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Abstract
In this paper we focus on the problem of detecting ob-

jects in 3D from RGB-D images. We propose a novel frame-
work that explores the compatibility between segmentation
hypotheses of the object in the image and the corresponding
3D map. Our framework allows to discover the optimal lo-
cation of the object using a generalization of the structural
latent SVM formulation in 3D as well as the definition of
a new loss function defined over the 3D space in training.
We evaluate our method using two existing RGB-D datasets.
Extensive quantitative and qualitative experimental results
show that our proposed approach outperforms state-of-the-
art as methods well as a number of baseline approaches for
both 3D and 2D object recognition tasks.

1. Introduction
The problem of detecting objects from images that are

registered with depth maps (in short, RGB-D images) is re-

ceiving increasing interest in computer vision. This is cou-

pled with recent widespread diffusion of depth sensors [1]

which allows to accurately measure the distance between

the camera and a point in 3D for each image pixel. Re-

searchers have shown that the associated depth information

can enhance detection performances [2, 3] and that, in gen-

eral, the ability to reason in the 3D physical space provides

critical contextual information that does facilitate object de-

tection [4, 5, 6]. However, most of the existing approaches

aim at localizing objects in the image and ignore the prob-

lem of estimating object location in the 3D space (we refer

to this problem as to 3D object localization) (Fig. 1). This

capability is critical in applications related to robotics, ob-

ject manipulation, safe driving and entertainment.

In this work we focus on the 3D object localization prob-

lem and propose a new method that is capable of jointly de-

tecting objects in 2D images and the 3D physical space us-

ing RGB-D images. Instead of searching for objects in 3D

as in [7], which is known to be computationally demanding

and prone to false alarms, our approach leverages existing

... ...

... ...

Segmentation Hypotheses

Figure 1: In this paper we propose a new framework to obtain accurate

localizations of objects in 3D by exploring segmentation hypotheses of the

object in 2D.

detection methods [8, 9, 10] which identify object propos-

als in the image by means of bounding boxes. Starting from

these bounding box proposals, we introduce a novel frame-

work that explores the compatibility between hypotheses

of the object in the bounding box and the corresponding

3D map associated to the pixels within the bounding box.

These object hypotheses are generated from foreground-

vs-background object segmentation hypotheses within the

bounding box. We call these Hypotheses object Foreground

Masks (HFMs). The intuition is that the ability to com-

bine appearance and corresponding depth values within the

HFMs allows constructing more discriminative features for

2D and 3D localization than if such features are extracted

from bounding boxes only (Fig. 2). Object models are learnt

using a latent max-margin formulation whereby the latent

variables are the object part locations in 3D. Features are

extracted from appearance cues within the HFM and 3D de-

scriptors computed on the associated 3D point cloud.

The deformation costs, or penalty costs, for the rela-

tive distance between object parts and the object root posi-

tion, are calculated in 3D space, where a novel efficient 3D

matching strategy is proposed. The proposed framework

is illustrated in Fig. 3. This method is computationally in-
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(a) 3D localization with a bounding

box

(b) 3D localization with the optimal

HFM

Figure 2: (a) Accurate 3D localization (using RGB-D data) from a de-

tected bounding box in the 2D image is challenging: the bounding box may

include areas of the image that are not related to the foreground object and

that correspond to different portions of 3D points in the RGB-D map that

are located at completely different distances from the camera. This makes

it hard to accurately localize the object position and pose in 3D. (b) In this

paper we argue that by using segmentation hypotheses for the foreground

object (the HFMs), we have the opportunity to identify points in 3D that

are only relevant to the foreground object and therefore enable much more

accurate 3D localization capabilities.

expensive compared to object detection schemes based on

sliding bounding cubes in 3D space.

Related work and Contributions. Our overall ap-

proach of incorporating depth map to improve image recog-

nition is related to several previous works [11, 3, 12, 2, 7,

13]. For example, [11, 12] built a CRF model using depth

map, and showed that RGB-D is useful for indoor scene

understanding. [3] used 3D features and obtained improve-

ment in detection performance, and [2, 7] used 3D feature

to achieve accurate 2D detection performance. [14] pro-

posed depth map based kernel features for image classifica-

tion. [13] proposed the method to detect object and localize

objects in 3D from a RGB or RGB-D image. However, us-

ing RGB-D for modelling contextual segmentation or object

recognition is still considered as a challenging problem.

The idea of associating detection and segmentation prob-

lems in 2D image is related to works such as [15, 16, 17,

18], where these problems are solved in a joint fashion. In

these work, the benefit of a coherent reasoning about seg-

mentation and detection is partially mitigated by high com-

putational costs. In this paper, we use foreground segments

as initial hypotheses as efficiently as in [19] and find out the

optimal hypothesis using our novel formulation.

Authors in [7] tried to localize objects directly in 3D

space using a simple bag-of-words model with linear

weights within a branch-and-bound framework. However,

the method is computational expensive since the search

space is still large despite the efficiency gain achieved us-

ing branch-and-bound.

Our attempt to use a latent structural SVM formulation in

3D is clearly related to [8] as well as to recent work [10, 20]

which propose to model an object as collection of 3D parts.

The works [8, 10], however, focused on detecting objects

in 2D images as opposed to RGB-D images as we seek to

detect.

Hypothetical

Foreground

Masks

Corresponding

Point clouds

Feature

Extraction

3D DPM
 - Best Mask

 - 3D location

Figure 3: This figure shows the process of generating HFM and features

from corresponding 3D point clouds. From each bounding box, multiple

hypothetical object foreground masks are generated. For each mask, corre-

sponding point clouds as well as features encoding 3D properties of point

clouds are generated. From these features, the object’s best foreground

mask as well as its 3D location are estimated using our structural SVM

formulation.

Contribution. Our main contributions are four-fold: i)
we introduce HFM to help extract more descriptive 3D fea-

tures, leading to a more robust 3D localization (Sec. 2.1);

ii) we propose a novel matching process in 3D, integrating

responses from deformable parts in 3D (Sec. 2.2.1); iii) we

use our structural SVM scheme for joint 3D object local-

ization and selection of the best segmentation hypothesis;

finally, iv) we provide annotations for 3D object locations

on top of existing RGB-D datasets (Sec. 3.1).

2. Accurate 3D Object Localization with Hy-
pothetical Foreground Masks

In this section, we introduce our framework for accu-

rate object detection and localization in 3D with RGB-D

data from a single view. Our main idea is to use HFMs for

achieving both efficiency and accuracy in 3D.

2.1. Hypothetical Foreground Masks
Bounding boxes. Bounding boxes have been widely

used to generate hypotheses of object location in 2D from

which features such as HOG can be extracted [8, 21]. The

fact that a bounding box contains not only the foreground

object but also the portions of the background scene is not

necessarily an issue when it comes to object detection in 2D.

The reason being that the appearance of the background is

often correlated to the foreground object (think about a cow

sitting on grass) and therefore the combination of the two

can enhance object detection. This is much less of a case

when RGB-D images are considered and features are ex-

tracted from both 2D and 3D point clouds. In such a case,
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I Hypothetical Masks

Figure 4: The first column is the RGB image inside bounding box.

Remaining columns show top K foreground segmentation hypothesis (or,

masks) when K = 10. The hypotheses highlighted with green lines indi-

cate the segmentation hypothesis that is closest to the ground truth.

the 3D content associated to portions of a bounding box out-

side the foreground object can be fairly uncorrelated with

the object and scattered in 3D space depending on the ge-

ometry of the background region (See Fig. 2(a)).

Hypothetical Foreground Mask. In this paper we pro-

pose to associate each bounding box hypothesis (a HBB)

to a set of hypotheses for the foreground object segment

(or mask) - the HFM. Specifically, each 2D HBB yb,2D

with a height H and a width W is associated with an HFM

ym ∈ {0, 1}H·W , which is a set of binary variables for all

pixels where 1 indicates foreground pixels and 0 is for back-

ground. If the mask ym tightly covers an objects itself, we

can map the mask into 3D space as shown in Fig. 2(b).

Jointly estimating an accurate yb,2D and ym is compu-

tationally more challenging than estimating yb,2D only. To

resolve the problem, we narrow down the searching space

for ym using the top-K segmentation hypotheses (masks)

provided by a state-of-the-art segmentation approach such

as [19]. The typical results of top-K masks are illustrated in

Fig. 4. To this end, we introduce an auxiliary indexing vari-

able im where ymim indicates imth mask among K masks.

Feature Extraction. From a HFM and the associated

HBB, we extract two types of features. First, we extract

3D features from the projected 3D point clouds within the

HFM. Designing a 3D feature is out of scope for this paper;

for our work, we used the modified version of features in-

troduced in [14], which capture 3D properties such as size,

norm, etc. Details of our implementation can be found in

Sec. 3.2. Refer to [22, 23] for examples of possible features

that can be used along with our framework. On top of that,

HOG features are extracted from a HBB and concatenated

with 3D features.

3D Localization. We localize object in 3D space by pro-

jecting pixels within the HFM into 3D points to produce

accurate localization results. Fig. 2 (a) and (b) show local-

ization results from an estimated HBB and HFM, respec-

tively. As the figure shows, when the correct HFM is used,

the corresponding 3D point cloud enables much more accu-

rate localization results than if an HBB is used in isolation.

In Sec. 3.5, we quantitatively and qualitatively show that the

proposed scheme significantly improves the 3D localization

performance.

2.2. Part Based Model in 3D

Inspired by the deformable part based model (DPM)

presented in [8] which estimates object bounding boxes

and their latent part locations in the 2D image, our frame-

work determines the optimal 3D location of the object

y∗ = (yb,2D∗, ym∗im
) as well as its parts location h∗ in 3D as

(y∗, h∗) = argmax(y,h)

〈
β,Ψ(I, yb,2D, ymim , h)

〉
. The fea-

ture vector Ψ(I, yb,2D, ymim , h) concatenates features for M
components of the mixture model, which encode 2D and 3D

appearance cues, 3D distances between root and part filters

and a offset value. The linear classifier β is learned using

the Structural LSVM framework (Sec. 2.2.2).

2.2.1 3D Matching

The procedure that is used to estimate the root and part lo-

cation in 2D is referred to as matching [8], which takes into

account the 2D Euclidean distance between filter locations

[24]. In contrast, our framework searches for the best 3D

root and part locations, and this process is referred to as 3D
matching. By looking at 3D distance between root and part

filters, this process suppresses false alarms in object part lo-

calization if the 3D distance between root and part is large,

even they are close in the 2D image. As a result, possible

false alarms in 2D matching results (Fig. 5(a)) are removed

by our 3D matching strategy (Fig. 5(b)).

In details, our 3D matching mechanism involves the fol-

lowing steps. First, we project response maps of the filters

into the 3D point cloud by associating a confidence value

of a pixel to its corresponding point in 3D. Then, we define

a score function which is obtained as the summation of the

root and parts responses, with respect to their deformation

costs in 3D. This score function gives a highest score at its

optimal location and is expressed as follows:

score(x0, y0, z0, l0) = R0,l0(x0, y0, z0)

+
∑

i

Di,l0−λ(2(x0, y0, z0) + vi) (1)

Ri,l(·) is filter responses projected into 3D space for a part
i at scale l. The variable i indicates the part i if i > 0, or
it indicates root if i = 0. vi is the relative anchor position
for the part i. λ is the scale difference between root and
part filters. The transformation Di,l(·) allows modelling the
spatial uncertainty in parts location in 3D by balancing the
part resposes Ri,l(·) and displacement cost d(·) as follows:

Di,l(x, y, z) = max
dx,dy,dz

(Ri,l(x+ dx, y + dy, z + dz)− d(x, y, z))

(2)

where d(x, y, z) = di · φ(dx, dy, dz) is the weighted Eu-

clidean distance.
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2D Distance transform

Root  response Part responses

3D Distance transform

Root response Part responses 3D projection

Back-projection

(a) 2D Matching strategy (b) 3D Matching strategy Ground truth object location

...

...

...

...

...

...

Figure 5: This figure shows a comparison between our 3D matching strategy (Fig.(b)) and the traditional 2D matching [8] (Fig.(a)). By using our 3D

matching strategy, possible false alarms (black circles in Fig.(a)) can be suppressed if 3D distances between root and part filters are large. For 3D matching,

part responses are firstly mapped into 3D space, and 3D distance transform is applied to efficiently calculate deformation costs between root and part filters.

Details for the 3D matching can be found in the text.

Calculating Di,l(·) over 3D space is computationally ex-

pensive and takes O(N3), where N is the size of the search-
ing space for 1D. Note that [24] showed that this transfor-
mation can be efficiently calculated in the 1D case for a
quadratic cost function. For 3D matching, our cost function
is the 3D Euclidean distance, which is a quadratic function
over (x, y, z). Thus, we can efficiently obtain the transfor-
mation in 3D by iteratively applying the 1D distance trans-
form as follows:

Di,l(x, y, z) = max
dx′,dy′

(Ri,l|dz′(x+ dx, y + dy)− d|dz′(x, y))

= max
dx′

(Ri,l|dy′,dz′(x+ dx)− d|dy′,dz′(x)) (3)

which makes computational time into O(N).
Once the root location is found in 3D, parts locations

also can be found by looking up the optimal displacements,

similar to the 2D case [8].

2.2.2 Structural LSVM in 3D

To train model weights β, we propose to use Structural La-

tent SVM (StLSVM) framework [25] by considering 3D ob-

jects locations to construct the labeling space. This can im-

prove the precision of decision boundaries of trained classi-

fier since it penalizes inaccurate 3D localization predictions

during the training process. In the following, we describe

how the labeling space in 3D is formulated, and also intro-

duce a loss function that penalizes inaccurate 3D localiza-

tion predictions.

Labeling Space with Foreground Mask and Associ-
ated 3D Ellipsoid. Our training data is equipped with ob-
ject class label yl and the object foreground mask ym, i.e.,
y = (yl, ym). To help associate the mask with 3D loca-
tions, we use ys which is equivalent to ym with different

parametrization; ys = {(u1, v1), ..., (uS , vS)} is indicating
pixels of the object foreground mask where ym(u, v) = 1.
S is the number of pixels belonging to the foreground re-
gion. yl ∈ {−1, 1, ..., C}, where 1, ..., C indicates the class
of the depicted object or −1 indicates background. The lo-
cation of 2D bounding box (yb,2D) is determined from ys

by retaining the minimum and maximum indices over the
image axes u and v. On top of that, we obtain 3D object
location by projecting ys to point clouds ys,3D as follows:

ys,3D = g(ys,Depth,Camera)

= {(u′
1, v

′
1, z

′
1), ..., (u

′
S , v

′
S , z

′
S)} (4)

where g(·) is the projection function given the depth map
and camera parameters. (u′i, v

′
i, z

′
i) is the 3D location of a

point cloud. We use 3D ellipsoids in order to identify the
point cloud ys,3D which identify an object in 3D space. As
we will discuss in Sec. 3.1, ellipsoids are more convenient
(than bounding cubes) for annotating objects in 3D. 3D el-
lipsoids are characterized with 9 parameters as follows:

yb,3D = Ellipsoid(ys,3D)

= [cx, cy, cz, v1, v2, v3, d1, d2, d3] (5)

where {cx, cy, cz} is the center, {v1, v2, v3} are the 3 major

axes, and {d1, d2, d3} are radii of the ellipsoid.
Training. The training data is {(Ii, yi)}1,...,N , where

{I} is the set of images, and {yi = (yli, y
s
i )} are labels.

The model learns the parameters β by solving the following
latent max-margin optimization problem,

min
β,ξ

1

2
‖β‖2 + C

N∑
i=1

ξi (6)

s.t. ∀i, Ii, ȳ �= yi : max
hi

〈β,Ψ(Ii, yi, hi)〉

−max
h
〈β,Ψ(Ii, ȳ, h)〉 ≥ Δ(yi, ȳ)− ξi
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where ȳ is the most violating prediction, Ψ is the concate-

nated feature from a 2D BB and a HFM, and
∑N

i=1 ξi is

the sum of margins for the violated terms. Note that, since

y contains information about the 3D ellipsoid location, it

is able to take the 3D localization accuracy into account for

designing the loss function Δ(yi, ȳ) for the training process.

Finding the Most Violating Sample. Obtaining the

most violating sample ȳ is computationally inefficient if we

infer ȳm with 2H·W binary variables, where H and W are

the bounding box height and width, respectively. Instead,

we resolve this problem. im which corresponds to the most

violating ȳmim among ∀im ∈ 1 ∼ K. This requires that a

pre-processed HFMs {ymim} are available, which is true in

our case.
Loss Function in 3D. We design the loss function

Δ(yi, ȳ) depending on both 2D and 3D localization accu-
racies. Similar to [10],

Δ(yi, ȳ) =

{
0, if yl

i = ȳl = −1
1− [yl

i = ȳl]A(yi∩ȳ)
A(yi∪ȳ)

, otherwise
(7)

A(y1 ∩ y2) and A(y1 ∪ y2) are the intersection and union
of two object locations, respectively. To take into account
both 2D and 3D localization accuracy, we propose to use
the following intersection and union re-weighted over 2D
and 3D.

A(y1 ∩ y2) = w1A(yb,2D1 ∩ yb,2D2 ) + w2A(yb,3D1 ∩ yb,3D
2 )

(8)

A(y1 ∪ y2) = w3A(yb,2D3 ∪ yb,2D2 ) + w4A(yb,3D1 ∪ yb,3D
2 )

(9)

where A(yb,2D1 ∩yb,2D2 ) is the intersecting area between two

2D bounding boxes, and A(yb,3D1 ∩yb,3D2 ) is the intersecting

volume between two 3D ellipsoids1. The union A(y1 ∪ y2)
is calculated in a similar fashion. During the experiments,

we set w1,2,3,4 = 0.5.

3. Experiments
In the following, we evaluate our framework on the

Washington RGBD (WRGBD) dataset and the Berkeley 3D

Object (B3DO) datasets. To provide an accurate ground

truth 3D locations of objects for both training and test-

ing, we propose an annotation procedure that allows to effi-

ciently annotate an object foreground mask and the associ-

ated 3D ellipsoid (Sec. 3.1).

3.1. Annotation

Among the existing 3D datasets [2, 3, 11, 27], none of

them provide accurate location of objects in 3D space (with

the expection of [27]). [2, 3] annotated locations of objects

1See the supplementary material [26] for the method to calculate the

intersecting volume between two ellipsoids.

in 2D space. [11] contains small object instance annota-

tions, but the emphasis is more on providing annotations

for the room layout. [27] include range data along with ac-

curate location with 3D cubes for outdoor scenes.

In our work, we parameterize object locations using 3D

ellipsoids. 3D ellipsoids are good to capture the size of the

object using the 3 major axes of the object, and also describe

objects’ location in 3D space accurately. Also, as described

next, they can be used for providing a ground truth 3D ob-

ject location’s and pose’s annotations more accurately and

efficiently than bounding boxes do. At that end, we have

created an easy-to-use and efficient labeling tool. Using this

tool, the annotator can simply draw a polygon capturing the

object foreground, the 3D points corresponding to the pixels

enclosed by the polygon are used to calculate the centroid

and the principal axes of the ellipsoid tightly enclosing such

3D points. Principal axes are calculated using PCA on the

point cloud. Statistics related to our annotated ellipsoids

and its comparison with other statistics can be found in the

supplementary material [26]. Note that, to ensure the qual-

ity of the annotation, annotators are asked to exclude any

pixel from backrgound region. Also, the annotation tool al-

lows user to immediately see the annotation results using

a 3D visualization tool, so that they can annotate again if

there is an error. Typical examples of the annotation results

can be found in the second column of the Fig. 10. In our

framework, the overlap ratio between ground truth and es-

timated ellipsoids are used to calculate the loss function for

training the StLSVM model, as well as for evaluating 3D

localization performance.

3.2. Implementation Details

As for the experiments with the B3DO dataset, we con-

catenated HOG features calculated from deformable parts

[8] with 3D features proposed in [14]. As for the exper-

iments with the WRGBD dataset, we further concatenated

HOG features extracted from depth map as proposed by [3].

3.3. Foreground Mask Accuracy

There is a trade-off between the computational complex-

ity and the number of hypothetical masks. By using a larger

number of hypotheses, there is a higher chance to pick up

the correct one. This is at the expense of the added compu-

tational time that is required to calculate features and apply

the object model.

We measured a F-measure2 for different number of

HFMs (See the supplementary material [26] for the result.).

When the number of HFMs is greater than 10, the perfor-

mance gain becomes negligible. Thus, we set the number

of hypothetical masks K to 10 for the experiments.

2F = 2RP
P+R

, where P and R are the precision and recall of pixels in a

segment relative to the ground truth [28].
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3.4. Berkeley 3D Object Dataset

We first evaluated our method with the Berkeley 3D Ob-

ject Dataset (B3DO) [2]. Among all the available object

classes in the dataset, we tested 8 classes for which [2] eval-

uated the performance of 2D localization. 3D localization

was not tested in [2], so we propose several baseline meth-

ods in Sec. 3.4.1. Our framework is compared against these

methods.

3.4.1 3D Detection Performance

Similar to the Pascal Challenge criteria in 2D [29], the 3D

localization is counted as correct if the overlapping volume

between estimated ellipsoid and the ground truth ellipsoid

is more than a threshold. Otherwise, it is counted as wrong.

In our experiments, we set the threshold to be 25%.3 We

compare our method with the following baselines methods.

DPM+FillMask. For a detected 2D bounding box, we

project all the pixels inside that bounding box. The ellip-

soids are generated so as to enclose all the corresponding

3D points.

DPM+1stMask. Among K hypothetical masks, we

choose the top-ranked mask from [19] as a foreground

mask. The score corresponding to that mask is used to eval-

uate the detection.

DPM+SizePrior. 3D location and the size of the object

is estimated based on statistics for each object category. In

specific, a center of the 3D location for the object is set to

the mean depth value inside the bounding box. The size of

the object in 3D (width, height, thickness) is set to the av-

erage size of objects for the object category collected from

the training set.

Results. Fig. 6 and Table. 1 shows the average preci-

sions of 3D localization results of proposed method. Fig. 6

compares the performance of our method against baselines

methods. Our method achieved the best performance for 7
out of 8 categories, and on average, it attains at least 6.2%
higher average precision than baseline methods. For the

class cup, DPM+SizePrior and our method achieve simi-

lar performance. The reason may stem from the fact that

since there is small variance in the size of objects in the

cup class, DPM+SizePrior can successfully capture its 3D

location well. On the other hand, for classes having large

variances in their depth due to different poses (for exam-

ple, monitor or keyboard), our method works better than all

baselines. Typical 3D localization results can be found in

Fig. 10.

Table. 1 describes the effects of different components of

the framework. While there are remarkable improvements

by using features from HFMs and 3D loss function, the

3While 2D detection often use 50% as a threshold, 3D localization is

more challenging and 25% is a reasonable threshold for evaluation. For

more details, see the supplementary material [26].
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Figure 6: Average precisions of 3D object localization for 8 classes in

B3DO dataset. Our method achieves best results compared to a number of

baselines (See text for details).

FM/3dLoss FM/3dMatching FM/3dMaskFeat FM

B3DO 12.7% 15.5% 8.8% 15.8%
WRGBD 35.1% 34.2% 19.0% 35.6%

Table 1: This table compares the effect of different components of the

model. FM refers to our full model, and first three columns are the accu-

racy without using 3D loss function, 3D matching process, and 3D Feature

from HFM, respectively. See more discussion in Sec. 3.4.1

boost obtained by using the 3D matching strategy is rela-

tively small. This may be due to the small intra-class vari-

ance in the B3DO dataset.

3.4.2 2D Detection Performance

We further show that our method improves 2D detection ac-

curacy. Fig. 7 shows the average precisions of various de-

tection results in 2D using the B3DO dataset. We compare

our performances with DPM [8] and two methods proposed

in [2]. The first method is called pruning, where detected re-

sults are pruned out if the approximated object size (bound-

ing box diagonal times mean depth) is different from the

statistics of the dataset. The second method is called rescor-
ing, in which linear SVM is trained with additional features

of approximated object size [2].

Note that we achieve better results for 6 out of 8 cate-

gories. This confirms that using HFM and associated 3D

features is beneficial even for a 2D detection task. Notice

that there is no improvement for the chair category. This

may be due to severe occlusions that occur for the chair
category in the dataset and that are not well characterized

using our model.

3.5. Washington RGB-D Object Dataset

We also evaluated the proposed method using the Wash-

ington RGB-D Object Dataset (WRGBD) [3]. Note that in
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Figure 7: Average precisions of 2D object localization obtained by using

DPM, the methods proposed in [2] and our method on B3DO dataset. Our

proposed method consistently achieves better average precision over [2].
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Figure 8: Average precisions of 3D object localization in the WRGBD

dataset. Our method achieves best results compared with all baselines.

order to make the comparison with [3] fair, the features are

extracted from RGB, depth map as well as estimated object

size as in [3].

3D Detection Performance Fig. 8 shows the average

precision for 4 classes, coffee mug, cap, soda can, and flash-
light, in the WRGBD dataset. Again, we achieve the best

accuracy compared to the baseline methods discussed in

Sec. 3.4.1. We notice that the objects in this dataset have

small variance in their size and pose, so that the baseline

DPM+SizePrior already achieves a 3D localization accu-

racy of 32.8%. Note that our framework further improves

the accuracy by roughly 3%. Table. 1 shows the effects of

different components of the framework on WRGBD. We

observe that the 3D features from HFMs are the most im-

portant component. Training with 3D loss function and us-

ing 3D matching further improve the performance.

2D Detection Performance Fig. 9 shows average preci-

sions of our method, and the method proposed in [3]. Al-
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Figure 9: Average precisions of 2D object localization from DPM (with

features proposed in [3]) and our method on the WRGBD dataset. Our

method consistently achieves better average precision over [3].

though, as discussed earlier, the features used for baseline

methods already contains information extracted from both

RGB and depth map, our framework achieves the best per-

formance compared to them.

4. Conclusions and Future work
In this work we proposed a new approach for localizing

objects in 3D using RGB-D images. We explored the idea

of using segmentation hypotheses for the foreground object

to guide the process of accurately localizing the object in

3D. Extensive experimental analysis has demonstrated our

theoretical claims. Directions for future work include the

ability to integrate segmentation hypotheses in both 2D and

3D.
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[17] L. Ladickỳ, P. Sturgess, K. Alahari, C. Russell, and P. Torr, “What,

where and how many? combining object detectors and crfs,” ECCV,

2010.

[18] L. Cao and L. Fei-Fei, “Spatially coherent latent topic model for

concurrent segmentation and classification of objects and scenes,”

in ICCV, 2007.

[19] J. Carreira and C. Sminchisescu, “Constrained parametric min-cuts

for automatic object segmentation,” in CVPR, pp. 3241–3248, 2010.

[20] B. Pepik, P. Gehler, M. Stark, and B. Schiele, “3d2pm–3d deformable

part models,” in ECCV, 2012.

[21] A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman, “Multiple ker-

nels for object detection,” in ICCV, 2009.

[22] B. Steder, R. Rusu, K. Konolige, and W. Burgard, “Point feature

extraction on 3d range scans taking into account object boundaries,”

in ICRA, 2011.

[23] J. Knopp, M. Prasad, G. Willems, R. Timofte, and L. Van Gool,

“Hough transform and 3d surf for robust three dimensional classi-

fication,” in ECCV, 2010.

[24] P. Felzenszwalb and D. Huttenlocher, “Distance transforms of sam-

pled functions,” 2004.

[25] T. Joachims, T. Finley, and C. Yu, “Cutting-plane training of struc-

tural svms,” Machine Learning, vol. 77, no. 1, pp. 27–59, 2009.

[26] “Accurate localization in 3d project:

http://www.eecs.umich.edu/vision/projects/al3d/al3dproj.html.”

[27] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous

driving? the kitti vision benchmark suite,” in CVPR, 2012.

[28] S. Alpert, M. Galun, R. Basri, and A. Brandt, “Image segmenta-

tion by probabilistic bottom-up aggregation and cue integration,” in

CVPR, 2007.

[29] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zis-

serman, “The pascal visual object classes (voc) challenge,” IJCV,

2010.

318731873189


