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Abstract

Understanding the nature of data is the key to build-
ing good representations. In domains such as natural im-
ages, the data comes from very complex distributions which
are hard to capture. Feature learning intends to discover
or best approximate these underlying distributions and use
their knowledge to weed out irrelevant information, pre-
serving most of the relevant information. Feature learning
can thus be seen as a form of dimensionality reduction. In
this paper, we describe a feature learning scheme for nat-
ural images. We hypothesize that image patches do not all
come from the same distribution, they lie in multiple non-
linear subspaces. We propose a framework that uses K
Restricted Boltzmann Machines (K-RBMS) to learn mul-
tiple non-linear subspaces in the raw image space. Pro-
jections of the image patches into these subspaces gives
us features, which we use to build image representations.
Our algorithm solves the coupled problem of finding the
right non-linear subspaces in the input space and associ-
ating image patches with those subspaces in an iterative
EM like algorithm to minimize the overall reconstruction
error. Extensive empirical results over several popular im-
age classification datasets show that representations based
on our framework outperform the traditional feature repre-
sentations such as the SIFT based Bag-of-Words (BoW) and
convolutional deep belief networks.

1. Introduction
Feature extraction and modelling together dictate the

overall complexity of any computer vision system. Rich

features that capture most of the complexity in the input

space require simpler models while simpler features require

more complex models. This “law-of-conservation of com-

plexity” in modelling has driven many efforts in feature en-

gineering, especially, in complex domains such as computer

vision where the raw input is not easily tamed by simple

features. Finding semantically rich features, that capture

the inherent complexity of the input data, is a challenging

and necessary pre-processing step in many machine learn-

ing applications.

We propose a feature learning framework motivated by

the hypothesis: data really lies in multiple non-linear sub-

spaces (as opposed to a single subspace). Finding these

subspaces and clustering the right data points into the right

subspaces will result in the kind of features we are looking

for. Our approach requires that we solve the coupled prob-

lem of non-linear projection and clustering of data points

into those projections simultaneously. Clustering cannot be

done in the raw input space because the data really lies in

certain non-linear subspaces and the right subspaces can-

not be discovered without proper groupings of the data.

While most of the work in clustering and projection meth-

ods is done independently, attempts have been made to com-

bine them [1, 17]. In this paper, we take this coupling a

step forward by learning clusters and projections simulta-

neously. This is fundamentally different from an approach

like Sparse Subspace Clustering (SSC) [5] that first learns

a sparse representation (SR) of the data and then applies

spectral clustering to a similarity matrix built from this SR.

We further hypothesize that a mere non-linear cluster-

ing is not the best way to understand the nature of data.

Further simple clusters (concepts) might be present in each

of the non-linear subspaces. An overall solution should

first find multiple non-linear sub-spaces within the data and

then further cluster the data within each sub-space if neces-

sary. Once we discover the subspaces the data points (im-

age patches) lie in, projections into these subspaces will

give us the features that best represent the patches. We

propose a systematic framework for a two-level clustering

of input data into meaningful clusters – first level being

clustering coupled with non-linear projection by Restricted

Boltzmann Machines (RBMs), and the second level being

simple K-means clustering in each non-linear subspace. In

other words, we use K-RBMS for the first level clustering

and K-means on the RBM projections for the second level

clustering. We apply our framework to clustering, improv-

ing BoW and feature learning from raw image patches. We

demonstrate empirically that our clustering method is com-

parable to the state of the art methods in terms of accuracy,

and much faster. Representations based on K-RBM features
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outperform traditional deep learning and SIFT based BoW

representations on image classification tasks.

Figure 1: RBM weights (learnt by the model) representing

20 non-linear subspaces in the Pascal 2007 data. Local K-

RBM features are computed by projecting image patches to

the subspace they belong to, and adding the biases.

Restricted Boltzmann Machines (RBMS) [22] are undi-

rected, energy-based graphical models that learn a non-

linear subspace that the data fits to. RBMs have been used

successfully to learn features for image understanding and

classification [12], speech representation [18], analyze user

rating of movies [21] , and better bag-of-word representa-

tion of text data [20]. Moreover, RBMS have been stacked

together to learn hierarchical representations such as deep

belief networks [12, 3] and convolutional deep belief net-

works [16] for finding semantically deeper features in com-

plex domains such as images. Most nonlinear subspace

learning algorithms [6, 2] make various assumptions about

the nature of the subspaces they intend to discover. RBMS

are a generic framework for learning non-linear subspaces,

make no assumptions about the sub-spaces other than the

size of the subspace, use a standard energy based learning

algorithm, and can model subspaces of any degree of com-

plexity via the number of hidden units making them most

suitable as general purpose sub-space learning machines.

Our model learns K RBMs simultaneously. Each RBM

represents a subspace in the data. Figure 1 shows 20 non-

linear subspaces in VOC PASCAL 2007 data. Note the sig-

nificant variation in the appearance of the subspaces. It is

evident from the figure that the huge diversity in the im-

age patches can not be captured by a single subspace. The

association of a data point to an RBM depends on the re-

construction error of each RBM for that data point. Each

RBM updates its weights based on all the data points asso-

ciated with it. Through various learning tasks on synthetic

and real data, we show the convergence properties, quality

of subspaces learnt, and improvement in the accuracies of

both descriptive and predictive tasks.

Note that [19] also uses RBMs for data partitioning.

However, their approach is different from ours in several

ways. Firstly, while we employ traditional second order (2-

layer) RBMs, [19] describes an implicit mixture of RBMs

which is formulated using third order RBMs. Authors in

[19] introduce the cluster label (explicitly) as a hidden dis-

crete variable in the RBM formulation describing an en-

ergy function that captures 3-way interactions among vis-

ible units, hidden units, and the cluster label variable. In

our solution, the cluster label is implied by the RBM id,

and the model parameters capture the usual 2-way interac-

tions. One reason for our choice of traditional RBMs as

building blocks was the availability of a great deal of re-

search on properly training RBMs [11]. Secondly, the par-

tition function of an RBM is intractable. By introducing

the third layer [19] manages to fit the mixture of boltzmann

machines without explicitly computing the partition func-

tion. We tackle the partition problem by associating sam-

ples with the RBMs that reconstruct them best (minimizing

the reconstruction errors) in an EM algorithm. Since the re-

construction error is not an inherent part of the traditional

RBM formulation, our framework is not a mixture model.

2. Training RBMs

RBMS are two layered, fully connected networks that

have a layer of input/visible variables and a layer of hidden

random variables. RBMS model a distribution over visi-

ble variables by introducing a set of stochastic features. In

applications where RBMS are used for image analysis, the

visible units correspond to the pixel values and the hidden

units correspond to visual features.

There are three kinds of design choices in building

an RBM: the objective function used, the frequency of

parameter updates, and the type of visible and hidden units.

RBMS are usually trained by minimizing the contrastive

divergence objective (CD-1)[10] which approximates the

actual RBM objective. For an RBM with I visible units

vi, i = 1, . . . , I (v0 = 1 is the bias terms), J hidden

units hj , j = 1, . . . , J (h0 = 1 is the bias term) and

symmetric weighted connections between the visible

and hidden layers denoted by w ∈ R
(I+1)×(J+1) (these

include asymmetric forward and backward bias terms), the

activation probabilities of units in one layer are computed

based on the states of the opposite layer:

Pr(hj = 1|v) = σ

(
I∑

i=0

wijvi

)
(1)

Pr(vi = 1|h) = σ

⎛
⎝ J∑

j=0

wijhj

⎞
⎠ (2)

σ(·) is the sigmoid activation function. In the CD-1 for-

ward pass (visible to hidden), we activate the hidden units

h+
j from visible (input) unit activations v+i (Eq.1). In the

backward pass (hidden to visible), we recompute visible

unit activations v−i from h+
j (Eq.2). Finally we compute the

hidden unit activations h−j again from v−i . The weights are

updated using the following rule: Δwij = η(< v+i h
+
j >

− < v−i h
−
j >) where η is the learning rate and <·> is

defined as the mean over N examples. The reconstruction
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error for any sample is computed as:

ε =

I∑
i=1

(v+i − v−i )
2

(3)

RBM weights are usually updated once per mini-batch.

Other options are once per sample update (fully online) and

corpus level update (fully batch). We found doing a full

batch update gives a more reliable gradient and slightly bet-

ter reconstruction compared to other strategies.

An RBM can have binary or non-binary visible and hid-

den units. Most RBM implementations use binary visible

units. In our applications, we have used Gaussian visi-

ble units to model distributions of real valued data. The

stochastic output of hidden unit (Eq.1) is always a probabil-

ity which is thresholded against a random value between 0

and 1 to give a binary activation hj . In CD-1, it is custom-

ary to use binary hidden states when the hidden units are

driven by data (h+
j ) and the probabilities without sampling

when the hidden units are driven by reconstructions (h−j ).

Thresholding introduces sparsity by creating an information

bottleneck. We however always use the activation probabil-

ities in place of their binary states for parameter updates.

This decision was based on the desire to eliminate unneces-

sary randomness from our approach1 and was supported by

extensive experimentation.

3. Learning Multiple Non-Linear Subspaces
using K-RBMs

Our framework uses K component RBMS. Each com-

ponent RBM learns one non-linear subspace. The visible

units vi, i = 1, . . . , I correspond to an I dimensionsional

visible (input) space and the hidden units hj , j = 1, . . . , J
correspond to a learnt non-linear J-dimensional subspace.

For the sake of simplicity, we experiment with RBMS of the

same size; all the subspaces our model learns have the same

assumed dimensionality J . However, this restriction is un-

necessary and we are free to learn subspaces with different

assumed dimensions.

3.1. K-RBMs

The K-RBM model has K component RBMS. Each of

these maps a set of sample points xn ∈ R
I to a projection in

R
J . Each component RBM has a set of symmetric weights

(and asymmetric biases) wk ∈ R
(I+1)×(J+1) that learns a

non-linear subspace. Note that these weights include the

forward and backward bias terms. The error of reconstuc-

tion for a sample xn given by the kth RBM is simply the

squared Euclidean distance between the data point xn and

1We use the reconstruction error as a cost function in our clustering;

random thresholding introduces randomness in the projections, hence af-

fecting the reconstruction errors.

its reconstruction by the kth RBM, computed using (Eq.3).

We denote this error by εkn. The total reconstruction error

εt in any iteration t is given by
N∑

n=1
min
k
{εkn}

The K RBMS are trained simultaneously. During the

RBM training, we associate data points with RBMs based

on how well each component RBM is able to reconstruct the

data points. A component RBM is trained only on the train-

ing data points associated with it. The component RBMS

are given random initial weights wk, k = 1, . . . ,K.

3.2. Clustering using K-RBMs

As in traditional K-means clustering, the algorithm al-

ternates between two steps: (1) Computing association of

a data point with a cluster and (2) updating the cluster pa-

rameters. In K-RBMS nth data point is associated with kth

RBM (cluster) if its reconstruction error from that RBM is

lowest compared to other RBMS, i.e. if εkn < εk′n∀k �=
k′, k, k′ ∈ {1, . . . ,K}.

Once all the points are associated with one of the RBMS

the weights of the RBMS are learnt in a batch update. In

hard clustering the data points are partitioned into the clus-

ters exhaustively (i.e. each data point must be associated

with some cluster) and disjointly (i.e. each data point is as-

sociated with only one cluster). In contrast with K-means

where the update of the cluster center is a closed form so-

lution given the data association with clusters, in K-RBMS

the weights are learnt iteratively.

We can extend our model to incorporate soft clustering

where instead of assigning a data point to only one RBM

cluster, it can be assigned softly to multiple RBM clusters.

The soft association of the nth data point with the kth clus-

ter is computed in terms of the reconstruction error of this

data point with the RBM:

αnk =
exp(−εkn/T )

K∑
k′=1

exp(−εk′n/T )

(4)

where T is the temperature parameter that is reduced over

time as in simulated annealing [13]. Each sample xn con-

tributes to the training of all RBMS in proportion to its as-

sociation with the RBMS. While updating weights, the as-

sociation factor is also multiplied with the learning rate. A

K-RBM trained using the soft approach can be seen as a

set of RBMS, each of which learns a distribution of all the

data but using more information from those it can represent

most accurately. Each RBM can reconstruct all the points,

some more accurately than the others. This is fundamen-

tally different from the hard clustering where each compo-

nent RBM learns the distribution of a subset of the data and

tries to distort samples from other clusters to look like the

samples that it has learnt from.
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(a) (b)

Figure 2: (a) Schematic Diagram of K-RBM training: Each input sample is fed to all component RBMs, and is assigned

to the one which reconstructs it best. Each RBM is then trained using the samples assigned to it. (b) Block Diagram of

K-RBMs.

3.3. Convergence and Initialization

K-RBM training seeks to learn both the associations

(clusters) and the parameters (non-linear subspaces) simul-

taneously. There are two kinds of convergences associated

with the model: the clustering convergence and the RBM

learning (subspace learning) convergence. In our experi-

ments the clustering process is said to have converged when

more than 99% of the samples stop changing cluster asso-

ciations. In case we require only the cluster associations,

we can stop the algorithm once the clustering converges.

However, the convergence of clustering just means that the

points in each cluster belong to the same non-linear sub-

space, it does not guarantee the accuracy of the learnt sub-

spaces. For feature learning, we require data projections

in the non-linear subspaces, therefore we continue train-

ing the RBMs until the total reconstruction error stabilizes.

Our experiments indicate that clustering converges far be-

fore the RBM training converges. We empirically decide

the number of epochs our algorithm iterates for and we call

this number maxepoch.

Figure 3 shows that K-RBMs significantly outperform

the single RBM in terms of the final mean reconstruction er-

ror per data point. This supports our hypothesis that the in-

put data lies in multiple simpler non-linear sub-spaces (mul-

tiple K-RBMs) and not in a single complex non-linear sub-

space (single RBM).

Like most EM methods, our model is sensitive to ini-

tialization. However, following the standard best RBM im-

plementation practices (small initial weights, small learning

rates, weight decay, momentum and so on) [11] ensures that

this sensitivity is minimal. Further, the reconstruction errors

typically converge around the same value over maxepoch
iterations. All our experiments were conducted once with

random initialization.

Figure 3: A plot of reconstruction errors vs epochs of train-

ing process for our experiments on the Pascal dataset (sec-

tion 4.2). Reconstructions are significantly better with a K-

RBM over a single RBM. For the Single RBM, we divide

the mean error by 10 to bring it to scale with the others.

3.4. K-RBMs for Image Feature Learning

Traditionally, hand-crafted features like SIFT and HoG

have been employed for building image representations.

Such hand crafted features are often not semantically mean-

ingful representations of images. Also they are not “learnt”

but just “computed” from raw data. Recent times have seen

the introduction of features that are learnt from the data.
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Deep belief networks [16, 18] and convolutional networks

[15] have been employed for feature learning to solve a va-

riety of tasks. These methods are based on the hypothesis

that good data representations are hierarchical and can be

learnt directly from the data; these methods usually have hi-

erarchical layered feature extractors. Although deep learn-

ing methods yield robust features, training deep networks

involves making many design choices, tuning many param-

eters, and are often computationally challenging. We pro-

pose a feature learning scheme using K-RBMs that learns

from the data like the deep networks but is simpler in terms

of the overall model complexity and parameters. By doing

so, we intend to take a step forward towards promoting fea-

ture extraction schemes that “learn” semantically meaning-

ful representations of the data from the data, while keeping

a check on the model complexity.

In image domains, we typically compute local features

over patches in an image and then pool the local features

to get global image representations (e.g. BoW). In this pa-

per, we describe dense local K-RBM features. K-RBM fea-

tures are computed by hard clustering patches from dense

grids in images. K-RBM features are the projections of

these patches in the corresponding learnt subspaces. Un-

like the 128−dimensional SIFT descriptors, the size of the

K-RBM features is dictated by the number of hidden units

in the component RBMs. In our experiments, we work with

patches of size 12× 12 pixels. Each patch can thus be rep-

resented as a 144−dimensional sample vector. Our com-

ponent RBMs have 144 visible units and 36 hidden units.

Each local K-RBM feature is thus 36−dimensional. Un-

like SIFT BoW representations where we can perform K-

Means clustering of all the SIFT features directly, we can’t

cluster K-RBM features coming from different component

RBMs since they lie in different subspaces. All SIFT fea-

tures lie in the same 128−dimensional space. However each

K-RBM feature lies in one of K different subspaces. Thus,

we cluster the K-RBM features from each component RBM

separately, get a different BoW representation for each non-

linear subspace and concatenate these BoW representations

to get the final BoW representation.

RBMs are generative models that learn a non-linear sub-

space the data lies in. RBM features are merely projections

of the data onto the learnt subspace. Our K-RBM objec-

tive minimizes the error of reconstruction of the data from

these projections, hence the projections are good “learnt”

representations of the data. RBM feature extraction can se-

mantically be understood as non-linear dimensionality re-

duction of the data. K-RBM feature extraction partitions the

data across several RBMs (or subspaces). This has a two-

fold advantage: (a) it gives more reliable similarity mea-

sures among data in the same subspace, (b) much of the dis-

criminative information is encoded into the data partitions.

Figure 4 shows image patches corresponding to different

BoW/K-RBM clusters for SIFT and K-RBM features. SIFT

space is discrete in some sense because it counts the types

of edge directions. K-RBMs use a knowledge of the un-

derlying non-linear subspaces to partition the data. In line

with our second hypothesis, K-Means followed by K-RBM

clustering helps achieve better partitioning of the data and

consequently better vector quantization.

Both SIFT and K-RBM project image patches into non-

linear sub-spaces. While SIFT introduces non-linearity by

using non-linear filters followed by counting the number of

directions the edges take, K-RBMs “learn” features from

the data without assuming a specific class of low level fea-

tures (e.g. edges assumed by SIFT). Thus while SIFT “com-

putes” the features, K-RBMs are more adaptable to the im-

age corpus they are applied to. While SIFT itself is a his-

togram of very simple artefacts (edges), K-RBMs treat each

patch as an artefact.

4. Applications

4.1. Application to Clustering

In this section, we demonstrate the use of K-RBMs for

clustering. We compare the accuracy and speed of K-

RBM clustering with the state of the art subspace clustering

methods, Random Sample Consensus (RANSAC)[9] and

Sparse Subspace Clustering (SSC)[5] in addition to PCA

+ K-means, t-SNE [23] + K-means and RBM + K-means

on two synthetic datasets where we can control the nature

of the sub-spaces in the data. t-SNE is a non-linear dimen-

sionality reduction method which minimizes the divergence

between distributions over pairs of points. RANSAC works

by iteratively sampling a number of points randomly from

the data, fitting a model to those points and rejecting out-

liers. SSC computes a sparse representation (SR) of the

data and applies spectral clustering to a matrix obtained

from the SR. These algorithms represent decoupled learn-

ing of projection and clustering.

The goal of these experiments is to investigate our first

hypothesis i.e. clustering and projection are better done in

a coupled manner than in a sequential manner. In these ex-

periments, we compare the performance of a K-RBM with

that of KMeans over data processed by a single RBM. In

these comparisions, we could either (a) fix the complexity

(size) of the latent non-linear subspaces by fixing the num-

ber of hidden units in each RBM or (b) fix the number of

total RBM parameters in the two models (i.e. if we have a

K-RBM with K components having J hidden units each,

we allow the single RBM to have KJ hidden units). Here,

we use the latter scheme: therefore the subspaces learnt by

the two models have different dimensionalities. This was

done to ensure our model had no undue advantage over the

single RBM model in terms of complexity.

The synthetic datasets in table 1 were generated using
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(a) K-Means on SIFT (b) K-RBM (c) K-RBM followed by K-Means

Figure 4: Sample patches corresponding to the different clusters (experiments in section 4.3). Each row in (a) and (b)

represents a cluster. A row in (c) represents 2 clusters: the concatenation of these 2 clusters gives the cluster in corresponding

row in (b). Patches in (a) are independent of (b) and (c). Total number of SIFT clusters in (a) was 1000, K1 for (b) was 40,

K2 in (c) was 50.

the RANSAC demo code at www.vision.jhu.edu/downloads.

Dataset D1 comprises of 500 points drawn from 5 randomly

generated subspaces having orthogonal basis vectors, 100

points from each subspace. For all the points, the dimen-

sion of the raw feature space is 144 while the assumed in-

trinsic dimensionality is 36. D1 also contains added Gaus-

sian noise. Dataset D2 consists of 1000 points drawn from

5 randomly generated subspaces with non-orthogonal basis

vectors, 200 points are drawn from each subspace. D2 is

thus harder, and bigger than D1.

METHOD DATASET D1 DATASET D2

TIME(S) ERROR TIME(S) ERROR

K-MEANS 0.68 27.4% 3.92 26.2%

PCA 0.37 27.4% 1.58 25.3%

T-SNE 11.68 11.3% 18.20 9.8%

RBM 3.29 26.6% 4.56 19.4%

RANSAC 134.80 66.6% 612.43 38.4%

SSC 365.29 0% 760.48 0%

K-RBM 0.46 0% 4.58 0%

Table 1: Running Time and Misclassification Errors of var-

ious methods on synthetic D1 and D2 datasets. K-RBMs

are comparable to SSC in terms of accuracy, but practically

much faster.

The clustering results are reported in table 1 in terms of

misclassification error and the running time of these algo-

rithms. We chose 36 principal components for PCA. All the

RBMs had 144 Gaussian visible units. Each RBM in the

K-RBM had 36 binary hidden units while the single RBM

had 180. It can be seen that K-RBM is comparable to SSC

in terms of quality metrics, but orders of magnitude faster

as well. Due to the time complexity of RANSAC and SSC

it is impractical to train these models on huge datasets with-

out serious sampling. Kindly note that SSC uses three kinds

of spectral clusterings, and thus gives three error rates. In

table 1 we report the least of the three errors. Typically SSC

uses top K ′ connections (where K ′ is set to the size of the

assumed subspace) in the similarity graph to build the adja-

cency matrix. We observed that using all the connections in

the similarity graph gives better performance.

4.2. K-RBMs for Visual Bag-of-Words

These experiments investigate the second hypothesis:

multi-variate real-valued data generally lies in multiple non-

linear subspaces (e.g. as learnt by K-RBMS) and that there

are further potential clusters within each of the sub-spaces.

This points to a two stage clustering of data: first clustering

coupled with non-linear projection (e.g. K-RBM) followed

by further sub-clustering within each first level cluster. The

second goal of these experiments is to propose an alternative

to the traditional bag-of-words representations used ubiqui-

tously in computer vision applications.

We experiment with 3 datasets here: PASCAL VOC

2007 [7], 15 Scene Categories [14] and Caltech 101 [8].

PASCAL VOC 2007 data has a total of 5011 training im-

ages and 2944 testing images in 20 classes. The 15 Scene

Categories dataset has 4485 images in all split over 15 dif-

ferent scene categories. As in [14], we choose 100 random

images per category for training and the rest for testing. We

repeated the experiments 5 times and report the average ac-

curacy. Caltech 101 has 9146 images, split among 101 dis-

tinct object categories. In these experiments, we sampled

30 random images for training from each of the 101 cat-

egories, getting a total of 3030 training images; the rest

of the images were treated as testing images; however, as

in [14], we limited the number of testing images per cate-

gory to 50. These experiments were repeated 5 times with

random subsampling and the mean classification accuracies

over the five experiments are reported.

128− dimensional SIFT features on all datasets are com-

puted using a scale of 12 and a shift of 6. For the baseline

BoW representation, we cluster SIFT features coming from

10 random images per class into 1000 visual words using

standard K-means. We use a 2nd level spatial pyramid [14]

to get the BoW image representations. For Scene 15 and
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Caltech 101 datasets, we trained a 1-vs-rest classifier for

each class and the test image was assigned the label of the

classifier with the highest score. For PASCAL data, we train

a 1-vs-rest classifier per class and report the mean Average

Precision per class.

In our approach, we create the 1000 clusters in a different

way. We train a K-RBM with K1 components over SIFT

points. The RBMS use 128−dimensional Gaussan visible

units. These are reduced to 20−dimensional real valued

hidden units. The model here is that the feature points in

the original 128-dimensional SIFT space reside in K1 non-

linear 20-dimensional subspaces. Once trained, the K-RBM

partitions the SIFT data points into K1 exhaustive and non-

overlapping (we used hard clustering) subsets. We further

clustered each of the K1 subsets in the trasnformed 20-
dimensional space into K2 clusters using simple K-means

clustering. This is in-line with our hypothesis that within

each sub-space there might be multiple clusters. To keep

the total number of clusters compatible with the baseline

K = 1000, we chose K1 and K2 such that their product

is 1000. The K1 and K2 we report in table 3 for differ-

ent datasets were learnt by using a validation set. Hence,

each SIFT descriptor is first mapped to one of the K1 RBM

clusters and then its transformed representation is further

mapped to one of the K2 clusters giving K = 1000 final

cluster BoW representation for the images. Here too, we

use the 2nd level spatial pyramid for the BoW image repre-

sentation. The same SVM classifier and evaluation method-

ology was used for this new image representation.

METHOD K1 K2 MEAN AP

BASELINE BOW (K-MEANS) - 1000 52.84%

K-RBM BOW 5 200 55.10%

K-RBM BOW 8 125 56.40%

K-RBM BOW 10 100 55.35%

K-RBM BOW 20 50 54.85%

Table 2: Learning Bow by two level clustering: mean clas-

sification AP on VOC Pascal 2007

Overall mean classification average precision (AP) on

various code-books on Pascal 2007 is shown in Table 2. For

K1 = 8, K2 = 125, mean AP is highest, significantly higher

than traditional BoW. Thus learning clusters in a two-stage

process: non-linear subspaces followed by clustering within

each subspace improves the quality of the clustering. Also,

the right balance has to be struck on how the complexity is

distributed between the two stages. The size of projected

RBM spaces (in our case 20-dimensional) is also a factor

in the overall complexity of the representation. These need

to be empirically determined for any dataset.

Results on the 3 datasets are listed in table 3. A 2 level

clustering of SIFT features yields better BoW representa-

tion. This is indicated by better classification performance,

and low mean quantization error on the three datasets. The

mean quantization error is the mean euclidean distance be-

tween the SIFT/K-RBM features and the correspoding clus-

ter centers, divided by the length of the feature vector. Note

that we normalize the SIFT vectors to contain all values be-

tween 0 and 1 (as for K-RBM features) to ensure fair com-

parision. Smaller quantization errors indicate better under-

standing of the feature space.

4.3. Feature learning using K-RBMs

In this section, we compare the classification perfor-

mance of K-RBM features with that of SIFT and Convolu-

tional Deep Belief Networks (CDBN) [16] on Caltech 101

and VOC Pascal 2007 datasets. Note that CDBN classifi-

cation results are unavailable on VOC 2007. Hierarchical

methods such as CDBN work well on Caltech 101 which

has object-centered and cropped images, conducive to hier-

archical learning of artefacts. Pascal data has huge variation

in the scale, position and orientation of objects, even has

multiple objects per image. Dense local K-RBM features

work well even on Pascal because they exploit the invari-

ance of BoW representations.

SIFT and K-RBM features are computed over a dense

grid of 12 × 12 patches with a shift of 6. The component

RBMs have 144 Gaussian visible units and 36 real hidden

units. We also use a 2nd level spatial pyramid [14] to get

the BoW Image representations. We fix the BoW vocab-

ulary size to 1000 as in section 3. We use a linear pega-

sos SVM classifier with the χ2 kernel map for classification

[24]. For Caltech 101, as in section 4.2, we used 30 ran-

dom images per class for training and use the rest for test-

ing, limiting the test images to 50 per category. We repeat

the experiments 5 times and report the mean classification

accuracy. The classification schemes for the two datasets

remain the same as in section 4.2. K1,K2 are learnt us-

ing a validation set. The results are reported in tables 5

and 4 along with State of the Art results based on SIFT-

Fisher vectors as in [4]. Features learnt using K-RBMS

significantly outperform the SIFT and CDBN features. Low

level hand-crafted features work well because of scale, dis-

tortion invariant pooling schemes like BoW and powerful

SVM classifiers. Deep learning methods work because of

semantically meaningful features. Our approach combines

rich features with powerful BoW representation and SVM

classifiers and thus outperforms the two competing classes

of methods.

5. Conclusions
We developed a framework that uses K RBMS to learn

rich, complex, and more meaningful features. K-RBM fea-

tures are projections of the input image patches onto the

non-linear subspaces they lie in. Compared to clustering

methods like SSC and RANSAC, K-RBMS is faster and
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DATASET BASELINE BOW K-RBM BOW

PERFORMANCE MEAN Q.E. PERFORMANCE MEAN Q.E.

VOC PASCAL 2007 52.84% 0.7678 56.40% (K1 = 8,K2 = 125) 0.1620
15 Scene 80.50± 0.5% 0.5635 85.75± 0.6% (K1 = 20,K2 = 50) 0.0840
Caltech 101 68.34± 1.3% 0.6420 72.80± 1.1% (K1 = 8,K2 = 125) 0.1365

Table 3: Classification Performance on VOC Pascal 2007, 15 Scene Categories and Caltech 101

Method Accuracy

SIFT Features 68.3± 1.3%
CDBN (layers 1+2) 65.4± 0.5%
K-RBM Features (K1 = 20) 74.2± 1.7%
STATE OF ART [4] 77.8± 0.6%

Table 4: Caltech 101

Method Mean AP

SIFT Features 52.84%

K-RBM Features (K1 = 20) 58.40%
STATE OF ART [4] 61.69%

Table 5: VOC Pascal 2007

Classification Performance of K-RBM Features on Caltech 101 and VOC Pascal 2007 Datasets.

more accurate. The two stage feature learning where first

stage uses K-RBMs followed by K-Means for BoW helps

improve the overall image representation. K-RBM+K-

means features outperform SIFT+Kmeans and CDBN fea-

tures for image classification. Complex input domains such

as images where input lies in multiple non-linear subspaces,

the K-RBM approach provides a general, robust, and fast

feature learning framework compared to other methods that

are either too computationally intensive or make lots of as-

sumptions about the nature of the data or need a lot of pa-

rameter tuning. So far we have worked with an unsuper-

vised version of K-RBM but this can be extended to super-

vised version where a separate K-RBM can be learnt for

each class.
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