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Abstract

We present a robust and efficient technique for match-
ing dense sets of points undergoing non-rigid spatial trans-
formations. Our main intuition is that the subset of points
that can be matched with high confidence should be used
to guide the matching procedure for the rest. We propose
a novel algorithm that incorporates these high-confidence
matches as a spatial prior to learn a discriminative sub-
space that simultaneously encodes both the feature similar-
ity as well as their spatial arrangement. Conventional sub-
space learning usually requires spectral decomposition of
the pair-wise distance matrix across the point-sets, which
can become inefficient even for moderately sized problems.
To this end, we propose the use of random projections for
approximate subspace learning, which can provide signif-
icant time improvements at the cost of minimal precision
loss. This efficiency gain allows us to iteratively find and re-
move high-confidence matches from the point sets, resulting
in high recall. To show the effectiveness of our approach,
we present a systematic set of experiments and results for
the problem of dense non-rigid image-feature matching.

1. Introduction

Matching interest-points across images has been a long-

standing problem in Computer Vision [23] [30]. This prob-

lem is particularly challenging as point-sets become more

dense, and their spatial transformations become more non-

rigid. Perturbations due to sensor noise also play a signifi-

cant role to further exacerbate the problem.

Some of these challenges can be addressed by trying to

maintain the spatial arrangements of corresponding points

during matching. Most of the previous approaches that

bring the spatial arrangement of points into account are

computationally expensive, and are therefore not feasible

for dense matching [2] [28] [16] [4]. Recently, Torki and

Elgammal [26] proposed an efficient method for matching

points in a lower-dimensional subspace, that simultaneously

encodes spatial consistency and feature similarity [26] [27].

However, this method still requires exact spectral decompo-
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Figure 1: Given two sets of feature-points, we learn a subspace

S that maintains their across-set feature similarity and within-set

spatial arrangement. We use random projections to approximately

learn S efficiently. We project feature-points to S, and use bi-

partite graph to find their matchings. We select points with high

confidence matches, and use them as a spatial prior to to learn

a subspace that reduces the confusion among the remaining set

of points. This process is repeated until no more points can be

matched with high confidence.

sition for subspace learning, which limits its efficiency im-

provements. In addition, the method is not robust to large

amounts of non-rigid distortion or feature noise.

In this paper, we propose a framework that improves

upon the existing methods to address the issues of robust-

ness and efficiency. Our approach has two key elements:

• Iterative matching with spatial priors: We propose to

use the subset of high confidence matches as spatial

priors, to learn a subspace that reduces the confusion

among the remaining set of points. We repeat this pro-

cess until no more points can be matched with high

confidence. This approach provides higher robustness
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in the face of noise and distortion.

• Approximate subspace learning with random projec-
tions: Instead of using exact spectral decomposition,

we propose the use of random projections [31] for

approximate subspace learning. This significantly re-

duces the computational complexity of subspace learn-

ing at the cost of minimal precision loss, and makes

it feasible to tackle matching problems that are pro-

hibitively expensive for existing approaches.

To show the competence of our framework, we present a

comparative analysis of how different approaches perform

for varying levels of feature noise and non-rigid distor-

tion. We demonstrate that our approach outperforms alter-

nate methods both in the face of noise and distortion, with-

out incurring any additional costs in time complexity. The

overview of our approach is illustrated in Figure 1.

We start by formalizing an approach for point matching

using subspace learning in Section 2, followed by the de-

tails of our approach of iterative subspace learning using

spatial priors, presented in Section 3. In Section 4 we ex-

plain how to efficiently learn approximate subspaces using

random projections as opposed to exact spectral decompo-

sition. We present our experiments and results in Section 5,

and conclude our paper in Section 7.

2. Point Matching Using Subspace Learning

For dense point matching problems, it is important that not

only the feature similarity of matched points is maximized,

but also that their spatial arrangements are maintained. To

this end, subspace learning approaches try to find a lower

dimensional manifold that maintains the across-set feature

similarity as well as the within-set spatial arrangement of

points. The intuition here is that a matching problem based

on the similarities in the learned subspace, will implic-

itly also take into account their spatial arrangements. The

matching problem can then be expressed as a classic bipar-

tite problem in the learned subspace, which can be solved

using various methods [10] [23]. We now formally define

the subspace learning problem that forms the basis of our

approach described in the following sections.

2.1. Preliminaries

We follow Torki and Elgammal’s formulation of the sub-

space learning problem [26]. Consider two1 sets of fea-

ture points X1 and X2 from two images, where Xk =
{(xk

1 , f
k
1 ), · · ·, (xk

Nk
, fk

Nk
)} for k ∈ {1, 2}, and Nk denotes

the number of points in the kth point-set, while N denotes

the total number of points in both point-sets. Each point

(xk
i , f

k
i ) is defined by its spatial location in its image plane

1This formulation is extendable to multi-set problems as well [26].

xk
i ∈ R

2, and its feature descriptor fk
i ∈ R

D, where D is

the dimensionality of the descriptor.

The spatial arrangement of points Xk is encoded in a

spatial affinity matrix denoted by Sk
i,j = Ks(x

k
i , x

k
j ). Here,

Ks(·, ·) is a spatial kernel that measures the spatial proxim-

ity of points i and j in set k. Similarly, the feature simi-

larity of point pairs across X1 and X2 is encoded in a fea-
ture affinity matrix Up,q

i,j = Kf (f
1
i , f

2
j ) , where Kf (·, ·) is

an affinity kernel that measures the similarity of feature i
in set p to feature j in set q. Note that Ks and Kf are

within and across set operators respectively. A common

choice for the spatial and feature kernels is Ks(x
k
i , x

k
j ) =

e−||x
k
i−xk

j ||2/2σ2
s and Kf (f

1
i , f

2
j ) = e−||f

1
i −f2

j ||2/2σ2
u re-

spectively. The bandwidth parameters σs and σu control

the importance given to spatial consistency and feature sim-

ilarity respectively [26].

2.2. Subspace Learning

Let Y k = {yk1 , · · ·, ykNk
} be the set of points corresponding

to Xk, projected into the desired subspace. Here yki ∈ R
d

denotes the projected coordinates of point xk
i , and d is

the subspace dimensionality. Subspace learning can be ex-

pressed as minimizing the following objective [26]:

φ(Y ) =
∑
k

∑
i,j

||yk
i − yk

j ||Sk
i,j +

∑
p,q

∑
i,j

||yp
i − yq

j ||Up,q
i,j (1)

Here k, p, and q ∈ {1, 2}, and p �= q. Intuitively, the first

term of Equation 1 tries to keep the subspace coordinates

yki and ykj of any two points xk
i and xk

j close to each other

based on their spatial kernel weight Sk
i,j . Also, the second

term tries to minimize the distance between points ypi and yqj
if the value for their feature similarity kernel Up,q

i,j is high.

Equation 1 can be re-written using one set of weights

defined on the entire set of input points as

φ(Y ) =
∑
p,q

∑
i,j

||yp
i − yq

j ||Ap,q
i,j (2)

where the matrix A is defined as:

Ap,q
ij =

{
Sk
i,j if p = q = k

Up,q
i,j otherwise

(3)

Here Ap,q is the (p, q) block of A. The matrix A is an N ×
N weight matrix with K × K blocks, such that the (p, q)
block is of size Np × Nq . The kth diagonal block of A is

the spatial structure kernel Sk for the kth point-set. The

off-diagonal (p, q) block is the descriptor similarity kernels

Up,q . The matrix A is symmetric by definition, since the

diagonal blocks are symmetric, and Up,q = Uq,pT

.

Equation 2 is equivalent to the Laplacian embedding
problem for the point-set defined by the matrix A [1]. This

problem is often expressed as:

Y ∗ = arg min
Y TDY =I

tr(Y TLY ) (4)
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s = 0.5, u = 0.1 s = 0.5, u = 0.5 s = 0.5, u = 1.0

Total: 1182, Detected: 832,  TP: 254 (30%), FP: 578 (69%), FN: 604 (51%) Total: 1182, Detected: 102,  TP: 53 (52%), FP: 49 (48%), FN: 1080 (91%) Total: 1182, Detected: 73,  TP: 42 (58%), FP: 31 (42%), FN: 1109 (94%)

s = 0.1, u = 1.0s = 0.5, u = 1.0s = 1.0, u = 1.0

Total: 1182, Detected: 190,  TP: 85 (45%), FP: 105, (55%) FN: 578 (49%) Total: 1182, Detected: 73,  TP: 42 (58%), FP: 31 (42%), FN: 1109 (94%) Total: 1182, Detected: 12,  TP: 11 (92%), FP: 1 (8.3%), FN: 1170 (99%)

Figure 2: The top row shows the variation of the feature kernel (σu) from 0.1 to 1.0, with the spatial kernel (σs) fixed at 0.5. The bottom

row shows the variation of the σs from 1.0 to 0.1, while σu being fixed at 1.0. Red and yellow lines show wrong and correct matches.

where L is the Laplacian of the matrix A defined as L =
D−A. D is the diagonal matrix defined as Dii =

∑
j Ai,j .

The N × d matrix Y is the stacking of the desired subspace

coordinates, such that:

Y = [y1
1 , · · ·, y1

N1
, y2

1 , · · ·, y2
N2

, yK
1 , · · ·, yK

NK
] (5)

Equation 4 is a generalized Eigenvectors problem [1]:

Ly = λDy (6)

The optimal solution of Equation 4 can therefore be ob-

tained by the smallest d generalized Eigenvectors of L. The

required N subspace-embedded points Y are stacked in d
vectors such that the embedding of the first point-set is the

first N1 rows followed by N2 rows for the second point-set.

2.3. Bipartite Matching in the Learned Subspace

Once the lower-dimensional subspace has been learned, we

can compute the affinity matrix G among projected point-

sets Y 1 and Y 2. Following the Scott-Higgins correspon-

dence algorithm [23], the matching problem can be ex-

pressed as finding a permutation matrix C that rearranges

the rows of G to maximize its trace. When the exact permu-

tation constraint on C is relaxed to an orthonormal matrix

constraint, the permuted version of matrix G maximized

trace can be computed as:

G∗ = UIV T
(7)

where the SVD decomposition of G is UΣV T . A match

between a point i in set one and j in set two is found, if the

entry G∗i,j is the maximum in the ith row and jth column

of G∗. The value of G∗i,j can be interpreted as the confi-

dence of the matching between points i and j. The overall

subspace learning algorithm is summarized in Algorithm 1.

Algorithm 1 MATCHING WITH SUBSPACE LEARNING

Input: X1, X2, σs, σu

Output: MappingsM : X1 ↔ X2

1: Compute matrices Sk, Up,q , A, D, and L
2: Find Y using the last d generalized Eigenvectors of L
3: Compute G from pair-wise distances of Y 1 and Y 2

4: Decompose G = UΣV T

5: Compute G∗ = UIV T

6: Search rows and columns of G∗ to findM : X1 ↔ X2

3. Subspace Learning with Spatial Priors
The space complexity of Algorithm 1 is O(N2), which is

significantly less than the O(N4) complexity for most of the

previous point matching approaches that also incorporate

spatial constraints [2] [28] [16] [4]. To motivate the usage

of spatial priors in subspace learning, we analyze how the

gain in space complexity offered by Algorithm 1 affects its

matching-performance, specially when there is significant

confusion between feature points. One way to do this is to

analyze the precision-versus-recall tradeoff of Algorithm 1

over the entire range of the kernel bandwidths σu and σs.

3.1. Analyzing The Role of Kernel Bandwidths

We consider an image with many repetitive patterns, and

flip it along its y-axis to create the second image (Figure 2).

This ensures that there are many local minima in the match-

ing space of the points from the two images. We vary either

σs or σu, while keeping the threshold for selecting confident

matches at a fixed value. The results are shown in Figure 2.

As shown, while varying either σs or σu, any increase

in precision comes at a significant cost of a decrease in re-

291429142916
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Figure 3: The figure illustrates the projection of points from their

respective 2 −D image coordinate spaces to a shared m = 3 di-

mensional space, where each dimension corresponds to how close

a point is to one of the m = 3 anchor-points.

call. Notice however that considering precision alone, this

approach can successfully find a subset of highly confident

matches, which are very likely to be correct.

Based on these observations, we propose to use the max-

imally confident matches in order to limit the search-space

of the points that initially do not have any sufficiently confi-

dent correspondence. We use this spatial prior to iteratively

learn a more discriminative subspace which enables us to

find and remove strong matches, until all the sufficiently

strong matches are found.

3.2. Incorporating Spatial Priors

The main intuition behind how we incorporate spatial pri-

ors in subspace learning is as follows. If a point a in set 1
is confidently matched to a point b in set 2, then the neigh-

boring points of b should be given more importance while

searching for a match of any point near a. We now formal-

ize this intuition more concretely.

Suppose we know the ground truth mappings between a

subset of points P ∈ X1 each with a mapping to another

set of points Q ∈ X2. Note that |P | = |Q| = m. We now

compute the pairwise L2 distances of all points in P with

{X1 \ P}, and points in Q with {X2 \ Q}. This opera-

tion can be interpreted as a projection of points from their

respective 2−D image coordinate spaces to a shared m di-

mensional space, where each dimension corresponds to how

close a point is to one of the m anchor-points (see Figure 3).

With both point-sets {X1 \P} and {X2 \Q} in a shared

projected space, we compute their pair-wise L2 distances to

construct an (N1−m)× (N2−m) matrixD. To convertD
from a distance to a similarity matrix, we apply a decaying

exponential kernel e−||D(i,j)||/2σ2
r , to construct a similarity

matrixH. The (i, j)th value inH encodes how much the ith

point in set 1 and jth point in set 2 are in the vicinity of each

other. We can therefore use the matrixH as a multiplicative

kernel to boost up or down the values of feature similarity

matrix Up,q accordingly. This results in a more strict en-

coding of the spatial constraints in our mapping problem,

while maintaining the space complexity of O(N2).
While our approach is well-suited for interactive applica-

s = 0.5, u = 0.5, r = 0.25

Total: 1182, Detected: 879,  TP: 789 (90%), FP: 90 (10%), FN: 303 (25%)

Figure 4: The matching result for the problem given in Figure 2

using iterative spatial priors (Algorithm 2).

tions where a user could provide us with P and Q, in gen-

eral we initialize P and Q as empty sets. At the start of the

first iteration, all values in H are set equal to 1. At the end

of first iteration, we select the top k most confident matches

Mc, and add them to P and Q. This procedure is repeated

over multiple iterations, and is listed in Algorithm 2.

The matching result for the problem given in Figure 2

using our iterative spatial priors scheme (Algorithm 2) is

presented in Figure 4. As shown, we are able to achieve a

significantly higher precision and recall rates compared to

Algorithm 1 for any value of σs or σu.

4. Random Projections for Subspace Learning
We now turn our attention to the efficiency aspects of our

iterative subspace learning approach for the dense point

matching problem. Conventional subspace learning usually

requires spectral decomposition of the point-set’s pairwise

distance matrix, which for larger matrices can be compu-

tationally expensive2. Repeating this procedure multiple

times in Algorithm 2 while using an exact matrix decom-

position approach would make it infeasible.

To this end, we propose to use the method of random

projections [31] as an approximate way to perform spectral

partitioning of matrix L. Approximate partitioning methods

are well-suited for our framework since in each iteration we

are interested only in high confidence matches, which are

2For a 1, 000 × 1, 000 problem, close to 85% of the time taken by

Algorithm 1 is for subspace learning

Algorithm 2 SUBSPACES WITH SPATIAL PRIORS

Input: X1, X2, P = Q = φ, σs, σu, σr,M = φ
Output: MappingsM : X1 ↔ X2

1: Compute matricesH, Sk, and Up,q

2: Up,q = Up,q · H
3: FindMc : X

1
mc
↔ X2

mc
using Algorithm 1

4: If |X1
mc
| = |X2

mc
| = φ, return

5: P = P ∪X1
mc

, and Q = Q ∪X2
mc

6: X1 = X1 \X1
mc

, and X2 = X2 \X2
mc

7: M =M∪Mc

8: Go to step 1.

291529152917



least impacted by the errors introduced by using an approx-

imate subspace instead of an exact one [14].

4.1. From Generalized to Regular Eigenvectors

To use random projections for subspace learning, we first

need to convert the generalized Eigenvector problem of

Equation 6, to a regular Eigenvector problem. This can be

done in the following two steps.

Step 1 - Consider the following Eigenvector problem:

Ax = λ2Dx (8)

i.e.,
(D − L)x = λ2Dx (9)

where λ2 denotes the largest k generalized Eigenvectors

that satisfy the constraint of Equation 9.

Solving Equation 9 leads to the following equation:

Lx = (1− λ2)Dx (10)

Comparing Equations 6 and 10 gives:

λ1 = 1− λ2 (11)

implying that λ1 are the smallest k Eigenvectors of L.

Step 2 - Equation 9 can be re-written as:

D−1/2AD−1/2D1/2x = λ2D
1/2x (12)

Denoting
D1/2x = y (13)

and
B = D−1/2AD−1/2

(14)

Equation 12 becomes

By = λ2y (15)

Using Equation 13, we can find the largest k generalized

Eigenvectors of A from the largest k regular Eigenvectors

of B. In step 1 we have already shown that the largest k
generalized Eigenvectors of A correspond to the smallest

k generalized Eigenvectors of L. Combining step 1 and 2
lets us find the smallest k generalized Eigenvectors of L, by

finding the largest k regular Eigenvectors of B.

4.2. Approximate Subspace Learning

Having converted our generalized Eigenvector problem in L
and D, into a regular Eigenvector one in B, we now explain

how to find the top k approximate Eigenvectors of B using

random projections [14].

Given a matrix B, a target rank k, and an oversampling

parameter p, we seek to construct a matrix Q such that:

||B −QQ′B|| ≈ min
rank(Z)≤k

||B −QZ|| (16)

Algorithm 3 FAST SVD USING RANDOM PROJECTIONS

Input: An n× n matrix B (here n = N1 +N2)

Output: Approximate rank-k SVD of B

1: Draw an n× k matrix Ω ∼ N(0, 1)
2: Form the n× k sample matrix Y = BΩ
3: Form the n× k orthonormal matrix Q s.t., Y = QR
4: Form the k × n matrix Z = Q′B
5: Find SVD of Z : Z = ÛΣV ′

6: Form the matrix U = QÛ

where ||.|| represents the L2 norm operator, and Z = Q′B.

Given such a matrix Q, we seek to find an approximate de-

composition of B such that B ≈ UΣV T , where U and V
are the Eigenvectors for the row and column spaces of B
respectively, while Σ are the corresponding Eigenvalues.

Recall that the standard way to decompose a rank-

deficient matrix can be divided into two steps:

• Step 1 - Use Grahm-Schmidt [13] (or an equivalent)

transform to find Q, which is in fact a low-rank or-

thonormal bases for the range (column space) of B.

• Step 2 - Matrix B is then projected to this low-

dimensional space to form the (short and fat) matrix

Z. Finally, Z is spectrally decomposed using SVD to

find the low-rank U and V matrices for B.

The main computational bottleneck for such a scheme is

computing Grahm-Schmidt to find Q. This is because

Grahm-Schmidt requires scanning B iteratively k times,

which can be computationally expensive. Following the

work in [14], we now show how to use randomly generated

vectors to avoid Grahm-Schmidt for finding Q.

The fundamental intuition here is that in higher dimen-

sional spaces, randomly generated vectors are very likely

to be linearly independent. One could therefore generate a

linearly independent subspace Y , of rank k that spans the

range of matrix B, by simply stacking k randomly gener-

ated vectors Ω, and multiplying them by B. This allows

one to generate a linearly independent subspace in a single

sweep of B, while fully exploiting the multi-core process-

ing power of modern machines using BLAS 3. To produce

Q, we just need to orthonormalize Y which is a much less

expensive procedure than orthonormalizing B. We can now

project B onto Q to generate Z, and compute its SVD to

find the low-rank U and V matrices for B. The overall

scheme to find the top k approximate Eigenvectors of B
using random projections is listed in Algorithm 3.

5. Experiments & Results
The focus of this work is on the problem of dense non-rigid

feature matching. While there are public data sets avail-

able for image feature matching problems, they either tackle

291629162918



dense but affine transformations [20], or sparse but non-

rigid transformations [9]. To the best of our knowledge,

there are no public data-sets with ground truth available for

our problem at hand. We therefore decided to simulate non-

rigid transformations on our test images to have the ground-

truth feature mappings, and systematically study the perfor-

mance of different algorithms for dense non-rigid matching.

5.1. Simulating Non-Rigid Transformations

Given an image, we define a grid of points over it. We add

random amounts of perturbations to the grid-points. The av-

erage perturbation added to the points determines how much

non-rigid deformation we introduce to our input image (see

Figure 5). We then use the b-spline framework proposed

in [22] to morph the input image to the deformed output.

We also control how much rotation and feature noise we

add to make the matching task more or less difficult.

5.2. Noise Analysis

For the left image shown in Figure 5, we added 30 degrees

of rotation, and added distortion of 20% of the image width.

We used SIFT features [18] in this work, and perturbed their

values from 5 to 15 times the norm of the average feature

values. We generated 10 trials of this data, and ran different

algorithms on this data. We considered 1000 points in each

point-set, and used 500 dimensional subspaces.

Besides our random projection (RP) based framework

(Algorithm 3), we ran the framework proposed by Torki

and Elgammal [26] (TR), iterative runs of Torki and Elgam-

mal [26] without any notion of spatial priors (N-ISP), our

algorithm proposed in Algorithm 2 that incorporates spatial

priors over multiple runs (ISP), and the greedy matching

algorithm proposed in [19] (GR). The precision and recall

curves for this set of experiments are shown in Figure 6.

The average time taken, precision and recall rates for these

algorithms for a fixed noise level (14) are given in Table 1.

Figure 6 shows that Torki and Elgammal [26] does very

well on the precision, however it degrades very quickly as

the feature noise increases. While the greedy algorithm

takes less then a second to complete, its precision rate de-

grades quite steeply with noise. The N-ISP method takes

the longest to complete, while giving poor precision perfor-

mance. The best performance in terms of both precision and

recall is achieved by ISP, however it takes more than twice

as much time as Torki and Elgammal [26] does. The best

method is our proposed Random Projections based one (RP)

which takes less time than what Torki and Elgammal [26]

does, and approaches our ISP algorithm in matching perfor-

mance, beating all the other competitors.

5.3. Non-Rigid Distortion Analysis

To analyze the performance of the considered algorithms

for different amounts of non-rigid transformations, we gen-

Input Image Less Distortion More Distortion

Figure 5: Given an image, we define a grid of points over it. We

can control the amount of added distortion by varying the random

amounts of perturbations added to each of these grid-points.
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Figure 6: Noise Analysis – average precision and recall curves for

10 trials of varying amounts of feature noise.

erated images with average non-rigid perturbation varying

from 20% to 60% of the image width. Image rotation for

this experiment was kept at 0◦ to study the effect of non-

rigid transformation in isolation from rotation. The amount

of feature noise for this experiment was set at 15 times the

norm of average feature values. The precision and recall

curves for this experiments are shown in Figure 7.

The performance trends for both greedy and N-ISP re-

main similar to what is observed for the noise analysis, and

they remain at the bottom of the lot. Torki and Elgam-

mal [26] report high precision performance, however its

recall gradually degrades with increasing amounts of non-

rigid transformation. The ISP and RP methods give very

close performance both in terms of precision as well as re-

call, and rank the best in the lot. Our method of RP achieves

this result in time that is slightly lower than that taken by

Torki and Elgammal [26]. We did similar experiments for

varying amounts of rotation, and obtained similar perfor-

mance trends.

5.4. Multiple Test Cases

To test the generalizability of our framework, we tried it

on different images of objects which can naturally undergo

non-rigid transformations (e.g., garments, carpets, etc). The

comparative results for these experiments are given in Fig-

ure 8. The behavior of the considered algorithms remains

similar, with ISP and RP performing the best, while RP hav-

ing a significant speed advantage.

6. Related Work
Feature matching is a well-explored problem, where points

undergoing perspective [29] [15] as well as non-rigid ge-

ometric transformations have been studied [17]. The non-
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Figure 8: Different algorithms tested on images undergoing rotation and non-rigid transforms are compared. Here green implies correctly

matched points, while red implies incorrect matches. TP, FP, and FN represent true positives, false positives and false negatives respectively.

rigid problems in particular have been looked at from a dis-

crete [8] [21] as well as continuous optimization based per-

spectives [2] [23] [5]. In graph theoretic approaches, fea-

ture matching is framed as a graph isomorphism problem

between two weighted or unweighted graphs in order to en-

force edge compatibility [24] [30]. Several approaches use

higher order spatial consistency constraints [7], however

such constraints are not necessarily always helpful [2], and

usually even linear constraints can be sufficient [26].

Graph matching algorithms usually apply spectral de-

composition (e.g. SVD [12] [13]) to find manifold sub-

spaces that minimize distances between corresponding

points [2] [27]. Conventionally, work in manifold learn-

ing has focused on finding exact subspaces which can be

computationally quite costing [6]. More recently however,

there has been a growing interest in finding approximate
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Figure 7: Distortion Analysis – average precision and recall curves

for 10 trials of varying amounts of non-rigid image distortion.

TR RP ISP N-ISP GR
T 65±5.2 62±4.3 112±4.8 182±22.9 0.85±0.08

P 96.4±1.3 89.6±3.0 90.3±2.3 78.0±1.7 76.0±2.0

R 63.6±1.1 100±0.0 99.5±0.5 93.6±1.1 100±0

Table 1: Average execution times (T), precision (P) and recall(R)

of different algorithms for ten runs of tests at a noise level of 14
times the norm of average feature values. (TR) shows high pre-

cision but low recall rates. The best performance is given by ISP

(Alg. 2), and RP (Alg. 3). From a computation time perspective,

RP comfortably beats ISP, and is even faster than Torki.

subspaces in return for significant efficiency gains only for

minimal precision loss [3] [31]. This interest has also been

shared by some areas of Computer Vision [11] [25]. This

work shows how approximate subspace learning techniques

could be useful for the feature-matching problem.

7. Conclusions and Future Work
We presented a novel method for matching dense point-sets

undergoing non-rigid transformation. Our approach iter-

atively incorporates high-confidence matches as a spatial

prior to learn discriminative subspaces that encode both the

feature similarity and their spatial arrangement. We pro-

posed the use of random projections for approximate sub-

space learning that provides significant time improvements

at the cost of minimal precision loss. To show the effective-

ness of our approach, we presented a systematic set of com-

parative experiments. Currently, for each iteration of our

algorithm we find a low-dimensional subspace independent

of our previously computed subspaces. Going forward, we

plan to use the previously computed subspace as a warm-

start for the next subspace to gain more efficiency.

Acknowledgements: We would like to extend our

gratitude to Maya Cakmak, Kamal Jain, and Gyanit Singh

for several insightful discussions and useful feedback.

References
[1] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality

reduction and data representation. Neural computation, 2003. 2, 3

[2] T. Caetano, J. McAuley, L. Cheng, Q. Le, and A. Smola. Learning

graph matching. PAMI, 31(6):1048–1058, 2009. 1, 3, 7

[3] E. Candes and T. Tao. Near-optimal signal recovery from random

projections: Universal encoding strategies? Information Theory,
IEEE Transactions on, 52(12):5406–5425, 2006. 8

[4] T. Cour, P. Srinivasan, and J. Shi. Balanced graph matching. NIPS,

19:313, 2007. 1, 3
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