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Abstract

Bag of words models for feature extraction have demon-
strated top-notch performance in image classification.
These representations are usually accompanied by a coding
method. Recently, methods that code a descriptor giving
regard to its nearby bases have proved efficacious. These
methods take into account the nonlinear structure of de-
scriptors, since local similarities are a good approxima-
tion of global similarities. However, they confine their us-
age of the global similarities to nearby bases. In this pa-
per, we propose a coding scheme that brings into focus the
manifold structure of descriptors, and devise a method to
compute the global similarities of descriptors to the bases.
Given a local similarity measure between bases, a global
measure is computed. Exploiting the local similarity of a
descriptor and its nearby bases, a global measure of asso-
ciation of a descriptor to all the bases is computed. Un-
like the locality-based and sparse coding methods, the pro-
posed coding varies smoothly with respect to the underlying
manifold. Experiments on benchmark image classification
datasets substantiate the superiority of the proposed method
over its locality and sparsity based rivals.

1. Introduction
Image classification, i.e. the task of assigning an image

to a class chosen from a predefined set of classes, has gained

much attention in recent years. Most of the recent works

in this area can be categorized into three groups based on

the utilized model. These models include part based mod-

els [8], bag of words(BoW) models [5] and attribute-based

models [16]. Among these, BoW models, which are based

on the representation of affine invariant descriptors of im-

age patches, have proved to have great performance and are

widely used in many applications such as image classifica-

tion [15], image retrieval [20], and human pose estimation

[1].

In spite of recent advancements, image classification re-

mains a challenging task. The complexity is caused by

many factors such as background clutter and highly non-

linear variations in object appearance such as pose, illumi-

nation, and occlusions.

The BoW model is based on representing features ex-

tracted from local patches of an image. Researchers have

empirically found that, assigning each feature to nearby

bases leads to remarkable improvement in accuracy. Au-

thors in [25] proved that under the manifold assumption,

considering local bases in coding is essential for successful

nonlinear feature learning. Developing this idea, Wang et.

al. [23] in their LLC method use k-nearest neighbor bases

in the coding process and set the coding coefficient for other

bases to zero. Since the manifold is locally linear, a linear

similarity measure is used for neighboring bases. Although

this coding scheme captures the local manifold structure,

it’s not capable of binding this information to derive and

utilize the global structure of the manifold. To be more spe-

cific, two features that have different bases in their neigh-

borhood generate completely different codings independent

of their distance on the manifold.

To overcome this drawback, we propose a novel method

called Local Similarity Global Coding (LSGC), that uses

the local similarities between bases to obtain a nonlinear

global similarity measure between local features and bases.

We first show that this coding scheme captures the global

manifold structure and generates a smoother coding com-

pared to LLC. Next, we formulate the coding as a linear

transformation of any local coding (which is obtained by an

arbitrary local coding scheme such as LLC). This formu-

lation is of practical interest when the transformation from

local to global coding is obtained by matrix-vector multipli-

cation. The experimental results show that our method out-

performs the state-of-the-art on several benchmark datasets.

The rest of the paper is organized as follows. In Section

2, we describe basic aspects of an image classification sys-

tem. section 3, discusses related works. In Section 5, we

introduce our method, Finally, in section 6, experimental

results on several benchmark datasets are reported. Finally
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we conclude in section 7.

2. Basic and Notations

In this section, we review aspects of a state-of-the-art

image classification system. The flowchart of this process

can be seen in figure 1. First, local points in the image are

selected or densely sampled, and an affine invariant feature

vector xi called the descriptor vector is extracted from each

local point. Among feature extraction methods, SIFT [18]

and HoG are the most commonly used as in [23, 3, 15].

Each descriptor is represented according to elements in a

codebook B. Each of these elements are called coding vec-

tors ui. Columns of B are salient features in the image.

Different algorithms use different codebook learning and

coding schemes.

To aggregate the information of different local codings

into one feature vector, local codings from image patches

are merged together using a predefined pooling function:

v = F(U) (1)

where the ith column of U is the coding vector ui, F is

the pooling function and v is the image feature vector. Dif-

ferent pooling functions producing different feature vectors

are used in literature. Among them are max pooling [24],

sum normalization [19], sum pooling and �2 normalization.

However, recent work empirically shows that the max pool-

ing function leads to superior performance [24, 23]. The

max pooling function can be defined as:

vj = max(|u1j |, |u2j |, . . . , |ulj |) (2)

where uij is the jth element of ui and l is the number of

local points for each image.

In the last step, image features v are used for classifi-

cation. A typical choice is the SVM classifier with Mer-

cer Kernel such as linear kernel, intersection kernel or Chi-

square kernel.

The method described so far does not take into acount

the spatial information of the local points. Following the

procudure suggested in [15] each image is divided into 2�×
2� subregions for � = 0, 1, . . . and temporal features are

computed by applying the pooling function to each region.

The final feature vector is represented by concatenating all

the temporal features.

Recent works mainly differ from each other in their dic-

tionary learning and coding schemes. We pay close atten-

tion to these aspects in the following section.

In the rest of the paper consider base bi as the ith column

of dictionary matrix B which has a total of c columns. xi

and ui are the local feature and corresponding coding for

the ith local keypoint respectively.

3. Related Work
In this section, we review commonly used methods in

coding and dictionary learning for image classification. In-

spired by the success of BoW in text categorization, au-

thors in [5] used BoW for image classification task. In this

method the codebook is the cluster centers that are learned

using k-means. Vector quantization (VQ) is used to gener-

ate coding. Therefore, each code has only one non-zero el-

ement that indicates to which cluster the vector xi belongs.

An SVM with nonlinear kernel is used for classification.

In ScSPM [24] the VQ constraint is relaxed in such a way

that each local feature can be represented by a few number

of bases. The objective function is defined as:

min
U,B

n∑
i=1

(||xi −Bui||2 + λ|ui|)

subject to ||bk|| ≤ 1, k = 1, 2, . . . , c

(3)

where xi and ui are descriptor and coding vectors of the

ith local point respectively. n is the total number of local

points and there are c bases in the dictionary B. The first

term represents the reconstruction error and the second term

controls the sparsity of coding ui. λ balances the trade-

off between reconstruction error and sparsity. The sparsity

prior plays a key role in coding, because it ensures that the

coding captures outstanding patterns in local features. Be-

sides, the reconstruction error in this method is less than

that of VQ coding. Classification is performed using a lin-

ear SVM that surpassed the state-of-the art performance of

its time. Therefore, the complexity of O(n3 ∼ n2) in train-

ing and O(n) in testing is reduced to O(n) and constant

time respectively.

Although ScSPM proves its performance it has one a ma-

jor drawback: the coding does not change smoothly when

xi varies on the manifold. LScSPM [10] tries to overcome

this problem by using manifold assumption. Its objective

function is:

min
U,B

n∑
i=1

(||xi −Bui||2 + λ|ui|) + β
∑
ij

||ui − uj ||2wij

subject to ||bk|| ≤ 1, k = 1, 2, . . . , c

(4)

where wij denotes the similarity between local features i
and j. This objective function differs from standard sparse

coding in the regularization term, which guarantees that the

sparse code varies smoothly on the data manifold. The in-

terpretation of smoothness term is that when wij for two

local feature is high, their codings must be close in Eu-

clidean space. Despite the novelty of the idea, the opti-

mization is hard to tackle due to the large quantity of local

features. Therefore, the execution time for this algorithm is
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Figure 1: BoW image classification system

very great, and it is impractical for many real-world appli-

cations.

As suggested in [23], locality is more important than

sparsity. The fundamental assumption in their method is

that the local features lie on a nonlinear m dimensional

manifold where m is less that the dimension of the ambi-

ent space. The LLC [23] is also based on this assumption.

Mentioning locality, brings into consideration the nonlinear

structure of the data manifold in the coding process. The

coding coefficient is obtained by solving:

min
U,B

n∑
i=1

(||xi −Bui||2 + λ||di � ui||2)

subject to ||bk|| ≤ 1, k = 1, 2, . . . , c

1�ui = 1

(5)

where � denotes pairwise multiplication. Let dist(xi, bj)
denote the Euclidean distant between local feature i and ba-

sis j. Elements of di are given by:

dij = exp (
dist(xi, bj)

σ
) (6)

σ is a parameter that controls locality. In practice the second

term is ignored and coding for each descriptor is obtained

by optimizing only the first term using only k-nearest bases.

This leads to non-zero coefficients for the k-nearest bases

and zero for the others. The remarkable success of LLC

supports the assumption that data are laid on the manifold.

Localized soft-assignment coding [17] expresses the

coding coefficient as the probability that a local feature xi

belongs to a basis bj and surpasses the performance of LLC.

Its local similarity measure is defined as:

pij =
exp (−βd̂(xi, bj))∑n
l=1 exp (−βd̂(xi, bj))

d̂(xi, bj) =

{
d̂(xi, bj) = dist(xi, bl) if bl ∈ k-NN(xi)
∞ otherwise

(7)

where dist(xi, bj) is a distance (e.g. Euclidian) in the am-

bient space. Similar to LLC, coefficients for the k-nearest

bases are computed and the others are set to zero.

Local coding methods like LLC and soft-assignment

coding implicitly give regard to manifold structure, since lo-

cal similarity a is valid approximation only for neighboring

points. However, these methods disregard global similari-

ties between data, which could be captured using nonlinear

similarity estimation methods.

4. Motivation
Recent image classification methods that look at both re-

construction error and locality in dictionary learning prove

to have top-notch performance [23]. Looking at locality is

a struggle to take the underlying nonlinear structure of local

features into account. Locality ensures that nearby bases

are preferred in coding data points, and this implicitly dis-
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Figure 2: Kmeans dictionary learning. The blue circles are

cluster centers and red circles are descriptors. The bases

inherit the geometry of descriptors

criminates in favor of the bases on the underlying manifold.

Since bases are usually samples of the manifold, the dis-

tance (or similarity) of data to these bases is an appropriate

feature that embodies the geometry of the data.

Usual coding methods learn the bases by considering the

manifold structure either explicitly or implicitly. To elab-

orate, we refer to a closely related trend in large-scale and

online manifold learning literature that tries to find only a

few bases in order to best preserve the manifold structure.

These methods rely on quantization [21], sampling [11],

and coarse graining [6] to reduce the number of data points

and simultaneously minimize geometric information loss.

Authors in [26] proposed a method with desirable theoret-

ical properties, which quantizes the support of data into a

mixture of Gaussians that cover the manifold. One can eas-

ily see that k-means is an especial case of the mixture model

when the covariance matrix is an identity matrix. Thus,

the bases which are learned by k-means trace the manifold

structure of local features. Figure 2 illustrates how the bases

learned by k-means cover the whole structure of data. The

centers of the k-means can be viewed as samples of the data

that inherit the underlying geometry.

The fact that these bases trace the manifold is a moti-

vation to take the natural similarity between bases into ac-

count when coding as well. This leads to a better utilization

of manifold structure in the coding process. Exploiting the

non-linear dependence of bases to each other a framework

is proposed in order to find a global coding scheme for a

descriptor.

5. Proposed Method
Methods that take into account the manifold structure use

only the k nearest bases in the coding process. This is due

to the fact that the Euclidian distance in the ambient space

is valid only for nearby points. In this paper we present a

novel algorithm extending the methods which rely only on

local similarities between data and bases. We claim that

local similarities between bases are valuable in the sense

that they can be used to estimate global similarities between

local features and bases.

Considering bases learned by k-means, a local similarity

between bases is proposed, which is then utilized to find a

global similarity with regard to the manifold structure. At

last a coding scheme is presented to derive global similari-

ties between descriptors and bases.

5.1. Local Similarity

Choosing the similarity measure is arbitrary and the

approach taken by any existing method (Gaussian kernel,

LLC, Sparse Coding) can be adopted. We take the Gaus-

sian kernel approach which is commonly used as a local

similarity measure in the manifold learning methods [2]:

W (i, j) =

{
exp(− ||bi−bj ||2

σ ) if bj ∈ k-NN(bi)
0 otherwise

(8)

While W captures only local similarities, in the next subsec-

tion we propose a probabilistic framework to find a global

measure of the probability that a base belongs to other

bases.

5.2. From Local to Global Similarity

Given a matrix W that contains local similarities be-

tween bases, stochastic matrix P is defined by normalizing

W :

P = D−1W (9)

where D is a diagonal matrix and Dii =
∑

j Wij . The

normalization ensures
∑

j Pij = 1. Since W contains the

similarities, P may be seen as a stochastic matrix where

Pij = p(bj |bi) expresses the a posteriori probability that

base j belongs to i. p(bj |bi) can be interpreted as the prob-

ability that bj is a member of a Gaussian distribution with

mean bi and variance σ.

As matrix P measures the similarities between neigh-

boring bases, the similarity between non-neighboring bases

can be computed indirectly by random walks on the

graph which has the adjacency matrix W [13]. Suppose

p(2)(bk|bi) represents indirect belonging of bi to bk which

is not among bi’s neighbors. Superscript 2 means an indi-

rect dependence via 2 steps:

p(2)(bk|bi) =
c∑

l=1

p(bk, bl|bi) =
c∑

l=1

p(bk|bl)p(bl|bi) (10)
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Therefore, elements of the matrix P 2 are indirect similari-

ties of order 2. Similarities of higher orders are defined in

the same manner, i.e. for the similarity of order t we use

similarity of order t− 1:

p(t)(bk|bi) =
c∑

l=1

p(bk|bl)p(t−1)(bl|bi) (11)

One can easily see that matrix P t captures the similarities

of order t.
This representation is crucially affected by the locality-

scale parameter t. Although for every t, P t can be regarded

as a measure of non-local similarity, a better measure of

dependence of basis j on basis i can be defined as:

S =
1

t

t−1∑
m=0

Pm, (12)

which considers a multi-resolution non-local dependence

from very local to more global ones. S can be regarded

as a new probability measure of dependence for the bases.

In fact Sij = p(<t)(bj |bi), which is the probability that bi
belongs to bj considering locality of order 0 to t− 1.

5.3. LSGC coding

Suppose a new descriptor, xi, has to be encoded. First

its local coding ui is computed via its k nearest bases:

uij = p(bj |xi) =

{
1
Z exp(− ||xi−bj ||2

σ ) if bj ∈ k-NN(xi)
0

otherwise

(13)

where Z is a normalizing constant. It is the same as used

by soft-assignment coding in [17]. Any other local coding

scheme may be used alternatively.

Belonging of xi to a non-neighboring basis bk can be

computed indirectly using the global similarity between

bases and the local coding of xi:

p(bk|xi) =
c∑

l=1

p(<t)(bk|bl)p(bl|xi) =
c∑

l=1

Slkuil (14)

which may be equivalently written as:

gi = S�ui, (15)

where gi is the global coding we acquire for the descriptor

xi.

The overall algorithm is shown in Algorithm 1.

Now we mention some nice aspects of our proposed cod-

ing:

Remark 1. The especial case t = 1 in equation (12)

leads to the same coding as that of the previous works which

consider local similarities. Larger ts lead to more global

Algorithm 1 LSGC Coding

Input: bases bj , locality parameter t, descriptors xi,

bandwidth parameter σ
Output: global coding for each descriptor gi
———————————

W (i, j)←
{

exp(− ||bi−bj ||2
σ ) if bj ∈ k-NN(bi)

0 otherwise

{Normalize W}
Dii ←

∑
j Wij

P ← D−1W
{compute the global similarity measure between bases}
S ← 1

t

∑t−1
m=0 P

m

for all xi do
{ Compute its local coding p(bj |xi)}
uij ←

{
1
Z exp(− ||xi−bj ||2

σ ) if bj ∈ k-NN(xi)
0 otherwise

{Compute its global coding}
gi ← STui

end for

measures. In the extreme case, when t → ∞ all the bases

become indistinguishable in the term of similarity. Suffi-

ciently large t should be selected based on the resolution at

which we look at the locality.

Remark 2. Equation (15) is a linear transformation on

the previously computed local coding. It is surprising how

a linear transformation can encode the descriptors consider-

ing the nonlinear geometry of the data. In fact, S itself is

built based on a non-linear transformation of the matrix P
and stores our prior belief about the geometry or distribu-

tion of bases along the manifold. Moreover it is of practical

interest, because global coding of every descriptor can be

calculated efficiently via a transformation by a precomputed

matrix S.

Remark 3. Our method is superior to conventional

methods which try to consider manifold structure of data

by solely using k-NN to construct the local coding. Our

method leads to a coding which varies smoothly with re-

spect to the manifold. For illustration consider figure 3.

Three descriptors x1, x2, and x3 are going to be coded. For

the methods like LLC and soft-assignment coding which

only consider k nearest bases (figure 3a) d(u1, u2) =
d(u1, u3); or equivalently similarity of coding u1 to u2 is

the equal to similarity of u1 to u3. However, by consider-

ing the manifold structure x1 and x2 are closer compared

with the pair x1 and x3. The proposed method in figure

3b overcomes this shortcoming by propagating similarities

along bases, so g1 and g2 share more nonzero elements i.e.,

d(g1, g2) < d(g1, g2).
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(a) Local coding

(b) Global coding

Figure 3: Comparing local and global coding scheme.

6. Experiments

6.1. Hand-written Image Classification

In this study we aim to compare the classification perfor-

mance of a Linear SVM with different coding schemes. We

compare LSGC to LLC [23], soft assignment coding (SAC)

[22], and localized soft assignment coding (LSAC) [17] on

different benchmark image and hand-written letter datasets.

Table 1 summarizes the characteristic of each dataset. Each

feature vector is normalized to have length of 1. In SAC

method for each data point x, despite localized soft assign-

ment coding, all coding coefficients are computed. In this

experiment, LSAC is equivalent to LSGC with t = 1. The

parameters are set by 5-fold cross-validation. In LSGC, we

set k to one the best result is achieved for t = 1 in cross-

validation. We then fix k and increment t until the best ac-

curacy is achieved in cross-validation. In all the methods,

at most 4000 points are used for learning a dictionary con-

taining 1000 atoms. Table 2 reports the average accuracy

and standard deviation in 20 independent runs with 20 la-

beled points per a class. The value of t obtained by cross-

validation are reported for each dataset. In Table 2, with the

exception of Letter dataset, LSGC with t larger than one im-

proves the accuracy by propagating the coefficients. How-

ever both LLC and LSAC use the locality constraint, LLC

does better in most cases. It can be concluded that on empir-

ical data, representing coefficient by the reconstruction term

is more efficient compared to the Gaussian kernel. In gen-

eral, LSGC outperforms other coding methods with small

numbers of labeled points.

6.2. Natural Image Classification

To evaluate our method, we compare LSCG to other

methods in the literature using two benchmark datasets:

CIFAR-10, Caltech-101.

In the preprocessing step, each image is converted to a

gray-scale and its size is reduced to be less that 300 pix-

els in both width and height. We use SIFT descriptors ex-

tracted from one level 8× 8 pixel patches, where the center

of each patch lies on a grid with step size of 4 pixels. After

obtaining the descriptors, the codebook is learned by using

k-means clustering . Codebook sizes are fixed to 1000 in

each dataset. Employing the max pooling method, we ob-

tain the temporal features. We use SPM with l = 0, 1, 2 to

calculate the final feature vectors. The parameter t is fixed

to 3 for all experiments. We consider five nearest neighbors

in coding process and the bandwidth size parameter σ is set

to the mean of standard deviation of the bases.

To evaluate the sensitivity of our method to the training

size, we calculate the accuracy of our algorithm with differ-

ent training sizes. After feature extraction the linear SVM

is used to classify the test data points. Results are reported

under 10 independent runs on each dataset. The LLC im-

plementation is provided by the authors.

6.2.1 CIFAR-10

CIFAR-10 [14] contains 60000 natural images in 10 cate-

gories. We use test batch that consists of 10000 images. To

evaluate the effect of parameter t, the results are reported for

locality steps t = 1, 2, 3, 4. Note that for t = 1, our method

is reduced to soft-assignment coding [17]. For training, we

randomly sample 25, 50, 75, 100, 200 data from each class.

To have a fair comparison results of LLC [23] are reported

in the same setting in Table 3.

The results show the superiority of LSGC. This is due to

our method takes the geometry of descriptors into account.

Increasing t from 1 to 3 results into an increase in accuracy,

however, saturates for t > 3. It is emprically seen that for

t > 3 all the coefficients are nonzero, i.e. the local sim-

ilarity propagate sufficiently on the whole manifold. This
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Table 1: Characteristics of datasets.

Dataset Name #Instances #Attributes #Classes Feature Set

COIL20 1440 1024 20 32× 32 raw image

COIL [4] 1500 241 6 -

Digit [9] 5620 64 10 -

pendigits [9] 10992 16 10 points regularly spaced in time

USPS 11000 256 10 -

Letter [9] 20000 16 26 statistical moments and edge counts

MNIST 60000 784 10 28× 28 raw image

Table 2: (Prediction Accuracy rate ± standard deviation) with 20 labels per class.

Dataset Linear SVM LLC SAC LSAC LSGC LSGC t

COIL20 0.953± 0.009 0.983± 0.007 0.965± 0.007 0.965± 0.008 0.990± 0.005 5
COIL 0.721± 0.028 0.818± 0.017 0.803± 0.020 0.804± 0.017 0.850± 0.028 35
Digit 0.924± 0.007 0.960± 0.006 0.952± 0.008 0.954± 0.009 0.975± 0.003 35

pendigits 0.866± 0.010 0.943± 0.007 0.945± 0.009 0.946± 0.010 0.951± 0.011 3
USPS 0.809± 0.010 0.891± 0.012 0.827± 0.017 0.834± 0.016 0.902± 0.007 32
Letter 0.629± 0.012 0.718± 0.006 0.707± 0.009 0.707± 0.009 0.708± 0.012 1

MNIST 0.789± 0.009 0.872± 0.007 0.824± 0.019 0.834± 0.016 0.891± 0.009 16

Figure 4: Effect of locality step parameter in CIFAR-10 ac-

curacy. By increasing t over a threshold there will be no

increase in the accuracy

phenomena is illustrated in Figure 4.

6.2.2 Caltech-101 Dataset

Caltech 101 [7] contains 9144 images of 101 classes includ-

ing animals, vehicles, flowers, etc which is highly diverse.

The number of images per category varies from 31 to 800.

We examined the proposed algorithm on 5, 10, 15, 20, 25

and 30 training images per class. For comparison the results

for several image classification method which is reported in

the literature is illustrated in Table 4. We claim that the

superiority of the results is due to considering global simi-

larities in the coding process.

Table 4: Image classification accuracy(%) on Caltech-101

#Training 5 10 15 20 25 30

NN [3] - - 65.00 - - 70.40

Griffin [12] 44.2 54.5 59.0 63.3 65.8 67.60

ScSPM [24] - - 67.0 - - 73.2

LLC [23] 51.15 59.77 65.43 67.74 70.16 73.44

LSGC 54.01 63.86 68.70 71.58 73.73 75.07

7. Conclusion and Future Work
In this paper, we presented a method that uses the in-

formation about manifold structure of descriptors, to infer

a global similarity measure between bases and descriptors.

We showed that by using a linear transformation that em-

bodies the manifold information, we can obtain global sim-

ilarities from the local ones. In addition, by using global

similarities between bases and descriptors in the coding pro-

cess, a smoother coding is obtained compared to previous

methods.
Our methods relies on the fact that the bases are sampling

the data manifold which is done by k-means. Incorporating
dictionary learning methods which take the manifold struc-
ture into account is remains as future work. Utilizing coarse
graining algorithms which are sensitive to the geometry of
the data is another open issue in our work.
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