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Abstract

Collective motions are common in crowd systems and
have attracted a great deal of attention in a variety of mul-
tidisciplinary fields. Collectiveness, which indicates the
degree of individuals acting as a union in collective mo-
tion, is a fundamental and universal measurement for vari-
ous crowd systems. By integrating path similarities among
crowds on collective manifold, this paper proposes a de-
scriptor of collectiveness and an efficient computation for
the crowd and its constituent individuals. The algorithm of
the Collective Merging is then proposed to detect collective
motions from random motions. We validate the effective-
ness and robustness of the proposed collectiveness descrip-
tor on the system of self-driven particles. We then compare
the collectiveness descriptor to human perception for col-
lective motion and show high consistency. Our experiments
regarding the detection of collective motions and the mea-
surement of collectiveness in videos of pedestrian crowds
and bacteria colony demonstrate a wide range of applica-
tions of the collectiveness descriptor1.

1. Introduction

One of the most captivating phenomena in nature is the

collective motion of crowds. From bacterial colonies and

insect swarms to fish shoal, collective motions widely exist

in different crowd systems and reflect the ordered macro-

scopic behaviors of constituent individuals. Many interdis-

ciplinary efforts have been made to explore the underlying

principles of this phenomenon. Physicists treat crowds as

sets of particles and use equations from fluid mechanics

to characterize individual movements and their interactions

[9]. Behavioral studies show that complex crowd behav-

iors may result from repeated simple interactions among

its constituent individuals, i.e., individuals locally coordi-

1Data and codes are available at

http://mmlab.ie.cuhk.edu.hk/project/collectiveness/

A) B)

Figure 1. A) Collective motions of human crowd, fish shoal, and

bacterial colony. B) Spatially coherent structures, i.e., Collective
Manifold, emerging in these crowds. Since individuals in a crowd
system only coordinate their behaviors in their neighborhood, in-

dividuals at a distance may have low velocity correlation even

though they are on the same collective manifold (Such as the red

individual and the green individual. Colored dash links represent

neighborhoods.). Thus, accurately measuring the collectiveness of

crowd and its constituent individuals are challenging.

nate their behaviors with their neighbors then the crowd is

self-organized into collective motion without external con-

trol [15, 17]. Meanwhile, animal aggregation is considered

as an evolutionary advantage for species survival, since the

integrated whole of individuals can generate complex pat-

terns, quickly process information, and engage in collective

decision-making [6].

One remarkable observation of collective motions in dif-

ferent crowd systems is that some spatially coherent struc-

tures often emerge from the movements of crowd, such as

the arch-like macro structures in the human crowd, the fish

shoal and the bacterial colony shown in Fig.1. We refer to

the spatially coherent structure of collective motion as Col-
lective Manifold. Fig.1 illustrates one important structural
property of collective manifold: behavior consistency re-

mains high among individuals in local neighborhood, but
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low among those that are far apart, even on the same col-

lective manifold. In fact, individuals in crowds only have

limited local sensing range, and often base their movements

on locally acquired information such as the positions and

motions of their neighbors. Some empirical studies have ex-

plored the importance of topological relations and informa-

tion transmission among neighboring individuals in crowd

[2]. However, there is a lack of quantitative analysis of this

structural property of crowds.

Collectiveness describes the degree of individuals acting

as a union in collective motion. It depends on multiple fac-

tors, such as the decision making of individuals and crowd

density. Quantitatively measuring this universal property

and comparing it across different crowd systems are impor-

tant in order to understand the general principles of various

crowd behaviors. Furthermore, this measurement plays im-

portant roles in many applications, such as monitoring the

transition of a crowd system from disordered to ordered s-

tates, studying the correlation between collectiveness and

crowd properties such as population density, characterizing

the dynamic evolution of collective motion, and comparing

the collectiveness of different crowd systems. Most existing

crowd surveillance technologies [12, 27] cannot compare

crowd behaviors across different scenes because they lack

universal descriptors with which to characterize crowd dy-

namics. Monitoring collectiveness is also useful in crowd

management, control of swarming desert locusts [5], pre-

vention of disease spreading [22], and many other fields.

However, this important property lacks accurate measure-

ments. Existing works [3, 19] simply measured the aver-

age velocity of all the individuals to indicate the collective-

ness of the whole crowd, which is neither accurate nor ro-

bust. The collectiveness of individuals in crowd is also ill-

defined.

In this paper, by quantifying the topological properties

of collective manifold of crowds, we propose a descriptor

of collectiveness for crowd systems as well as their con-

stituent individuals. Based on collectiveness, an algorithm

called Collective Merging is proposed to detect collective

motions from random motions. We validate the effective-

ness and robustness of the proposed collectiveness on self-

driven particles [19]. It is further compared to human mo-

tion perception for collective motion on a new video dataset

with ground-truth. In addition, our experiments of detect-

ing collective motions and measuring crowd collectiveness

in videos of pedestrian crowds and bacterial colony demon-

strate the wide applications of the collectiveness descriptor.

1.1. Related Works

Scientific studies on collective motion in crowd system-

s can be categorized as empirical or theoretical; a compact

review can be found in [20]. In the computer vision commu-

nity, crowd motion analysis has become an active research

| · | Cardinality of a set.

[.]i i-th element of a vector.
e vector with all elements as 1.

Wn n power of a matrixW.
max(x, y) maximum value of x and y.

Table 1. Notations used in the paper.

topic in recent years. Many approaches have focused on

segmenting the motion patterns and learning the pedestrian

behaviors. For example, Rabaud et al. [16] and Zhou et
al. [25] detected independent/collective motions for object
counting and clustering. Lin et al. [12] and Ali et al. [1]
segmented motion fields generated by crowds. Zhou et al.
[27] used a mixture of dynamic systems to learn pedestri-

an dynamics and applied it to crowd simulation. There are

other works of crowd behavior analysis on surveillance ap-

plications, such as abnormal activity detection [13, 11] and

semantic region analysis [26, 21]. Kratz et al. [10] pro-
posed efficiency to measure the difference between the ac-
tual motion and intended motion of pedestrians for tracking

and abnormality detection. However, none of the above-

mentioned measured the collectiveness of crowd behaviors

or explored its potential applications.

2. Measuring Collectiveness
A crowd is more than a gathering of individuals. Un-

der certain circumstances, individuals in a crowd are orga-

nized into a unity with different levels of collective motions.

Thus, crowd collectiveness should be determined by the col-

lectiveness of its constituent individuals, which reflects the

similarity of the individual’s behavior to others in the same

crowd system. We introduce collectiveness in a bottom-up

manner: from behavior consistency in neighborhoods of in-

dividuals to that among all pairwise individuals, then from

individual collectiveness to crowd collectiveness.

2.1. Behavior Consistency in Neighborhood

We first measure the similarity of individual behaviors in

neighborhood. When individual j is in the neighborhood of
i, i.e., j ∈ N (i) at time t, the similarity is defined as

wt(i, j) = max(Ct(i, j), 0), (1)

where Ct(i, j) is the velocity correlation at t between i and
j. N is defined as K-nearest-neighbor, motivated by ex-
isting empirical studies of collective motion, which have

shown that animals maintain local interaction among neigh-

bors with a fixed number of neighbors on topological dis-

tance, rather than with all neighbors within a fixed spatial

distance [2]. Thus, wt(i, j) ∈ [0, 1] measures an individ-
ual’s behavior consistency in a neighborhood. This pair-

wise similarity would be unreliable if two individuals are

not neighbors because of the property of collective manifold
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illustrated in Fig.1B. A better behavior consistency based

on the structural property of collective manifold is proposed

below.

2.2. Behavior Consistency on Collective Manifold

Since similarity cannot be accurately estimated when t-

wo individuals are at a distance, we propose a new pair-

wise similarity based on an important topological structure

of collective manifold: paths, which represent the connec-

tivity of the network associated with a graph [4]. In crowd

systems, paths have important roles in information trans-

mission and communication among constituent individuals.

Thus, path-based similarity can better characterize the be-

havior consistency among individuals in a crowd.

Let W be the weighted adjacency matrix of the graph

associated with a crowd set C, where an edge wt(i, j) is
the similarity between individual i and j in its neighbor-
hood defined in Eq.1. Let γl = {p0 → p1 → ... → pl}
(p0 = i, pl = j) denote a path of length l through n-
odes p0, p1, ..., pl on W between individual i and j. Then
νγl

=
∏l

k=0 wt(pk, pk+1) is defined as the path similarity
on a specific path γl.
Since there can be more than one path of length l be-

tween i and j, let the set Pl contain all the paths of length l
between i and j; then the l-path similarity is defined as

νl(i, j) =
∑

γl∈Pl

νγl
(i, j). (2)

νl(i, j) can be efficiently computed with Theorem 1.

Theorem 1. νl(i, j) is the (i, j) entry of matrixWl.

2.3. Individual Collectiveness from Path Similarity

Since l-path similarity νl(i, j) measures the behavior
consistency between i and j at l-path scale, we define the
individual collectiveness of individual i at l-path scale as

φl(i) =
∑

j∈C
νl(i, j) = [Wle]i. (3)

Fig.2B plots the average φl (in log scale) with l = 1 ∼ 30
in a synthetic collective crowd shown in Fig.2A. The value

of average φl exponentially increases with l, because the
number of paths between two nodes in a well connected

graph increases exponentially with the path length.

To further measure crowd collectiveness, we should in-

tegrate the individual collectiveness at all path scales; that

is, {φ1, ..., φl, ..., φ∞}. However, due to the exponential
increase of φl with l shown in Fig.2B, individual collec-
tiveness at different path scales cannot be directly summed.

Therefore, we define a generating function to integrate all

path similarities.
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Figure 2. A) Synthetic crowd from Self-Driven Particles in col-

lective motion (details of SDP are given in Section 3). B) Plot of

average φl (in log scale) with l. C) Regularization of path similar-
ity. Individual collectiveness at lower l-path scales make a greater
contribution to the overall individual collectiveness.

2.4. Crowd Collectiveness with Regularization

Generating function regularization is used to assign a

meaningful value for the sum of a possibly divergent se-

ries [7]. There are different forms of generating functions.

We define the generating function for the l-path similarities
as

�i,j =
∞∑

l=1

zlνl(i, j), (4)

where z is a real-valued regularization factor, and zl can
be interpreted as the weight for l-path similarity. z < 1
and cancels the effect that φl exponentially increases with l.
�i,j can be computed with Theorem 2.

Theorem 2. �i,j is the (i, j) entry of matrix Z, where
Z = (I− zW)−1 − I and 0 < z < 1

ρ(W) . ρ(W) denotes the
spectral radius of matrixW.
Individual collectiveness from the generating function

regularization on all the path similarities can be written as

φ(i) =
∞∑

l=1

zlφl(i) = [Ze]i. (5)

In Fig.2C, we let z = 0.9
ρ(W) and plot the average z

lφl which

approaches 0 as l increases. The summation of regularized
individual collectiveness from all path scales converges. z
controls the convergence rate and the relative contributions

of path similarities with different lengths to φ.
The crowd collectiveness of a crowd system C is then de-

fined as the mean of all the individual collectiveness, which

can be explicitly written in a closed form as

Φ =
1

|C|
|C|∑

i=1

φ(i) =
1

|C|e
�((I− zW)−1 − I)e. (6)

Φ captures the structural property of the whole dataset.
Such structure-based descriptors are also effectively used in

general data clustering [24, 23].

3. Properties of the Collectiveness
We derive some important properties of collectiveness.
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Algorithm 1 Collective Merging
INPUT: {xi, vi|i ∈ C}t.
1:ComputeW fromK-NN using Eq. 1.
2:Z = (I− zW)−1 − I.
3:Set the entry Z(i, j) to 1 if Z(i, j) ≥ κ, otherwise to 0.
4:Extract the connected components of the thresholded Z.

Property 1. (Strong Convergence Condition) Z con-
verges when z < 1

K .

It is computationally expensive to choose z by compar-
ing it with ρ(W), especially for a large crowd system, since
we need to compute the eigenvalues ofW to get ρ(W) with
complexity O(n3). According to Property 1, the value of z
can be determined without computing ρ(W).

Property 2. (Bounds of Φ) 0 ≤ Φ ≤ zK
1−zK , if z < 1

K .

The equality stands whenW = A, where A is the 1 − 0
adjacency matrix from K-nearest-neighbor. W = A in-
dicates that there are perfect velocity correlations among

neighbors; that is, wt(i, j) = 1 if j ∈ N (i) for any i, which
means that all the constituent individuals in neighborhood

move in the same direction. For simplicity, in most of our

experiments we let K = 20 and z = 0.025, so the upper
bound of Φ is 1. Relations among Φ, K and z are briefly
discussed in Section 5.3.

Property 3. (Upper bound of entries of Z) �i,j <
z

1−zK , for every entry (i,j) of Z.
This property will be used in the following algorithm for

detecting collective motion patterns from clutters.

4. Collective Motion Detection
Based on the collectiveness descriptor, we propose an al-

gorithm called Collective Merging to detect collective mo-

tions from time-series data with noises (see Algorithm 1).

Given spatial locations xi and velocities vi of individual-
s i ∈ C at time t, we first compute W. By thresholding
the values on Z, we can easily remove outlier particles with
low collectiveness and get the clusters of collective motion

patterns as the connected components from thresholded Z.
As for the threshold κ, according to the bound in Property
3 we let κ = αz

1−zK where 0.4 < α < 0.8. Based on the
accurate measurement of collectiveness, this four-lined al-

gorithm can be implemented in real time. It has potential

applications in time-series clustering and activity analysis.

In the experiment section, we demonstrate its effectiveness

for detecting collective motions in various videos.

5. Evaluation on Self-Driven Particles
We take the Self-Driven Particle model (SDP) [19] to e-

valuate the proposed collectiveness, because SDP has been

used extensively for studying collective motion and shows

high similarity with various crowd systems in nature [5, 22].

Importantly, the groundtruth of collectiveness in SDP is
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Figure 3. Emergence of collective motion in SDP. At the begin-

ning, Φ is low since the spatial locations and moving directions of
individuals are randomly assigned. The behaviors of individual-

s gradually turn into collective motion from random movements,

and Φ accurately reflects the phase transition of crowd dynamics.
HereK = 20, z = 0.025, and η = 0. The upper bound of Φ is 1.

known for evaluation. SDP was firstly proposed to inves-

tigate the emergence of collective motion in a system of

particles. These simple particles are driven with a constant

speed, and the directions of their velocities are updated to

the average direction of the particles in their neighborhood

at each frame. It is shown that the level of random per-

turbation η on the aligned direction in neighborhood would
cause the phase transition of this crowd system from dis-

ordered movements into collective motion. The update of

velocity direction θ for every individual i in SDP is

θi(t+ 1) = 〈θj(t)〉j∈N (i) +Δθ, (7)

where 〈θj〉j∈N (i) denotes the average direction of velocities

of particles within the neighborhood of i, Δθ is a random
angle chosen with a uniform distribution within the interval

[−ηπ, ηπ]. η tunes the level of alignment2.

5.1. Crowd Collectiveness of SDP

As shown in Fig.3, we compute crowd collectiveness Φ
at each time t. Φ monitors the emergence of collective mo-
tion over time. At initialization, the spatial locations and ve-

locity directions of all the particles are randomly assigned.

The crowd gradually turns into the state of collective mo-

tion. Φ accurately records this phase transition.

As η increases, particles in SDP become disordered. As
shown in Fig.4, Φ accurately measures the collectiveness of
crowd systems under different levels of random perturba-

tion η. For a comparison, Fig.4B plots the average normal-
ized velocity v = ‖ 1

N

∑N
i=1

vi
‖vi‖‖, which was common-

ly used as a measure of collectiveness in existing works

[3, 19]. From the large standard deviation of v under mul-
tiple simulations with the same η, we see that v is unsta-
ble and sensitive to initialization conditions of SDP. On the

contrary, Φ shows its robustness on measuring crowd col-
lectiveness.

2In our implementation of SDP, the absolute value of velocity

‖v‖=0.03, the number of individuals N = 400, and interaction radius
r = 1. Experimental results in [19] have shown that these three parame-
ters only have a marginal effect on the general behaviors of SDP.
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Figure 5. A) Two frames of the mixed-crowd system and their his-

tograms of individual collectiveness. After a while, self-driven

particles are organized into clusters of collective motions. The

histogram of φt is clearly separated into two modes. B) By re-

moving particles with individual collectiveness lower than 0.5, we

can extract self-driven particles in collective motions. Blue and

red points represent self-driven particles and outliers. The number

of outliers is equal to that of self-driven particles and η = 0.

5.2. Collectiveness in Mixed-Crowd Systems

SDP assumes that all the individuals are homogeneous.

Studies on complex systems [14] have shown that individ-

uals in most crowd systems in nature are inhomogeneous.

To evaluate the robustness of our collectiveness descrip-

tor, we extend SDP to a mixture model by adding outlier

particles, which do not have alignment in neighborhoods

and move randomly all the time. We measure individual

collectiveness in this mixed-crowd system. As shown in

Fig.5A, individuals are randomly initialized at the start, so

the histogram of individual collectiveness has a single mod-

e. When self-driven particles gradually turn into clusters of

collective motions, there is a clear separation between two

modes in the histogram of individual collectiveness. By re-

moving individuals with collectiveness smaller than 0.5, we

can effectively extract collectively moving self-driven par-

ticles from outliers as shown in Fig.5B.
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K
at three different levels of collective

motions. In each diagrams, the left-hand side shows the average

zlφl with l = 1 ∼ 30 and the right-hand side shows the visualiza-
tion of all the values of zlφl(i) with l = 1 ∼ 30 and i = 1 ∼ 400.
Since the convergence condition is not satisfied, Φ become unsta-
ble when SDP is in a high level of collective motion. B) Φ with
increasing η at different K and z in SDP. C) Given a fixed K,
the upper bound of Φ grows fast when z approaches to 1

K
, which

makes Φ unstable.

5.3. Convergence Condition of Collectiveness

Property 1 shows that Z converges when z < 1
K .

What happens if z ≥ 1
K ? We let z = 1

K and plot

the regularized individual collectiveness of l-path scales
[zφ1, z

2φ2, ..., z
lφl] in Fig.6. As the SDP gradually turn-

s into collective motion, zlφl with large l-path scale ap-
proaches to 1, which makes

∑∞
l=1 z

lφl non-convergent, and
crowd collectiveness Φ unstable.

There are two parameters z and K for computing col-

lectiveness in practical applications. K defines the size of

neighborhood and z makes the series summation converge.
K affects similarity estimation in neighborhood. A largeK
makes the estimation inaccurate, while a small K is sensi-

tive to noise. Empirically it could be 5%∼10% of |C|. In all
our experiments, we fix K = 20. z is constrained by K in

Property 1. With different K and z, the upper bound of Φ
varies, as shown in Fig.6B. With a larger upper bound, the

derivative dΦ
dη is larger and the measurement is more sensi-

tive to the change of crowd motion. Φ can also be re-scaled
to [0, 1] divided by the upper bound. Thus, by tuning z and
K we can control the sensitivity of collectiveness in practi-

cal applications. The upper bound ofΦ grows quickly when
z approaches to 1

K , which makes the value of Φ unstable,
as shown in Fig.6C. The ideal range is 0.4

K < z < 0.8
K .
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6. Further Evaluation and Applications
We evaluate the consistency between our collectiveness

and human perception, and apply the proposed descriptor

and algorithm to various videos of pedestrian crowds and

bacterial colony.

6.1. Human Perception for Collective Motion

To quantitatively evaluate the proposed crowd collective-

ness, we compare it with humanmotion perception on a new

Collective Motion Database, and then analyze the consis-

tency and correlation with human-labeled ground-truth for

collective motion. The Collective Motion Database consists

of 413 video clips from 62 crowded scenes. 116 clips are

selected from Getty Image [8], 297 clips are captured or

collected by us. This database contains different levels of

collective motions with 100 frames per clips. Some repre-

sentative frames are shown in Fig. 7. To get the ground-

truth, 10 subjects are invited to rate all videos indepen-

dently. A subject is asked to rate the level of collective

motions in a video from three options: low, medium, and

high. We propose two criteria to evaluate the consistency

between human-labeled ground-truth and the proposed col-

lectiveness descriptor.

The first is the correlation between the human scores and

our collectiveness descriptor. We count the low option as 0,

the medium one as 1, and the high one as 2. Since each

video is labeled by ten subjects, we sum up all the scores as

the collective score for this video. The range of collective

scores is [0, 20]. The histogram of collective scores for the

whole database is plotted in Fig.7. We compute the crowd

collectivenessΦ at each frame using the motion features ex-
tracted with a generalized KLT (gKLT) tracker derived from

[18], and take Φ averaged over 100 frames as the collective-
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Figure 9. A) Detecting collective motions from crowd videos.

Keypoints with the same color belong to the same cluster of col-

lective motion. Red crosses are detected outliers. B) Monitoring

crowd dynamics with collectiveness. Two frames indicate the rep-

resentative states of the crowd.

ness for this video. We compute v using the same motion
features as a comparison baseline. Fig.7 shows the collec-

tive scores, Φ, and v for some representative videos. Fig.8A
scatters the collective scores with Φ and v of all the videos,
respectively. There is a high correlation between collective

scores and Φ, and the proposed collectiveness is consistent
with human perception.

The second is the classification accuracy based on the

collectiveness descriptor. We divide all the videos into three

categories by majority voting of subjects’ rating, and then e-

valuate how the proposed collectiveness descriptor can clas-

sify them. Histograms of Φ and v for the three categories
are plotted effectively in Fig.8B.Φ has better discrimination
capability than v. Fig.8C plots the ROC curves and the best
accuracies which can be achieved with all the possible de-

cision boundaries for binary classification of high and low,

high and medium, and medium and low categories based on

Φ and v, respectively. Φ can better classify different levels
of collective motions than v, especially on the binary clas-
sification of high-medium categories and medium-low cat-

egories of videos. It indicates our collectiveness descriptor

can delicately measure the dynamic state of crowds.

Classification failures come from two sources. Since

there are gray areas between high-medium and medium-low

collective motions, some samples are even difficult for hu-

mans to reach consensus and are also difficult to our de-

scriptor. Meanwhile collectiveness may not be properly

computed due to tracking failures, projective distortion and
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Figure 8. A) Scatters of collective scores with Φ and v for all the videos. B) Histograms of Φ and v for the three categories of videos. C)
ROC curves and best accuracies for high-low, high-medium, and medium-low classification. D) Failure examples of collectiveness.

special scene structures. Two failure examples are shown

in Fig.8D. The computed collectiveness in the two videos is

low because the KLT tracker does not capture the motions

well due to the perspective distortion and the extremely low

frame rate, while all subjects give high scores because of

the regular pedestrian and traffic flows in the scenes.

6.2. Collective Motion Detection in Videos

We detect collective motions from videos in the Collec-

tive Motion Database. Collective motion detection in crowd

videos is challenging due to the short and fragmented nature

of extracted trajectories, as well as the existence of outlier

trajectories. Fig.9A shows the detected collective motion-

s by Collective Merging on nine videos, along with their

computed Φ and v. The detected collective motion patterns
correspond to a variety of behaviors, such as group walk-

ing, lane formation, and different traffic modes, which are

of a great interest for further video analysis and scene un-

derstanding. The estimated crowd collectiveness also varies

across scenes and reflects different levels of collective mo-

tions in videos. However, v cannot accurately reflect the
collectiveness of crowd motions in these videos.

Furthermore, the proposed crowd collectiveness can be

used to monitor crowd dynamics. Fig.9B shows an exam-

ple in which the collectiveness changes abruptly when two

groups of pedestrians pass each other. Such events indicate

rapid phase transition of a crowd system or some critical

point has been reached. They are useful for crowd control

and scientific studies.

6.3. Collective Motions in Bacterial Colony

In this experiment, we use the proposed collectiveness

to study collective motions emerging in a bacterial colony.

The wild-type Bacillus subtilis colony grows on agar sub-
strates, and bacteria inside the colony freely swim on the

agar surface. The real motion data of individual bacteri-
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Figure 10. A) The crowd collectiveness of the bacterial colony and

the bacteria number change over time; their correlation is high. B)

The average normalized velocity of the bacterial colony and the

bacteria number change over time; their correlation is low. C) Rep-

resentative frames of collective motion patterns detected by Col-

lective Merging and their Φ and v. Arrows with different colors
indicate different clusters of detected collectively moving bacteria.

Red crosses indicate detected randomly moving bacteria.

a comes from [22]. There are 200 ∼ 400 bacteria mov-
ing around at every frame. Fig.10AB plot Φ and v with
the number of bacteria over time. Fig.10C shows repre-

sentative frames and collective motion patterns detected by

Collective Merging. Crowd density was proved to be one

of the key factors for the formation of collective motion

[22, 19]. A lot of scientific studies are conducted to analyze

their correlation. For the same type of bacteria in the same

environment, bacteria collectiveness should monotonically

increase with density. Fig.10A shows that bacteria density

has a much better correlation with Φ than v. Our proposed
collectiveness measurement has good potentials for scien-

tific studies.
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7. Conclusions and Future Work

We have proposed a collectiveness descriptor for crowd

systems as well as their constituent individuals along with

the efficient computation. Collective Merging can be used

to detect collective motions from randomly moving outlier-

s. We have validated the effectiveness and robustness of the

proposed collectiveness on the system of self-driven parti-

cles, and shown the high consistency with human percep-

tion for collective motion. Further experiments on videos

of pedestrian crowds and bacteria colony demonstrate its

potential applications in video surveillance and scientific s-

tudies.

As a new universal descriptor for various types of crowd

systems, the proposed crowd collectiveness should inspire

many interesting applications and extensions in future work.

Individuals in a crowd system can move collectively in a

single group or in several groups with different collective

patterns, even though the system has the same value of Φ.
Our single collectiveness measurement can be well extend-

ed to a spectrum vector of characterizing collectiveness at

different length scales. It is also desirable to enhance the de-

scriptive power of collectiveness by modeling its spatial and

temporal variations. The enhanced descriptor can be ap-

plied to cross-scene crowd video retrieval, which is difficult

previously because universal properties of crowd systems

could not be well quantitatively measured. Collectiveness

also provides useful information in crowd saliency detec-

tion and abnormality detection. This paper is an important

starting point in these exciting research directions.
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