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Abstract

We propose a novel nonparametric approach for seman-
tic segmentation using high-order semantic relations. Con-
ventional context models mainly focus on learning pairwise
relationships between objects. Pairwise relations, however,
are not enough to represent high-level contextual knowl-
edge within images. In this paper, we propose semantic
relation transfer, a method to transfer high-order seman-
tic relations of objects from annotated images to unlabeled
images analogous to label transfer techniques where label
information are transferred. We first define semantic tensors
representing high-order relations of objects. Semantic rela-
tion transfer problem is then formulated as semi-supervised
learning using a quadratic objective function of the seman-
tic tensors. By exploiting low-rank property of the seman-
tic tensors and employing Kronecker sum similarity, an ef-
ficient approximation algorithm is developed. Based on the
predicted high-order semantic relations, we reason seman-
tic segmentation and evaluate the performance on several
challenging datasets.

1. Introduction

Semantic segmentation, segmenting all the objects and

identifying their categories, is fundamental and important

problem in computer vision. Recently, with the increasing

availability of large image collections of hand-labeled im-

ages, nonparametric label transfer approaches for this prob-

lem have attracted many computer vision researchers and

shows very good performance [2, 3, 16, 23, 24, 25, 26].

Compared to conventional parametric semantic segmenta-

tion methods [1, 6, 14, 22], these approaches do not need

training model parameters, hence, they can be scalable to

large datasets with an unknown number of object categories.

Typical label transfer approaches start by retrieving similar

images for a given test image. After that, they establish

dense correspondence between two images and then warp
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Figure 1. For a query image (a), our system finds the matched sim-

ilar images (b) from a large dataset using global scene descriptors.

The high-order semantic relations are transferred from the anno-

tated images (b) to the query image (a). (We densely estimate

high-order semantic relation across the image, but this figure dis-

plays only a few top scored relations for visualization purposes.)

We then infer semantic segmentation (d) using estimated semantic

relation (c).

labels from the matched annotated images to the test image.

In spite of good performances, these approaches sometimes

produce unsatisfactory results because they do not explore

high-level contextual knowledge within the annotated im-

ages. Obviously, high-level semantic relationships between

objects within the annotated image are very important cues

to successful semantic segmentation.

To this end, recent approaches have advocated the use of

nonparametric context models [10, 19]. These learn pair-

wise relationships between objects using global scene fea-

tures and local features. However, these methods use only

pairwise relationships to model high-level semantic rela-
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tionships. Since natural images typically contain more than

three object categories, pairwise relations are not enough to

represents high-level information within images.

In this paper, we develop a novel nonparametric ap-

proach for semantic segmentation by incorporating high-

order semantic relations. Specifically, similar to several la-

bel transfer methods [3, 16, 23, 25], we first find a set of

small retrieved images from training images. Our goal is

to transfer high-order semantic relations of annotated ob-

jects from each matched image to the query image. Since

it is not feasible to obtain dense pixel-wise high-order se-

mantic relations, we utilize “superpixel” regions obtained

by oversegmentation of the query image. We define seman-

tic tensors to represent the higher-order semantic relations

of regions. We approach the problem of transferring the

high-order semantic relations by defining a quadratic ob-

jective function of the semantic tensors. To optimize our

objective function, we develop an efficient approximate al-

gorithm based on Kronecker sum similarity and low-rank

property of semantic tensors. To integrate our predicted se-

mantic tensor into a semantic segmentation system, a fully

connected Markov random field optimization is employed.

The key contributions of this paper include: (1) The use

of high-order semantic relations for semantic segmentation;

(2) A novel tensor-based representation of high-order se-

mantic relations; and (3) A quadratic objective function for

learning the semantic tensor and an efficient approximate

algorithm.

The paper is organized as follows. We review some rel-

evant works in Section 2. In Section 3, we introduce high-

order semantic relation transfer algorithm and explain in de-

tail. Section 3.3 presents a semantic segmentation method

through semantic relation transfer. The experimental results

are given in Section 5. Finally, in Section 6, we discuss our

approach.

2. Related work
We now review related works on label transfer ap-

proaches and nonparametric context models. The prob-

lem of label transfer was first addressed recently by Liu et
al. [16]. They first retrieved similar images using GIST

matching [20] and constructed pixel-wise dense correspon-

dence between each retrieved image and test image us-

ing SIFT flow [17]. They then transferred the annota-

tions based on dense correspondence and reasoned seman-

tic segmentation. Following the idea of label transfer [16],

Zhang et al. [25] employed partial matching between the

test image and the retrieved images to use partial simi-

larity between images. Gould and Zhang [7] constructed

PatchMatchGraph to reduce complexity of retrieval step.

Chen et al. [3] proposed supervised geodesic propagation

to guide label transfer. Tighe and Lazebnik [23, 24] con-

sidered superpixel-level matching to transfer label informa-
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(a) Pairwise semantic relation (b) Third-order semantic relations

Figure 2. An example of pairwise and high-order semantic rela-

tions. The third-order semantic relations (b) can model compli-

cated high-level semantic knowledges within an image compared

with the pairwise semantic relation (a).

tion. However, all of these approaches are restricted to

transferring label information from matched images. Al-

though Liu et al. [16] claimed that the label transfer ap-

proach naturally embeds contextual information in the re-

trieval/alignment procedure, it is hard to tell how much con-

textual knowledge will help or what the effects will be.

On the other hand, recent nonparametric context mod-

els [10, 19] for semantic segmentation employed contex-

tual relationships between objects to achieve more accurate

results. Jain et al. [10] learned which contextual relation-

ships should be considered and predicted features weight

for each relation in a nonparametric manner. Myeong et
al. [19] formulated a data-driven context learning problem

as a graph-based context link prediction problem. Since our

semantic tensor can be viewed as a generalization of the

context link [19], their work is most similar to our own.

However, there are several important differences with re-

spect to our work. First, they only considered pairwise

object relationships. On the contrary, our method focuses

on high-order (mostly third-order) semantic relations, al-

lowing us to model complex contextual relationships. For

example, triplet-wise semantic relations can be found such

as (sky,car,road) by our method as illustrated in Figure 2.

These relations become important when considering com-

plicated scenes with many object classes. Second, we de-

velop a quadratic objective function for the high-order se-

mantic relation transfer problem. However, Myeong et
al. [19] did not show how their context link prediction

works mathematically.

High-order models are not well studied in the context of

semantic segmentation. Kohli et al. [12] introduced high-

order model to enforce label consistency among regions.

However, their high-order model is not related to high-level

semantic knowledge. To our knowledge, there are no prior

works explicitly considering high-order contextual relation-

ships between objects in the literature on semantic segmen-

tation.
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3. The high-order semantic relation transfer
algorithm

3.1. Problem statement

We consider two images I1 and I2; the first one is not

annotated whereas the second one is densely labeled with

the corresponding object class. We assume that two images

are closely-related in which the similar objects are present

and that objects roughly maintain their high-order relation.

We define high-order semantic relation transfer problem as

a task to predict high-order relation between unlabeled re-

gions in I1 based on annotated regions in I2. For simplicity,

we will focus on third-order relations from now.

Let S = {S1, S2} be a set of superpixels generated by

segmenting the respective images. n1 and n2 is the number

of segments in S1 and S2, respectively, and N = n1 + n2

is the total number of segments. C = {c1, c2, ..., cK} is

a given set of object classes. Third-order semantic rela-

tions among region triplets (si, sj , sk) ∈ S × S × S is

defined as a set of N × N × N third-order tensors X =
{X 111,X 112,X 113, ...,XKKK}. We refer to each tensor

Xαβγ ∈ X as a semantic tensor. A semantic tensor Xαβγ
denotes third-order semantic relations among region triplets

on object class triplet (cα, cβ , cγ). Each element of Xαβγ
is defined as

[Xαβγ ]ijk = xαβγijk . (1)

The variable xαβγijk indicates confidence score of how

likely the region triplet (si, sj , sk) would be labeled as

(cα, cβ , cγ), respectively. x
αβγ
ijk is close to 1 if the assigned

object class triplet (cα, cβ , cγ) is reliable. On the other

hand, xαβγijk is close to 0 if the assigned object class triplet

(cα, cβ , cγ) is unreliable.
Next, we define another set of N × N × N tensor

representing the observed third-order semantic relations

within the image I2. Similar to X, we define Y =
{Y111,Y112,Y113, ...,YKKK}, and represent each element

of Yαβγ as

yαβγijk =

⎧⎨
⎩
1 if G(si) = cα, G(sj) = cβ , G(sk) = cγ ,

(si, sj , sk) ∈ S2

0 otherwise

,

(2)

whereG(si) denotes the ground truth class of region si and
(si, sj , sk) ∈ S2 indicates that three regions si, sj , and sk
are from the same image I2. Since there are no seman-

tic relations within S1 and across images, all yαβγijk is 0 for

(si, sj , sk) /∈ S2. In practice, each Yαβγ can be compactly

generated from label vectors. Let yα be a column vector of

length N , where [yα]i = yαi is 1 if region si belongs to ob-

ject class cα; and 0 otherwise. Then each element of Yαβγ
can be generated by

yαβγijk = yαi y
β
j y
γ
k . (3)

Eq. (3) can be rewritten as

Yαβγ = yα ◦ yβ ◦ yγ . (4)

The symbol “◦” denotes the vector outer product. Since

Yαβγ can be represented as the outer product of three vec-

tors, Yαβγ is a rank-one tensor [13]. This rank-one property
of Y is one of key aspects to approximate the following ob-

jective function.

3.2. Objective function

Now, the third-order semantic relation transfer problem

can be regarded as the problem of estimating the magni-

tude of confidence scores xαβγijk for all superpixel triplets

(si, sj , sk) and for all object class triplets (cα, cβ , cγ) based
on Y. We assume that there is no interaction between the

semantic tensors. Hence, we separately deal with the third-

order semantic relations transfer problem with respect to

Yαβγ . For simplicity, we drop the αβγ suffix from now.

Following the idea of link propagation [11], we want to

enforce that two similar region triplets are likely to have

the same confidence score. Thus, we design the quadratic

objective function with respect to Y as

F (X ) =1
2

N∑
i,j,k,l,m,n

wijk,lmn(xijk − xlmn)
2

+λ
N∑
i,j,k

(xijk − yijk)
2, (5)

where wijk,lmn is the triplet-wise similarity between two

region triplets (si, sj , sk) and (sl, sm, sn) and λ > 0 is the
regularization parameter. The first term of Eq. (5) is the

continuity constraint that two triplets should have the same

confidence score if two triplets are similar. The second term

is the unary constraint that each region triplet xijk tends

to have their target values yijk. The cost function defined

as pairwise and unary terms is a generalization of the cost

function for label propagation [27].

Now, we rewrite Eq. (5) using tensors. For that, let L be

an N3 ×N3 matrix called a Laplacian matrix defined as

L = D−W, (6)

where wijk,lmn is rewritten as similarity matrix W of size

N3 × N3 and D is a diagonal matrix whose diagonal el-

ements are [D]i =
∑N3

j [W]ij . Using L, Eq. (5) can be

reformulated as

F (X ) = 1

2
vec(X )T L vec(X ) + λ(vec(X )− vec(Y))2,

(7)

where vec(X ) is the vector constructed by concatenating

the mode-1 fibers of the tensor X [13].
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Differentiating Eq. (7) with respect to vec(X ), and set to
0, we can get X that minimizes Eq. (7),

∂F (X )
∂vec(X ) = L vec(X ) + λvec(X )− λvec(Y) = 0 (8)

It can be transformed into

(L+ λI)vec(X ) = λvec(Y), (9)

where I indicates identity matrix of size N3 × N3. Since

L + λI is positive definite, the linear equation (9) can be

solved by matrix inversion. However, computing inverse

matrix of size N3 ×N3 is not realistic in practice.

3.3. Approximate algorithm

In this section, we present an efficient optimization

scheme for the proposed objective function. Since provid-

ing all of the N6 elements of the triplet-wise similarity ma-

trix W is intractable, we consider constructing W using

the segments-wise similarity matrix WS the same as [11].

As described in Section 5, WS is defined as similarity be-

tween two superpixels. Recommended by [11], we define

W based on Kronecker sum similarity. Hence, L can be

re-represented as

L = LS ⊕ LS ⊕ LS , (10)

where ⊕ indicates the Kronecker sum and LS is defined as

LS = DS −WS and DS is a diagonal matrix whose di-

agonal elements are [DS ]i =
∑N
j [WS ]ij . Using Eq. (10),

the objective function (5) can be expressed as

F (X ) = 1

2
vec(X )T vec(X ×1 LS + X ×2 LS + X ×3 LS)

+ λ(vec(X )− vec(Y))2, (11)

where ×n represents n-mode product of tensor [13]. In-

spired by [5, 18], we approximate the objective function in

three optimization steps:

Ẋ = argmin
X

1

2
vec(X )T vec(X ×1 LS)

+ λ(vec(X )− vec(Y))2 (12)

Ẍ = argmin
X

1

2
vec(X )T vec(X ×2 LS)

+ λ(vec(X )− vec(Ẋ ))2 (13)

X̂ = argmin
X

1

2
vec(X )T vec(X ×3 LS)

+ λ(vec(X )− vec(Ẍ ))2. (14)

That is, we sequentially estimate the semantic tensor for

each mode product term. In a similar way to Eq. (9), we can

i
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l

(b) 1-mode product

i

k
j

l
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(c) 2-mode product

n
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k
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m

(d) 3-mode product
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Figure 3. Illustration of the proposed approximate algorithm. The

algorithm (b) first find similar region sl with respect to si while

fixing sj and sk, (c) then find similar region sm with respect to sj

while fixing sl and sk, (d) and finally find similar region sn with

respect to sk while fixing sl and sm.

obtain linear system equation for each optimization step.

X ×1 (LS + λIS) = λY (15)

X ×2 (LS + λIS) = λẊ (16)

X ×3 (LS + λIS) = λẌ , (17)

where IS indicates identity matrix of size N × N . For

solving each linear equation, let us consider Eq. (15), 1-

mode tensor product of Eq. (15) can be expressed in terms

of unfolded tensors.

(LS + λIS)X(1) = λY(1), (18)

whereX(1) denotes the mode 1 matricization of a tensor X
(see [13] for more details). Remind that Y is rank-one, Y
can be written as in matricized form [13],

Y(1) = yα(yγ ◦ yβ)T . (19)

Hence, Ẋ can be efficiently computed by

Ẋ(1) = (LS + λIS)
−1λyα(yγ ◦ yβ)T . (20)

We continue to solve for Ẍ and X̂ similarly. Then we can

obtain the approximate solution of the objective function (5)

as follows.

X̂ = [(LS + λIS)
−1λyα] ◦ [(LS + λIS)

−1λyβ ]

◦ [(LS + λIS)
−1λyγ ]. (21)

Note that X̂ also can be represented as the outer product of

three vectors, X̂ is a rank-one tensor. In Figure 3, this pro-

cedure summarizes schematically. We independently trans-

fer each Yαβγ , hence, this procedure repeats K3 times. Fi-

nally, we can get the set of the predicted semantic tensors

X̂ = {X̂ 111, X̂ 112, X̂ 113, ..., X̂KKK}.
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Figure 4. System overview. For a query image (a), we first retrieve the matched similar scenes (b). We predict the third-order semantic

relations (d) by transferring semantic relations from each annotated image (c) to the query image (a). We aggregate semantic relations (e)

from multiple semantic relation candidates (d) and generate semantic segmentation (f). (g) is the ground-truth annotation of (a).

4. Semantic segmentation through semantic re-
lation transfer

Now that we have the semantic relation transfer algo-

rithm from annotated images to unlabeled images, we can

infer semantic segmentation using estimated semantic ten-

sors.

4.1. Scene retrieval

Recall that we assume that each pair of images I1 and

I2 roughly agree on the spatial layout of objects. Hence, it

is essential to to extract closely-related images from large

dataset with respect to a query image for successful se-

mantic relation transfer. Unreliable semantic tensors can

be predicted between two unrelated images. To find similar

images, we first retrieve M candidate images by color his-

togram, GIST matching [20], and spatial pyramid [15] from

the training dataset. This candidate image set will be used

to transfer its high-order semantic relations into the query

image.

4.2. Inference

After performing the scene retrieval in section 4.1, we

transfer high-order semantic relations from each candidate

image to the query image and obtain multiple sets of pre-

dicted semantic tensors {X}u=1:M . Our goal is to assign

object class for each region in the query image. To integrate

the sets of predicted semantic tensors with a conventional

unary and pairwise potential, we build high-order fully con-

nected Markov random field model. The energy function is

defined as

E({li}) =
n1∑
i

ED(li) +
∑

(i,j)∈E
EP (li, lj)

+

n1∑
i,j,k

EH(li, lj , lk), (22)

where li ∈ {1, ...,K} is the index of object class for re-

gion si. Since we want to label the regions in the query

image, the energy function is only defined on the regions of

image I1. The first term is data term which represents the

negative logarithm of the probability of class li given the re-
gion si. The second term is smoothness term which encour-

age two neighboring regions to have the same label. These

two terms are typically used to conventional nonparametric

scene parsing approaches [16, 23, 24].

However, it is nontrivial how to integrate the sets of pre-

dicted semantic tensors to semantic segmentation frame-

work. Hence we develop two third-order clique potential

EHmax and EHsum. The first high-order potential E
H
max take

the form

EHmax(li = cα, lj = cβ , lk = cγ)

= − log(max
u
{x̂αβγijk }u). (23)

The first clique potential EHmax take maximum confidence

score among M number of candidate scores for region

triplet (si, sj , sk) and for object triplet (cα, cβ , cγ). This

means that we only consider the strongest one from the

set of relation candidates. The second high-order potential
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Table 1. Performance comparison of our algorithm on the three challenging datasets. Per-pixel recognition rates and average per-class

recognition rates in parentheses are presented.

Jain et al. [10] LMO [16] Polo [25]

Jain et al. [10] 59.0 ( - ) - -

Liu et al. [16] - 74.8 ( - ) -

Tighe and Lazebnik [23] - 76.8 (29.4) 87.9 (76.1) [25]

Zhang and Quan [25] - - 89.8 (82.5)

Chen et al. [2] 75.6 (45) - -

Myeong et al. [19] 80.1 (53.3) 77.1 (32.3) -

Gould and Zhang [7] - - 94.2 (91.7)
Proposed (max) 81.5 (51.2) 76.1 (28.9) 89.1 (80.6)

Proposed (sum) 81.8 (54.4) 76.2 (29.6) 88.3 (79.3)

EHsum have the form

EHsum(li = cα, lj = cβ , lk = cγ)

= − log(
M∑
u

{x̂αβγijk }u). (24)

Meanwhile, the second clique potentialEHmax takes summa-

tion ofM number of confidence scores. This potential picks

average scores from the set of relation candidates. These

two potential will be examined in the experimental section.

It is very important to effectively minimize the energy

function (22), but efficient order reduction techniques such

as [9] cannot be used due to space and time complexity.

Hence, we apply multistart simulated annealing algorithm.

5. Experiements
In this section, we (1) evaluate our method’s seman-

tic segmentation performance and compare against pair-

wise semantic segmentation [19] and (2) analyze integra-

tion of our predicted semantic tensors. We validate our ap-

proach with three challenging datasets: the dataset of Jain et
al. [10], LabelMe Outdoor (LMO) dataset [16], and Polo

dataset [25]. We evaluate on all sets, but focus additional

analysis on the LMO dataset since it has the largest number

of categories. Table 1 summarizes our semantic segmenta-

tion accuracy compared with the state-of-the-art methods.

Proposed (max) indicates the accuracy of the semantic seg-

mentation with the max high-order term Eq. (23). Proposed

(sum) represents performance with the sum high-order term

Eq. (24).

Implementation details. Our implementation is based

on the framework of Tighe and Lazebnik [23, 24]. We

use the algorithm of Felzenszwalb and Huttenlocher [4]

for segmentation, and fix the parameters σ = 0.8,K =
200,min = 100 on all sets. To form superpixel-wise

weight WS , we use several types of descriptors ak(si) for
regions si: shape, texture, color, and appearance from [23].

5 10 15 20 25
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Number of retrieved images
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ec

og
ni
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Figure 5. Recognition rate of two different high-order potential as

a function of the number of the retrieved images M on the LMO

dataset.

Along with appearance features, we integrate geometric po-

sition g(si) (row+column) of the center of the region si.
Hence, each elements of WS are computed as

[WS ]ij = e
−∑

k

‖ak(si)−ak(sj)‖
σak

− ‖g(si)−g(sj)‖
σg (25)

where ak(si) is the feature vector of the k-th type for si
and σak denotes the standard deviation of ak. Note that we
densely obtain the weight between regions, it means that

a region is connected to all the other regions with the cor-

responding weights. We fix the parameter of the objective

function λ = 10. To compute ED, we employ the nonpara-

metric superpixel parsing [23] for the LMO dataset and the

boosted decision tree classifier [8] for the other datasets. As

a pairwise term EP , we adopt simple Potts model.

Evaluation metric. We use both pixel-wise measure and

class-wise measure to quantify the accuracy. The former

rates total proportion of correctly labeled pixels, while the

latter indicates the average proportion of correctly labeled

pixels in each object class.
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19-Class Jain et al. [10] dataset. Jain et al. [10] randomly

collects 350 images of size 640 × 480 from LabelMe [21]

with 19 classes. This dataset is splitted into 250 training

images and 100 test images. The number of similar images

M is set to be 16. The semantic segmentation accuracy on

this dataset is 81.8%.

This is relatively good dataset to evaluate high-order se-

mantic relations. The size of the images is large enough

and there are a lot of objects within an image. We achieve

the state-of-the-art performance on this dataset and obtain

promising results.

33-Class LabelMe Outdoor (LMO) dataset. This dataset
provided by Liu et al. [16] contains total 2,688 images of

size 256 × 256 from LabelME [21] with 33 object cate-

gories. Liu et al. [16] randomly split this dataset into 2,488

training images and 200 test images. For qualitative com-

parison with [16, 19, 23], we use the same training/test split.

We set the number of similar images M to 16. The seman-

tic segmentation accuracy of the proposed method on this

dataset is 76.2%.

Our results are below the state-of-the-art methods. We

think that this is due to many images from this dataset

with one or two object classes. The number of test images

containing less than two object classes is 43 out of 200.

It seems that complex contextual models such as the pro-

posed method are not crucial to improve performance on

this dataset.

6-Class Polo dataset. The polo dataset consists of 320 im-

ages from the web with keyword polo. Zhang et al. [25]
annotated each image into six categories:sky, horse, person,
ground, tree, grass. We set the number of similar images

M to 20.

Our results are under the state-of-the-art methods. One

reason is that context is not much important since all images

have almost the same object classes. The other reason is the

state-of-the-art method use complex pixel-wise model, on

the other hand, we works on relatively simple region level.

Max vs. Sum. We design two different high-order potential

for incorporating the set of the predicted semantic tensors.

As shown in Figure 5, sum potential, taking summariza-

tion of candidates confidence scores, provides more better

semantic segmentation results at some point. On the other

hand, max potential, taking maximum of candidates con-

fidence scores, is more robust to the number of retrieved

images M . As gradually adding retrieved images, wrong

matched images become larger and the performance of sum

potential decreases faster.

6. Conclusion
We have presented a novel approach to learn high-order

semantic relations of regions in a nonparametric manner.

We cast the high-order semantic relation transfer problem

as a quadratic objective function of semantic tensors and

propose an efficient approximate algorithm. We develop a

novel semantic tensor representation of the high-order se-

mantic relations. While we have presented this representa-

tion in the context of semantic segmentation, it can be appli-

cable to various computer vision problem including object

detection, scene classification, and total scene understand-

ing.
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