We

can see our estimate (red) is close to the ground-truth (blue).

[1, 2, 3, 5, . . . , 10] etc.). For each one of these combina-

tions, we then perform the Hungarian algorithm and cal-

culate the cost of the made assignments. After we have ex-

haustively gone through all possible combinations, we make

the assignment based on the combination with the lowest

cost. Or given we have 11 detections for a team, we first find

the 11 possible combinations that the detections could be,

find the cost for each set and choose the one with the low-

est cost. However, sometimes we get false positives which

means that even though we may get 10 detections for a team

we may only have 7 or 8 valid candidates. Employing this

approach greatly improves the precision rate, while the re-

call rate decreases which is to be expected (see right side of

Table 4). Even despite the drop in recall, we still assign role

reasonably well (over 55% compared to 66% on the clean

data) as can be seen in Table 5.

5.2. Denoising the Detections
While our precision and recall rates from the detector are

relatively high, to do useful analysis we need a continuous

estimate of the player label at each time step to do formation

and play analysis. This means that we need a method which

denoise the signal - that is a method which can impute miss-

ing data and filter out false detections. Given the spatial

bases, the bilinear coefficients and an initial estimate of

the player labels, we can use an Expectation Maximization

(EM) algorithm to denoise the detections. The approach we

use is similar to [4]. Using this approach, the expectation

step is simplified to making an initial hard assignment of

the labels which can be gained by finding the initial assign-

ments using the method described in the previous section.

From this initialization, we have an initial guess of Ŝ. In the

maximization step, we can calculate C = ΘT ŜB, and then

estimate S from our new C as well as our spatial and tem-

poral basis B and Θ. Examples of the cleaned up detections

using this approach are shown in Figure 9.

As the recall rate of the denoised data is 100%, we are in-

terested to see how precise our method is in inferring player

position based on their label. To test this, we calculated the
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Figure 10. Precision accuracy vs the distance threshold from

ground-truth for: (left) the overall detections, (right) the detec-

tions based on team affiliation. The solid lines refer to the raw

detections and the dashed lines refer to the denoised signal.

precision rate for the detections and the denoised detections

against a distance threshold - that is, the minimum distance

a player had to be to ground-truth to be recognized as a cor-

rect detection). The results are shown in Figure 10. As can

be seen from these figures, the detections from the player

detector are very accurate and do not vary with respect to

the error threshold (i.e. it either detects a player very pre-

cisely or not at all). Conversely, the denoised data is heavily

smoothed due to the bilinear model, so we lose some of the

finer detail to gain a continuous signal.

5.3. Formation and Play Analysis
To check the usefulness of our cleaned-up signal, we

conducted cluster analysis on both static formations and dy-

namic plays to see whether we could replicate what could

achieve with manually labelled data. The first analysis we

conducted was to find the top five formations that could best

describe the test data (i.e. the 3 most likely formations that

occurred). The results are shown in Figure 11. From the

figure it can be seen that despite small differences, we go

close to replicating what we get from manually labelled

data – formations 1 correspond and 3 and 2 are reversed.

A similar trend is observed for the play analysis where we

clustered 10 second plays (see Figure 12) . As can be seen

from the denoised data, the bilinear model has smoothed out

the trajectory, although it is unrealistic in some cases. Ad-

ditionally, this analysis can be done with a fraction of the

amount of features due to the high compressibility of the

signal (D = 200 vs D = 12000).
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Figure 11. Cluster analysis of the top three formations (1-3, or-

dered left-to-right) which best represent the test data using (top)

manually labelled data and (bottom) our denoised data. The blue

team is attacking from left-to-right.
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Figure 12. Cluster analysis of the top three 10 second plays on

the test data using (top) manually labelled data and (bottom) our

denoised data. The x’s and the o’s refer the position of the player

at the end of the 10 second play.

6. Summary and Future Work
In this paper, we presented a representation which uti-

lized player role labels to exploit the heavy spatiotemporal

correlations that exist within adversarial domains. As this

representation is highly correlated in both space and time,

we showed that a spatiotemporal bilinear basis model can

leverage this trait to compress the incoming signal by up

to two orders of magnitude without much loss of informa-

tion. Our final contribution of this paper was the use of the

bilinear model to effectively clean up noisy player detec-

tions from a state-of-the-art detector, which enables analy-

sis of static formations as well as temporal plays. To en-

able this, we used the Hungarian algorithm in an exhaustive

way based on a prototype formation which was found us-

ing a codebook of possible formations. The implications

of this work are important, as having the ability to identify

formations and plays from a large repository can enhance

realtime commentary in sports by helping highlight recur-

rent team strategies and long-term trends. The process of

post-game play annotations , which coaches and their teams

spend hours performing manually could be automated. Our

future work will be focussing on large quantities of data to

enable this to occur.
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