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Abstract

While the notion of joint sparsity in understanding com-

mon and innovative components of a multi-receiver signal

ensemble has been well studied, we investigate the utility of

such joint sparse models in representing information con-

tained in a single video signal. By decomposing the con-

tent of a video sequence into that observed by multiple spa-

tially and/or temporally distributed receivers, we first re-

cover a collection of common and innovative components

pertaining to individual videos. We then present model-

ing strategies based on subspace-driven manifold metrics

to characterize patterns among these components, across

other videos in the system, to perform subsequent video

analysis. We demonstrate the efficacy of our approach for

activity classification and clustering by reporting competi-

tive results on standard datasets such as, HMDB, UCF-50,

Olympic Sports and KTH.

1. Introduction

Understanding information contained in videos is a well-

studied problem that has found utility in applications such

as activity recognition, object tracking, search and retrieval,

summarization among others [39]. The focus of this work is

on activity analysis (that includes actions, events, and any

temporal semantic in general), a problem that has seen a

gradual transition from constrained data acquisition settings

with static background and simple foreground object mo-

tions [37] to unconstrained videos collected from YouTube

[21, 1] and surveillance scenarios [29].

As with other visual recognition tasks, there has been

emphasis on both designing features to represent action pat-

terns and learning strategies to derive pertinent informa-

tion from features to perform robust activity classification.

While there has been a gamut of feature representations

ranging from spatio-temporal volumes [13, 3] and trajecto-

ries [32, 42] to local interest point descriptors [36, 20] and

action attributes [11, 24], they have been complemented by

modeling techniques such as feature pooling [5], pyramid

matching [22], and local expert forests [26] to address ro-

Figure 1. Frames sampled from a football game. While the video

can be lengthy, a succinct description of its content can be ex-

pressed by a broad theme (a contest between two teams in a sta-

dium with several onlookers) and certain interesting aspects of the

game such as various strategies used by players for offense and de-

fense, different crowd reactions, player celebrations and so on. We

pursue such an intermediate representation of a video based on the

principles of joint sparsity, and perform activity classification and

clustering using modeling techniques on Grassmann manifolds.

bustness issues in dealing with unconstrained videos.

Since many videos can be qualitatively described in

terms of a broad theme(s) and certain interesting aspects

that stand out, for instance a football video sequence in

Figure 1 where the theme could be a set of players in the

field being watched by several onlookers and interesting as-

pects could be various offensive and defensive strategies

exercised by the players, we seek to obtain an intermedi-

ate representation of videos portraying such information.

We observe that such an analogy has been studied in multi-

receiver communication settings in the form of distributed

compressive sensing [2], where the goal is to harness joint

sparsity in terms of common and innovative components

present in a signal ensemble collected at multiple receivers,

under some assumptions on the properties of the ensemble.

The goal of this work is to study the utility of such joint

sparse models in the context of a single video, by express-

ing the content of a video sequence into that of an ensem-

ble observed by multiple receivers that are spatially and/or

temporally distributed in that video. Starting with an ini-
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tial representation of such a signal ensemble, in the form of

spatio-temporal bag-of-features [22], we first recover the in-

termediate joint sparse representation of the video in terms

of common and innovative atoms pertaining to the ensem-

ble. We then present modeling strategies to perform activ-

ity classification and clustering by analyzing the subspace

spanned by atoms corresponding to each video and then

pursuing a Grassmann manifold interpretation of the space

spanned by subspaces corresponding to all videos in the

system (or dataset). Before getting into the details of our

approach, we first overview recent efforts on unconstrained

activity analysis. We refer the reader to [39] for a compre-

hensive review of literature spanning atleast two decades.

1.1. Related Work

Unconstrained activity analysis under multiple sources

of variations such as camera motion, inter-object interac-

tion, the associated background clutter and changes in scene

appearance due to illumination, viewpoint etc. is receiv-

ing recent attention in part due to the proliferation of video

content in consumer, broadcast and surveillance domains.

One of the earliest attempts in analyzing such activities was

by Laptev et al. [22] that proposed using space-time bag

of features and pyramids with a non-linear support vec-

tor machine classifier to learn realistic human actions from

movies. Liu et al. [25] addressed a more challenging set

of videos collected from YouTube by obtaining visual vo-

cabularies from pruned static and motion features. Learn-

ing a discriminative hierarchy of space-time features was

pursued by [20], while [42] investigated dense trajectories

corresponding to local features and [33] clustered such tra-

jectories into action classes using graphical models. Sig-

nal coding-based approaches have been studied by [15] that

used sparse coding principles to obtain a generic mid-level

video representation termed ‘video primal sketch’, [41]

that proposed efficient sparse random projection algorithms

for video classification, [31] that presented an information

maximization approach for learning sparse action attribute

dictionaries, and [19] that encoded motion interchange to

decouple image edges from motion edges to facilitate bet-

ter understanding of events. Classifier/feature ensemble-

type approaches have also been proposed for instance, the

action-bank [35] that produces a semantically-rich action

description by pooling inputs from several action detectors,

scene-aligned pooling [5] that decomposes video features

into concurrent scene components to capture diverse con-

tent and dynamic scene semantics of a video, and local ex-

pert forests [26] for score fusion to account for imbalanced

event class distributions. More recently, there has been an

increasing focus on designing multi-modal event attributes

[11, 34] to capture visual, text and audio information preva-

lent in the social-media space, and classifier adaptation

[9, 23, 8] to deal with novel event instances that were un-

seen during training. Besides this, there are works on inter-

esting video applications such as understanding collective

crowd behavior [50], detecting daily activities from first-

person camera views [30], and early event detection [16],

and evaluation studies of different features/techniques on

standardized consumer [38] and surveillance [29] datasets.

The focus of this work is to analyze activities by ob-

taining a mid-level, intermediate video representation based

on joint sparsity principles [2], which aims at understand-

ing information that a signal ensemble shares and varies

upon. While studies on joint sparsity are prevalent in multi-

receiver communication settings [2], they have also been

applied for vision problems1 involving image sets such as

expression-invariant face recognition [27], face recognition

under lighting and occlusion [49], multimodal image fu-

sion [47] and target detection in hyperspectral imagery [6].

However there hasn’t been much work on understanding the

utility of joint sparsity for video analysis, which is one of

the main motivations behind this paper.

2. Proposed Approach

2.1. Problem Description

Let V = {Vi}
N
i=1

denote the set of N videos in the

system belonging to m activity classes. For each video

Vi, we first decompose it into several spatially and/or tem-

porally distributed segments {V j
i }

N ′

j=1
and obtain its joint

sparse representation J(Vi) consisting of a set of com-

mon and innovative components, Ci and Ii respectively.

With the collection of such intermediate representations

J = {J(Vi)}
N
i=1

corresponding to all videos in the system,

we perform subsequent video analysis by learning f(C̄, Ī)
where C̄ = {Ci}

N
i=1

, Ī = {Ii}
N
i=1

and f is modeled us-

ing strategies based on Grassmann manifolds. We address

both classification and clustering scenarios, by adapting f

to account for activity labels li ∈ {1, 2, ..., m} accompa-

nying Vi or otherwise, and perform experiments on several

standard unconstrained activity datasets. Figure 2 presents

an overview of our approach, and the details are provided in

the following sub-sections.

2.2. Joint Sparse Representation of a Video

Given a video Vi we first extract twenty four segments

{V j
i }

24

j=1
= V s

i ∪V t
i ∪V st

i that are grouped into spatial V s
i ,

temporal V t
i and spatio-temporal V st

i ensembles. V s
i con-

sists of four spatially distributed segments that are created

by dividing a frame into four quadrants and then consider-

ing the information in each quadrant across all other frames

in the video. V t
i is made up of four temporally distributed

1We’d like to point out that while [48] performs joint sparsity-based

visual classification, they refer to ‘joint sparsity’ in the context of multi-

task learning and not as discussed in this paper (which is along the lines of

[2]).
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Figure 2. An overview of the proposed approach. Step-1: Extracting spatial V
s

i , temporal V
t

i and spatio-temporal V
st

i ensembles (contain-

ing 4,4, and 16 video segments V
j

i respectively) from a video Vi and utilizing joint sparse models to obtain an intermediate representation

J(Vi) consisting of common Ci and innovative Ii atoms. Step-2: Modeling these joint sparse atoms across all N videos in the system,

using techniques on the Grassmann manifold, to perform subsequent video analysis such as activity classification and clustering. This

figure is best viewed in color.

segments obtained by dividing the video into four equal in-

tervals along the temporal dimension. We then consider

each spatial segment pertaining to each temporal interval

to make up 16 spatio-temporal segments that represent V st
i .

For each of these segments we obtain the spatio-temporal

bag-of-features representation, a d-dimensional histogram,

using the method of [22]. For sake of clarity, we defer more

details on feature extraction until the experiment section.

We now recover common and innovative components

pertaining to each of these three ensembles using the prin-

ciples of joint sparsity [2], to obtain the intermediate rep-

resentation J(Vi) of a video Vi. Three joint sparse models

(JSM) have been investigated in [2] in the context of multi-

receiver communication settings by imposing assumptions

on the sparsity of common and innovative components of

the signal ensemble. We first present a qualitative anal-

ogy of these models in terms of information contained in

a video, to facilitate intuitions on the applicability of JSM

to video analysis. JSM-1 represents the case where both

the common and innovative components are sparse. This

could translate to a video with a fixed background and few

foreground motions such as a camera stream in an office

entrance observing people entering the building between

9am and 6pm on a weekend. While there could be sparse

changes in the global background due to variations in the

daylight intensity, the innovations will also be sparse since

number of people at work on a weekend is relatively less

than that during weekdays. JSM-2 corresponds to cases

where the common component is ideally zero whereas the

innovations are sparse with similar supports. This could

correspond to video highlights of a day’s events at the

Olympics. While the video may cover a range of sports that

could be very different (no common component, tempo-

rally across different sports), the innovations in them share

similar support such as athletes competing, crowds cheer-

ing and so on, and at the same time they are sparse since a

large portion within each sport may portray repetitive con-

tent such as running/swimming patterns. JSM-3 deals with

the case where the common component is not sparse while

the innovations are sparse. This could correspond to a video

covering the daily routine of a mailman. While the places

he travels to deliver mails will have large variations (non-

sparse common component), the action he performs at those

places will be mostly similar with few innovations (interact-

ing with customer, delivering mail in the mailbox or drop-

ping off near the front door etc).

In pursuit of such joint sparse information contained in

spatial and/or temporal ensembles of a video, we begin with

the d-dimensional features extracted from segments V
j
i and

use the recovery algorithms2 presented in [2] to obtain the

intermediate representation J(Vi). We used all three JSM’s

since we are dealing with unconstrained videos and any of

these models could be representative of the activities oc-

curring in different video segments. Hence for JSM-1 and

JSM-3, we obtain 1 common and four innovations each for

ensembles V s
i and V t

i , and 1 common and 16 innovations

for the ensemble V st
i , whereas for JSM-2 we obtain the

same number of innovations as mentioned above but with-

out any common component. Each of these components

are of d dimensions. The collection of 6 common com-

ponents Ci and 72 innovative components Ii represent the

2The algorithmic details from [2] are provided in the supplementary

material.
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joint sparse representation J(Vi) ∈ R
d×78 of the video Vi.

In the following we refer to Ci and Ii as joint sparse atoms

of a video Vi, and let C̄ and Ī refer to collection of such

atoms obtained from all videos in the system.

2.3. Modeling Jointly Sparse Atoms

We now perform activity analysis by modeling informa-

tion contained in C̄ and Ī . While the focus of [2] was to

derive a linear combination of the common component (if

available, depending on the JSM) and an innovation compo-

nent to represent each segment V
j
i of a signal ensemble, our

first goal is to extrapolate interactions between Ci and Ii to

obtain different possible descriptions of activities contained

in a video Vi. Towards this end we consider the subspace Si

spanned by the columns of (orthonormalized) matrix J(Vi),
which includes the set of all linear combinations of the joint

sparse atoms from video Vi.

The problem of performing activity analysis then trans-

lates to that of ‘comparing’ subspaces S = {Si}
N
i=1

cor-

responding to all videos in the system, for which we pur-

sue a geometrically meaningful Grassmann manifold inter-

pretation3 of the space spanned by S. The Grassmannian

Gn,d, a nonlinear analytical manifold, is the space of all n-

dimensional subspaces in R
d (i.e. column span of d× n or-

thonormal matrices) containing the origin, with d > n. Si

maps onto a ‘point’ in Gn,d. There have been several works

addressing geometric properties [10] and related statistical

techniques [7] on this manifold, and we now utilize some

of these tools f for analyzing the point cloud S to facilitate

both activity classification and clustering.

2.3.1 Activity Classification

We first consider the case where each video Vi is accompa-

nied by an activity label li ∈ {1, 2..., m}. Let Ṽ denote the

test video whose activity label l̃ is to be inferred. We pur-

sue two statistical techniques for this supervised scenario

namely, intrinsic (f1 ∈ f ) and extrinsic (f2 ∈ f ). While

the extrinsic methods embed nonlinear manifolds in higher

dimensional Euclidean spaces and perform computations in

those larger spaces, the intrinsic methods are completely re-

stricted to the manifolds themselves and do not rely on any

Euclidean embedding.

We first pursue the intrinsic method of [40] that learns

parametric class conditional densities pertaining to the la-

beled point cloud S. We outline the general methodology

of this technique below. For the set of points Si ⊂ S cor-

responding to ith activity label, we first estimate its ‘mean’

3While there has been some work [46] on performing compressed sens-

ing on Grassmann manifolds, they focus on obtaining sharp bounds for

recovering approximate sparse signals using null-space Grassmann-angle

characterization, whereas the focus of this work is on representing the col-

umn space of jointly sparse atoms and performing subsequent video anal-

ysis using Grassmannian tools.

Mi using the Karcher mean algorithm [18]. Then we define

a ‘tangent plane’ at the mean, which is a locally Euclidean

representation of the non-linear space around Mi. We then

map Si onto the tangent plane and fit a Gaussian distribu-

tion to these points to obtain the mean μi and covariance

Σi of the Gaussian. The class conditional Ci for the ith

activity class is then completely represented by the tuple

Ci = {Mi, μi, Σi}. The same process is repeated for points

in S corresponding to all m activity labels. The activity la-

bel l̃ of a test point S̃ (column span of the orthonormalized

version of J(Ṽ ) derived from test video Ṽ ) is determined

by evaluating the m class conditional densities at the test

point, by mapping S̃ to the tangent plane defined at each of

the means Mi’s, and then selecting the one with maximum

likelihood (f1).

Next we pursue an extrinsic method proposed by [14]

that performs kernel discriminant analysis on the labeled

point cloud S using a projection kernel kP , which is a

positive definite kernel well-defined for points on Gn,d.

More specifically, given a pair of d × n orthonormal ma-

trices J̄(V1) and J̄(V2) obtained from a compact singular

value decomposition of J(V1) and J(V2) respectively, the

Mercer kernel kP (J̄(V1), J̄(V2)) = ||J̄(V1)
T J̄(V2)||

2

F =
trace[(J̄(V1)J̄(V1)

T )(J̄(V2)J̄(V2)
T )] implicitly computes

the inner product between J̄(Vi)’s in the space obtained us-

ing the embedding ωP : Gn,d → R
d×d, span(J̄(Vi)) →

J̄(Vi)J̄(Vi)
T . In the above, the superscript T denotes ma-

trix transpose, and ||.||F denotes Frobenius norm. We then

use kP to create kernel matrices from training and test data,

and perform test video activity classification f2 in the stan-

dard discriminant analysis framework. We provide more

details of this method in the supplementary material.

2.3.2 Activity Clustering

We then consider cases where the videos V do not have

activity labels associated to them. In such cases we per-

form clustering (f3 ∈ f ) on the unlabeled point cloud S.

We pursue k-means [40] where given a set of points S =
(S1, S2, ..., SN ) on Gn,d, we seek to estimate k clusters C =
(c̄1, c̄2, ..., c̄k) with cluster centers (μ̄1, μ̄2, ..., μ̄k) so that

the sum of geodesic-distance squares,

k∑

i=1

∑

Sj∈c̄i

d2

G(Sj , μ̄i)

is minimized. dG can be computed using the arc length

metric darc [10]. Given a pair of points S1 and S2 on Gn,d,

dG(S1, S2) = d2

arc(S1, S2) =

n∑

i=1

θ2

i is a function of prin-

cipal angles θi between the two subspaces spanned by the

columns of d × n orthonormal matrices J̄(V1) and J̄(V2)
respectively. As is the case with standard (Euclidean) k-

means, we can solve this problem using an EM-based ap-

proach. We initialize the algorithm with a random selection
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of k points as the cluster centers. In the E-step, we assign

each of the points of the dataset S to the nearest cluster cen-

ter. Then in the M-step, we recompute the cluster centers

using the Karcher mean computation algorithm described

in the supplementary material.

In our experiments, we hide the activity labels of the

videos V in the dataset and obtain their grouping f3. We

then evaluate the clustering accuracy with the widely used

method of [45], which labels each of the resulting clusters

with the majority activity class according to the original

ground truth labels li, and finally measures the number of

misclassifications in all clusters.

3. Experiments

We now evaluate our approach on four standard activ-

ity analysis datasets. We first experiment with the UCF-

50 dataset [1] that consists of real-world videos taken from

YouTube. We then consider the Human Motion DataBase

(HMDB) [21] which is argued to be more challenging that

UCF-50 since it contains videos from multiple sources such

as YouTube, motion pictures etc. We then focus on the

Olympic Sports dataset [28] that contains several sports

clips which makes it interesting to analyze the performance

of the method within a specific theme of activities. Finally

we perform evaluations on the KTH dataset [37] which,

though older and has more constrained actions, provides

a benchmark on which many techniques have reported re-

sults. Figure 3 provides a sample of activity classes from

these datasets. Before getting into the results, we discuss

some design issues involved in our approach.

3.1. Feature Extraction

Our basic feature representation of the video segments

V
j
i ,∀j = 1 to 24,∀i = 1 to N is a d−dimensional his-

togram pertaining to spatio-temporal bag-of-features ob-

tained using the method of [22], which has shown good

empirical performance on many datasets. We followed

the protocol of [22] and constructed a 4000-size codebook

(d = 4000) based on histogram of oriented gradient (HOG)

descriptors. Although our method is independent of choice

of features (with the constraint d > n), we used this fea-

ture for all four datasets to study the generalizability of the

approach. We then obtain the intermediate joint sparse rep-

resentation J(Vi) ∈ R
4000×78 for all videos in the system

with which the subsequent modeling (f1, f2, f3) is done on

G78,4000.

3.2. UCF-50 Dataset

A recent real-world dataset is the UCF-50 [1] that has

50 activity classes with atleast 100 videos per class. These

videos taken from YouTube has a range of activities from

general sports to daily-life exercises, and there are 6618

videos in total. Each activity class is divided into 25

homogenous groups with atleast 4 videos per activity in

each of these groups. The videos in the same group may

share some common features, such as the same person,

similar background or similar viewpoint. We evaluate

our intrinsic f1 and extrinsic f2 modeling strategies using

the Leave-one-Group-out (LoGo) cross-validation scheme

suggested in the dataset website and report the average

classification accuracy across all activity classes in Table

1. To enable comparison with some existing approaches

we also conducted a 10-fold cross validation test, where

each time 9 random groups out of the 25 were used as test

and the remaining 16 as training, and report the average

classification accuracy in Table 1. For the clustering

experiment, we report clustering results in two settings: (i)

Case-A where only the test videos used in the classification

experiment are clustered, and (ii) Case-B where both

training and test videos in the classification experiment are

clustered. We ran the clustering algorithm f3 ten times,

and the average clustering accuracy (for LoGo setting, but

without the activity labels) is as follows, Case-A: 53.41%,

Case-B: 57.8%

Method Classification Accuracy (%)

Splits LoGo

Laptev et al. [22] 47.9 -

Sadanand & Corso [35] 57.9 -

Kliper-Gross et al. [19] 68.51 72.68

Wang et al. [43] - 85.6

Ours - intrinsic (f1) 73.46 84.17

Ours - extrinsic (f2) 71.24 80.63
Table 1. Performance comparison on UCF-50 dataset [1].

3.3. HMDB

Another recent dataset is the HumanMotion DataBase

(HMDB) [21] that has 51 distinct activity classes with

atleast 101 videos per class. The total 6766 videos were

extracted from a wide range of sources, including YouTube

and motion pictures, and has 10 overlapping activity classes

with the UCF-50 dataset. Each video was validated by

atleast two human observers to ensure consistency. The

evaluation protocol for this dataset consists of three distinct

training and testing splits, each containing 70 training and

30 testing videos per activity class, and the splits are se-

lected in such way to display a representative mix of video

quality and camera motion attributes. The dataset contains

both original videos and their stabilized version, and we

report classification results on both of these sets in Table

2. Our clustering algorithm got the following accuracy,

Case-A: 12.41% (original), 13.2% (stabilized) and Case-B:

14.66% (original), 18.72% (stabilized).
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Figure 3. Sample frames corresponding to different activity classes in datasets - UCF-50 (first row), HMDB (second), KTH (third), and

Olympic Sports (last). These datasets have a good mix of realistic activities from YouTube, motion pictures, sports programs etc.

Method Classification Accuracy (%)

Original Stabilized

videos videos

Laptev et al. [22] 20.44 21.96

Jhuang et al. [17] 22.83 23.18

Sadanand & Corso [35] 26.90 -

Cao et al. [5] - 27.84

Kliper-Gross et al. [19] 29.17 -

Ours - intrinsic (f1) 34.13 37.5

Ours - extrinsic (f2) 32.89 35.42
Table 2. Performance comparison on HMDB [21].

3.4. Olympic Sports Dataset

The Olympic Sports dataset [28] consists of ath-

letes practicing different sports, which are collected from

YouTube and annotated using Amazon Mechanical Turk.

There are 16 sports events: high-jump, long-jump, triple-

jump, pole-vault, basketball lay-up, bowling, tennis-serve,

platform, discus, hammer, javelin, shot-put, springboard,

snatch, clean-jerk and vault, represented by a total of 783

video sequences. This dataset has rich scene context infor-

mation, which is very helpful for recognizing sports actions,

and we used the training/testing split provided in the dataset

for evaluation. The mean average precision over all activity

classes is reported in Table 3. The clustering accuracy for

this dataset is: Case-A: 59.6%, Case-B: 64.2%

3.5. KTH Dataset

The KTH dataset [37] is a relatively old dataset compris-

ing of six human action classes: walking, jogging, running,

boxing, waving and clapping. Each action is performed sev-

Method Classification Accuracy (%)

Niebles et al. [28] 72.1

Brendel et al. [4] 77.3

Wang et al. [43] 77.2

Ours - intrinsic (f1) 78.61

Ours - extrinsic (f2) 77.12
Table 3. Performance comparison on Olympic Sports dataset [28].

eral times by 25 subjects. The sequences were recorded

in four different scenarios: outdoors, outdoors with scale

variation, outdoors with different clothes and indoors. The

background is homogeneous and static in most sequences.

We follow the original experimental setup [37] by dividing

the samples into test set with 9 subjects and training set with

16 subjects. Average classification accuracy over all action

classes is given in Table 4 and the clustering results for this

dataset are Case-A: 71.4%, Case-B: 72.8%.

Method Classification Accuracy (%)

Gilbert et al. [12] 94.5

Kovashka & Grauman [20] 94.5

Wu et al. [44] 94.5

Sadanand & Corso [35] 98.2

Ours - intrinsic (f1) 97.31

Ours - extrinsic (f2) 97.2
Table 4. Performance comparison on KTH dataset [37].

3.6. Discussion

We now empirically analyze the utility of modeling us-

ing joint sparsity principles. Given d-dimensional bag-of-

feature histograms for each of the 24 segments correspond-
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Figure 4. Sample classification results on HMDB (dive, run) and UCF-50 (biking, golfswing) datasets. Top three videos classified into each

of these classes are displayed here, with a representative frame corresponding those videos, where the first row pertains to results using

joint sparse modeling and the second row to that of PCA modeling. Mis-classification results are given within a red bounding box.

ing to a video Vi, instead of extracting jointly sparse atoms

J(Vi), we perform principal component analysis (PCA) to

obtain an orthonormal matrix using which we perform sub-

sequent computations for activity classification and clus-

tering (Section 2.3). As before, the number of columns

of this matrix must be less than d, and we varied it such

that the matrix contains atleast 80%, and upto 99% of the

original energy. The highest results obtained using this

method (with intrinsic classification f1) for each of the four

datasets are as follows, UCF-50 - 62.34% (splits), 75.6%

(LoGo), HMDB - 22.58% (original videos), 31.45% (stabi-

lized videos), Olympic Sports - 76.1%, and KTH - 95.38%.

We see that the joint sparse modeling yields better results,

and some illustrations on activity (mis-)classification are

shown in Figure 4.

From these results we make the following observations.

(i) The classification performance our approach is compara-

ble to, and in many cases better than, the existing methods.

Given the amount of variation in activity patterns across the

datasets, these results demonstrate the generalizability of

our joint sparsity based manifold modeling. (ii) Intrinsic

classification outperforms extrinsic on all cases. This sheds

light on the advantages of learning class-specific distribu-

tions rather than focusing on just the discriminative infor-

mation. One pitfall however is that the intrinsic method is

computationally expensive than the extrinsic approach. For

a 100 frame test video Ṽ , it takes about 10 seconds to ob-

tain its intermediate joint sparse representation J(Ṽ ). Then

to infer its activity label it takes around 8 seconds using the

intrinsic method f1 and 3 seconds using the extrinsic al-

gorithm f2. All these computational times correspond to a

2GHz processor with 2 GB of RAM. (iii) Clustering perfor-

mance is inferior to that of classification, which reinforces

the conventional wisdom of advantages provided by labels

(or supervision). An interesting observation is that cluster-

ing under Case B is better than Case A. This shows that

more data, even if it is unlabeled, helps and our modeling

process is able to extract meaningful information from the

data.

4. Conclusion

Through this work we studied the utility of joint spar-

sity models for representing common and diverse content

within a video and a subsequent manifold interpretation for

performing video analysis under both supervised and un-

supervised settings. We demonstrated the generalizability

of the approach across several video activity datasets that

portrayed varying degree of event complexity, without re-

sorting to feature tuning, and achieved competitive results

on many counts. It is an interesting future work to explore

integrating feature selection mechanisms with our model

and study their utility for more general video understand-

ing problems.
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