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Abstract

In this paper, we address the challenging problem of de-
tecting pedestrians who appear in groups and have inter-
action. A new approach is proposed for single-pedestrian
detection aided by multi-pedestrian detection. A mixture
model of multi-pedestrian detectors is designed to capture
the unique visual cues which are formed by nearby multi-
ple pedestrians but cannot be captured by single-pedestrian
detectors. A probabilistic framework is proposed to model
the relationship between the configurations estimated by
single- and multi-pedestrian detectors, and to refine the
single-pedestrian detection result with multi-pedestrian de-
tection. It can integrate with any single-pedestrian detector
without significantly increasing the computation load. 15
state-of-the-art single-pedestrian detection approaches are
investigated on three widely used public datasets: Caltech,
TUD-Brussels and ETH. Experimental results show that our
framework significantly improves all these approaches. The
average improvement is 9% on the Caltech-Test dataset,
11% on the TUD-Brussels dataset and 17% on the ETH
dataset in terms of average miss rate. The lowest average
miss rate is reduced from 48% to 43% on the Caltech-Test
dataset, from 55% to 50% on the TUD-Brussels dataset and
from 51% to 41% on the ETH dataset.

1. Introduction

Pedestrian detection is one of the most important topics
in object detection and has attracted a lot of attention [2, 4,
10, 31, 34]. It has been widely applied to automotive safety,
robotics and intelligent video surveillance.

Pedestrian detection is challenging when multiple pedes-
trians are close in space. Firstly, a single-pedestrian detector
tends to combine the visual cues from different pedestrians
as the evidence of seeing a pedestrian and thus the detection
result will drift. As a result, nearby pedestrian-existing win-
dows with lower detection scores will be eliminated by non-
maximum suppression (NMS). For the examples in Fig. 1,
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Figure 1. Examples of missed detections caused by drift and oc-
clusion with the state-of-the-art detector in [13]. Aided by a
multi-pedestrian detector, the missed pedestrians are detected. The
thresholds of both approaches are fixed as 1 False Positive Per Im-
age (FPPI). Best viewed in color.

single bounding boxes cover multiple pedestrians, which re-
sults in inaccurate bounding boxes and missed detections.
Secondly, when a pedestrian is occluded by another nearby
pedestrian, its detection score may be too low to be de-
tected. Examples are shown in Fig. 1.

On the other hand, the existence of multiple nearby
pedestrians forms some unique patterns (as shown in Fig-
ure 2) which do not appear on isolated pedestrians. They
can be used as extra visual cues to refine the detection result
of single pedestrians. However, such valuable information
was not explored in existing works. The motivations of this
paper are two-folds:

1) It is recognized by sociologists that nearby pedestrians
walk in groups and show particular spatial patterns [17, 22].

2) From the viewpoint of computer vision, these 3D spa-
tial patterns of nearby pedestrians can be translated into
unique 2D visual patterns resulting from the perspective
projection of 3D pedestrians to 2D image. These unique
2D visual patterns are easy to detect and are helpful for es-
timating the configuration of multiple pedestrians.
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Figure 2. Visual patterns learned from training data with the HOG
feature (first column) and examples detected from testing data (re-
maining columns). In the first row, pedestrians walk side by side.
In the second row, pedestrians on the left are occluded by pedes-
trians on the right. Our 2-pedestrian detector captures visual cues
which cannot be learned with a 1-pedestrian detector.

They inspire us to design a multi-pedestrian detector to
capture these unique visual patterns. And a multi-pedestrian
window found by a multi-pedestrian detector can guide the
detection of each pedestrian in this window. Taking the first
row in Fig. 2 as an example, when pedestrians walk side
by side, they form the shoulder-to-shoulder visual pattern.
Taking pedestrians in the second row as another example,
the right torso of pedestrians on the left are occluded by the
pedestrians on the right. 1-pedestrian detectors are not able
to learn these two types of visual patterns. Instead, these vi-
sual patterns can be employed by the 2-pedestrian detector.
Then the 2-pedestrian detection results are used to reinforce
the evidence of detecting each of the two pedestrians.

The contribution of this paper can be summarized in
three-fold. 1) A multi-pedestrian detector is learned with a
mixture of deformable part-based models to effectively cap-
ture the unique visual patterns appearing in multiple nearby
pedestrians. The training data is labeled as usual, i.e. a
bounding box for each pedestrian. The spatial configuration
patterns of multiple nearby pedestrians are learned and clus-
tered into mixture component. 2) In the multi-pedestrian
detector, each single pedestrian is specifically designed as
a part, called pedestrian-part. As shown in Fig. 4(b),
the filter of a pedestrian-part is different from and com-
plementary to a 1-pedestrian detector, since it is learned
under a specific multi-pedestrian configuration and under
the guidance of the multi-pedestrian detector as contextual
constraints. 3) A new probabilistic framework is proposed
to model the configuration relationship between results of
multi-pedestrian detection and 1-pedestrian detection. With
this framework, multi-pedestrian detection results are used
to refine 1-pedestrian detection results.

The new framework can easily integrate with any ex-
isting 1-pedestrian detector. With a fast computation ap-
proach, it only adds small computing load on the top of 1-
pedestrian detectors. 15 state-of-the-art 1-pedestrian detec-

tors are evaluated on three widely used public datasets: Cal-
tech, TUD-Brussels and ETH. They all achieve significant
improvements by integrating with our framework. The low-
est miss rate is improved from 48% to 43% on the Caltech-
Test dataset, from 55% to 50% on the TUD-Brussels dataset
and from 51% to 41% on the ETH dataset.

2. Related Work

The progress on object detection has been achieved
by the investigation on classification approaches, features
and articulation handling approaches. 1) Classification ap-
proaches used include various boosting classifiers [32, 9,
37], SVM classifiers [4, 21, 13, 43], and grammar mod-
els [16] and deep model [23]. 3) Features under investiga-
tion include Haar-like features [32], edgelets [37], shapelets
[27], histogram of gradients (HOG) [4], bag-of-words [18],
integral histograms [26], color histograms [33], covariance
descriptors [31], co-occurrence features [28], local binary
patterns [34], color-self-similarity [33], depth [12], segmen-
tation [11], features learned from training data [1] and their
combinations [34, 9, 33, 28, 11]. 3) Articulation handling
approaches under investigation include Deformable part-
based models (DPM) [13, 43, 27], pictorial structures [14],
poselet [3] and mixture of parts [41].

Context is gaining more and more attention in object
detection. The context investigated in previous works in-
cludes regions surrounding objects [4, 6, 15], object-scene
interaction [7], and the presence, location, orientation and
size relationship among objects [2, 38, 39, 5, 25, 15, 29, 7,
42, 6, 40, 24]. They usually employ context cues in two
steps: 1) single-object detection results are obtained sep-
arately; and 2) the relationship between an object and its
context is modeled to refine the detection result. There-
fore, the visual cues of seeing multiple objects are from
single-object detectors instead of a multi-object detector.
The unique visual patterns of multiple nearby pedestrians
caused by inter-occlusion and spatial constraint were not
explored. In [4, 15, 6], features were extracted from con-
text regions for single-object detection but not multi-object
detection. DPM is used [19, 30] to learn contextual cues.
The approach in [19] only considers one contextual region
with the largest score in an image, even if that image con-
tains multiple people. So it cannot model multiple pairs of
pedestrians in an image. In [19] the context cues are used to
improve the centered object, but in our work the detections
of two pedestrians are jointly estimated under a probabilis-
tic model. A 2-pedestrian detector is also proposed [30].
Our paper is different from [30] in two aspects: 1) the seg-
mentation results of pedestrian is required from the training
data in [30] while our paper only requires the bounding box
information of pedestrians. 2) the approach in [30] uses
NMS to reject the strong overlap between the 2-pedestrian
detection results and the 1-pedestrian detection results (in-
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compatible relationship) while this paper uses a probabilis-
tic framework that favors the strong overlap (compatible re-
lationship).

3. Framework of Single-Object Detection
Aided by Multi-Object Detection

Denote an image with I, and let z1 be the configura-
tion of an object obj1. p(I|z1) is the likelihood of seeing
I given obj1 with configuration z1 = (l1, w1). z1 con-
tains the locations and sizes of the whole object and its
parts. w1 = (x1, y1, s1) is the detection window at lo-
cation (x1, y1) with size s1. l1 represents the locations
and sizes of parts if the single-object detector is DPM. Ob-
ject detection needs to compute the posterior distribution,
p(z1|I). Since p(I) is constant, the posterior is represented
as p(z1|I) = p(z1,I)

p(I) ∝ p(z1, I) under the Bayes’ rule. Our
framework assumes multiple nearby pedestrians, and has

p(z1, I) = p(I, z1|c = 1)p(c = 1) +
C∑

c=2

∑

zc

p(I, z1, zc|c)p(c)
(1)

where p(c) is the prior of the case when there are c nearby
objects. We jointly detect c (c = 1, . . . , C) nearby objects
with configuration zc and capture the visual cues of zc as
the context to assist the estimation of z1.

3.1. Implementation for pedestrian detection

The framework in (1) is implemented as follows:

p(z1, I) =p(I, z1|c = 1)p(c = 1)+

C∑

c=2

∑

zc

p(I|z1, zc, c)p(z1, zc|c)p(c).
(2)

p(I, z1|c = 1) is estimated from a 1-pedestrian detector.
p(I|z1, zc, c) is the likelihood of seeing I given configura-
tions z1, zc and c, and calculated by a c-pedestrian detector
introduced in Section 4.2. p(z1, zc|c) models the relation-
ship between 1-pedestrian configuration z1 and c-pedestrian
configuration zc, and is introduced in Section 4.3.

4. Design of the multi-pedestrian detector

The location and size variation of nearby pedestrians re-
sults in the appearance variation of these pedestrians. On
the other hand, sociologists have found that pedestrians
walking together show a few particular spatial patterns [22].
Therefore, we address this problem with a mixture of DPM.
We empirically show that such approximation can improve
pedestrian detection performance (Section 6).

4.1. Considering at most two pedestrians

This paper focuses on the case when c = 1 and c = 2
because of several considerations. 1) According to socio-
logical studies [22], the frequency of seeing two pedestri-
ans walking together (28%− 42%) is much more than that

of seeing more than two pedestrians (< 10%). 2) Our ap-
proach for 2-pedestrian detector can be naturally extended
for c-pedestrian detector. 3) Pair-wise relationship is a con-
cise representation of the relationship among c(> 2) pedes-
trians. 4) It is computationally expensive when c > 2.

When c = 1, the p(I, z1|c = 1) in (2) is obtained from
1-pedestrian detector. When c = 2, we have

∑

z2

p(I, z1, z2|c = 2)p(c = 2). (3)

The evidence from a 2-pedestrian detection in (3) is used
as the extra information to refine the 1-pedestrian detection
result in (2). The priors p(c = 1) and p(c = 2) are used as
the weights to balance the 1-pedestrian detection result and
the evidence from 2-pedestrian detection. These weights
are obtained by cross-validation. In our implementation,
we have z2 = (l2, w2,m2). Since the configurations of two
pedestrians are complex, we assume that they are sampled
from a mixture model and m2 is the configuration mixture
type. w2 = (x, y, s) represents the 2-pedestrian detection
window at location (x, y) with size s, and l2 represents the
locations and sizes of parts in w2. In the remaining of this
paper, we drop the conditional term c = 2 to simplify nota-
tions because it is implicitly assumed by l2, m2 and w2. We
have the following for (3) by replacing z2 with (l2, w2,m2)
and then using the sum-product rule:∑

z2

p(I, z1, z2|c = 2)p(c = 2)

=
∑

l2,w2,m2

p(I, z1, l2, w2,m2)p(c = 2) (4)

=
∑

l2,w2,m2

p(I, z1, l2|w2,m2)p(w2|m2)p(m2)p(c = 2)

= p(c = 2)
∑

m2

p(m2)
∑

w2

p(w2|m2)
∑

l2

p(I, z1, l2|w2,m2).

Details on the mixture model m2 and its detection window
w2 are provided in Section 4.2. p(I, z1, l2|w2,m2) in (4)
is the joint distribution of image I, configurations z1 and
l2 given mixture m2 and window w2. An overview of this
implementation is shown in Fig. 3. The 1-Pedestrian, 2-
pedestrian and pedestrian-part detection scores in Fig. 3 are
integrated into p(I, z1, l2|w2,m2), which is detailed in Sec-
tion 4.2. The evidence to 1-pedestrian in Fig. 3 is obtained
using (4) and is then added to 1-pedestrian detection results
using (2) to obtain the refined detection result in Fig. 3.

4.2. Mixture of DPM for 2-pedestrian detection

In order to learn the mixture type m2 = 1, . . . ,M , the
configuration space of z2 is divided into M = S ·A clusters
with the following two steps.

1) The two pedestrians form a 2-pedestrian bounding
box. The positive training samples are divided into A
groups according to their aspect ratios.

2) Each aspect ratio group is further divided into S clus-
ters. The relative location and size between the two pedes-
trians are used as features for clustering. Many clustering
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Figure 3. Use 2-pedestrian detection result to refine 1-pedestrian detection. The detection scores of 1-pedestrian, 2-pedestrians and
pedestrian-parts are integrated as the evidence to 1-pedestrian configuration z1. This evidence is added to the result obtained with the
1-pedestrian detector. Examples in the left column are obtained at 1FPPI on the ETH dataset. This figure is best viewed in color.

approaches can be adopted. We empirically evaluate the
mixture of Gaussian (MoG) in the experiments. Fig. 4(a)
shows three examples of the detectors learned for the 9 clus-
ters. It can be seen that each detector captures a specific
configuration relationship between the two pedestrians.

After the clustering step, the positive training samples
in a cluster and all the negative samples are used to train a
DPM [13]. Each cluster corresponds to a mixture type m2.
The 2-pedestrian model for a mixture type m2 consists of
one root filter and five deformable part filters with defor-
mation under the star model learned with the Latent SVM
in [13]. The 2-pedestrian bounding box is used to train the
root filter. Three parts are greedily selected and initialized
from the root filter using the approach in [13]. Besides,
we add two extra parts that correspond to the two pedes-
trians in a 2-pedestrian training sample. They are called
pedestrian-parts. The anchor locations and sizes of the two
pedestrian-parts are obtained from the mean of the training
samples in this cluster. In order to transfer the knowledge
of the 1-pedestrian detector to the 2-pedestrian detector, the
initial filters for the two pedestrian-parts are obtained from
the root filter of the 1-pedestrian detector. With the posi-
tive samples and initial part filters defined, the DPM with
Latent SVM in [13] is then used to train the 2-pedestrian
detector. Examples of the learned model are shown in Fig.
4. The configuration l2 contains the sizes and locations of
parts. Since the pedestrian-parts are explicitly modeled as

parts in the 2-pedestrian model, the size and location of each
pedestrian in the 2-pedestrian window are also inferred with
DPM at the detection stage. This is the key to build the re-
lationship between the 2-pedestrian detection result and the
1-pedestrian detection result.

p(m2) in (4) could be estimated from the training set.
But it could be biased because of insufficient training data.
It is assumed to be uniform in our implementation. Given
the mixture modelm2, p(w2|m2) in (4) can be densely sam-
pled from the image in a sliding window manner with vary-
ing window sizes.

To represent the relationship between the pedestrian-part
and the single-pedestrian detection result, we introduce a
hidden variable h. h = 0 when the left pedestrian-part in l2
is considered to match the single pedestrian with configura-
tion z1, and h = 1 when the right pedestrian-part matches
the single pedestrian. With h included, we have the follow-
ing for the p(I, z1, l2|w2,m2) in (4):

p(I, z1, l2|w2,m2) =
∑

h

p(I, z1, l2, h|w2,m2)

=
∑

h

p(I, z1, l2|h, w2,m2)p(h|w2, m2),

where (5)

p(I, z1, l2|h, w2,m2)

= p(I, l1|w1, l2, h, w2,m2)p(w1|l2, h, w2, m2)p(l2|w2,m2),

p(w1, |l2, w2,m2, h) models the relationship between z1
and zc and will be detailed in Section 4.3. z1 =
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Figure 4. (a) Examples of 2-Pedestrian detectors learned for differ-
ent clusters, (b) pedestrian-part filter and the single-pedestrian root
filter in [13]. (1a): root filter; (2a): three part filters found from
root filter; (3a): pedestrian-part filters; (4a): examples detected by
the detectors in the same rows. Red rectangles are 2-pedestrian de-
tection results. Blue rectangles indicate pedestrian-part locations.
Best viewed in color.

(l1, w1) and p(h|w2,m2) = 0.5. The p(l2|w2,m2) and
p(I, l1|w1, l2, h, w2,m2) in (5) are implemented as:

p(I, l1|w1, l2, h, w2,m2)p(l2|w2,m2)

∝φa(I, l1;w1)φb(I; l2, w2,m2, h)φc(I, l2;w2,m2)

=λ1λpλ2,

(6)

where φa(I, l1;w1) = λ1 is from 1-pedestrian detection
score. λ2 = φc(I, l2;w2,m2) = φc,1(I; l2, w2,m2) ·
φc,2(l2;w2,m2) in (6) is from the 2-pedestrian de-
tection score obtained by DPM in our implemen-
tation. φc,1(I; l2, w2,m2) is the appearance score
and φc,2(l2;w2,m2) is the deformation score. The
φb(I; l2, w2,m2, h) = λp in (6) is obtained from the
pedestrian-part score, which is used as extra information
to refine 1-pedestrian detection result. In Fig. 3, the 1-
pedestrian score map is from λ1, the 2-pedestrian score map
is from λ2, and the pedestrian-part score maps are from λp.

4.3. Modeling the relationship between 2- and 1-
pedestrian detection results

With the pedestrian-parts designed in the 2-pedestrian
detector, this relationship becomes matching the pedestrian-
part in the 2-pedestrian detector with the 1-pedestrian de-
tection result. It is modeled with p(w1|l2, w2,m2, h) in (5),
which is a Gaussian distribution:

p(w1|l2, w2,m2, h) = (2π)−
3
2 |Σ|− 1

2 e−
1
2
(w1−u)TΣ−1(w1−u),

(7)
where Σ is the covariance matrix estimated from training

samples for each mixture m2, w1 = (x1, y1, s1) is the lo-
cation and size of z1, u = (x2,h, y2,h, s2,h) is the location

and size of the pedestrian-part h in l2. p(w1|l2, w2,m2, h)
is the largest if the 1-pedestrian detection window w1 per-
fectly matches the pedestrian-part.

5. Reduction of computational complexity

Suppose the number of possible configurations for w1

in z1 = (w1, l1) is Lc. The number of possible config-
urations for the 5 parts in l2 is O(L5

c) and the number of
possible configurations for w2 is O(Lc). The number of
possible configurations for m2 is M . Overall, the computa-
tional complexity of (4) is O(ML7

c), which is unaffordable
and a fast approach is required.

In order to reduce the computational complexity, we
have the following approximation for (4):

∑

l2,w2,m2

p(I, z1, l2, w2,m2)

≈
∑

h,w2,m2

p(w2,m2)φa(I, l1;w1)φb(I; l̃2, w2, m2, h)

φc(I, l̃2;w2,m2)p(w1 |̃l2, w2,m2, h)p(h)

=
∑

h,w2,m2

p(w2,m2)λ1λ̃pλ̃2p(w1 |̃l2, w2,m2, h)p(h),

where l̃2 = argmax
l2

φc(I, l2;w2,m2).

(8)

In this way, the summation with regard to l2 in (8) is ap-
proximated by maximization, which can be efficiently com-
puted with the distance transform in [13]. Denote the num-
ber of candidates for z1 by Cand1, and the number of can-
didate windows w2 for M mixtures by Cand2. The proce-
dure and computational complexity of computing (8) is as
follows:

Step 1. Obtain the 1-pedestrian detection result, which is
used for p(I, z1|c = 1) in (2) and λ1 in (8). Only Cand1
candidate windows, which are detected by the single-
pedestrian detector, are used for the next steps. O(Lc) op-
erations are required.

Step 2. Obtain the 2-pedestrian detection results, which
is used for λ̃p and λ̃2. Since there should not be any 2-
pedestrian window in which no pedestrian is found, the 2-
pedestrian detector can be evaluated only around Cand1
1-pedestrian candidate windows to save computation (i.e.
we assume that if two nearby pedestrians exist, at least one
pedestrian will be detected by the single-pedestrian detector
around this region). O(Cand1) operations are required.

Step 3. For each 1-pedestrian candidate z1, compute (8)
for Cand2 2-pedestrian candidate windows using the re-
sults obtained in Step 1 and Step 2. In practice, most λ1

and λ̃2 are very close to 0, i.e. Cand1, Cand2 � Lc.
This allows us to compute p(w1 |̃l2, w2,m2, h) only for
Cand1Cand2 non-zero λ1 and λ̃2. With the terms com-
puted, the computational complexity for summing up them
w.r.t. h,w2 and m2 in (8) is O(Cand1Cand2) by enforcing
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sparsity on 1-pedestrian and 2-pedestrian candidate win-
dows. O(Cand1Cand2) operations are required.

Take our experiment on the Caltech dataset [10] as an ex-
ample, we have Lc > 40, 000, Cand2 = 20, Cand1 = 140
and Cand1Cand2 = 2, 800 per image on average. There-
fore, the computation required for Step 2 and Step 3, i.e.
O(Cand1) + O(Cand1Cand2), is relatively small com-
pared with the computation required for singe-pedestrian
detection in Step 1, i.e. O(Lc).

6. Experimental Results

The proposed framework is evaluated on three public
datasets: Caltech [10], TUD-Brussels [36] and ETH [12].
We use the modified HOG [13] as feature and the DPM in
[13] to learn the 2-pedestrian detector. HOG+DPM is used
because it is off-the-shelf, open-source, and widely used.
Since the detection scores of multi-pedestrian detector and
1-pedestrian detector are considered as input, the frame-
work keeps unchanged if other detection models or features
are used for 1-pedestrian detector or 2-pedestrian detector.
Existing pedestrian detection results can be directly used as
the input of our framework.

The 1-pedestrian detection approach in [13] used the
same feature and DPM as our 2-pedestrian detector. It is
denoted as LatSVM-V2 in the experimental results. Our
framework using LatSVM-V2 as the 1-pedestrian detec-
tor is denoted as LatSVM-V2+Our in the experimental re-
sults. Other single-pedestrian detectors trained with differ-
ent models, features and datasets are also integrated with
our 2-pedestrian detector and compared in Section 6.2.

The labels and evaluation code provided by Dollár et al.
online are used for evaluation following the criteria pro-
posed in [10]. As in [10], the log-average miss rate is used
to summarize the detector performance, and is computed
by averaging the miss rate at nine FPPI rates evenly spaced
in the log-space in the range from 10−2 to 100. In the ex-
periments, we evaluate the performance on the reasonable
subset of the evaluated datasets, which is the most popular
portion of the datasets. It consists of pedestrians of ≥ 50
pixels in height, who are fully visible or less than 35% oc-
cluded.

6.1. Preparation of 2-Pedestrian Training Data

Since there is no 2-pedestrian detection training dataset,
we construct it based on the INRIA training dataset [4] as
follows:

1) All the negative images are used for negative samples.
2) Because most pedestrians labeled in INRIA are iso-

lated pedestrians, this results in a very small number of 2-
pedestrian positive samples (656). We labeled more pedes-
trians in the positive images. The number of positive 2-

pedestrians increases from the original 656 to 4398. 1.
3) If the bounding boxes of two pedestrians have overlap,

the bounding box that exactly covers the two pedestrians is
considered as the label of the 2-pedestrian positive sample.

Once the 2-pedestrian detection model is learned from
this training set, it is fixed and tested on other datasets.

6.2. Experimental Results on Caltech, TUD-
Brussels and ETH

All the state-of-the-art approaches evaluated on the
TUD-Brussels and EHTZ dataset in [10] are evaluated in
this experiment. First of all, we compare with the approach
in [13] which used the same feature and learning model
as our 2-pedestrian detector. Compared with LatSVM-
V2, our approach has 10%, 7% and 5% log-average miss
rate improvement on the datasets ETH, TUD-Brussels and
Caltech-Test respectively. In order to exclude the factor of
using a larger training set, we also train the 1-pedestrian
detector with DPM 6.1 on our extended INRIA dataset de-
scribed in Section 6.1. It is denoted by LatSvm-V2-E.
By combining with LatSVM-V2-E, our approach (LatSvm-
V2-E+our) has 9%, 7% and 5% log-average miss rate im-
provement over LatSVM-V2-E on the datasets ETH, TUD-
Brussels and Caltech-Test respectively.

We also investigate other 1-pedestrian detectors and in-
tegrate them with our 2-pedestrian detector in this exper-
iment. The evaluated 1-pedestrian detectors are VJ [32],
Shapelet [27], PoseInv [20], LatSVM-V1 [13], HikSVM
[21], HOG [4], MultiFtr [35], HogLbp [34], Pls [28], Mul-
tiFtr+CCS, MultiFtr+Motion [33], FPDW [8], ChnFtrs [9],
and MultiResC [25]. MultiResC is only evaluated on the
Caltech-Test dataset, since its results on ETH and TUD-
Brussels is not available. For 1-pedestrian detection results,
the range of detection score s has large variation for differ-
ent approaches. s is normalized to snorm as following:

snorm = σ(a ∗ s+ b), a = 6/smax, b = −0.6a. (9)

where σ(x) = 1/(1 + e−x) is the logistic function, smax

is the maximum detection score of the first 100 images for
each approach. snorm is used as p(I, z1|c = 1) in (2). Fig. 5
shows the results on the three datasets. Fig. 6 shows the im-
provement of our framework for each of these approaches
on the two datasets. Our framework significantly improves
all the state-of-the-art pedestrian detectors by integrating
with them. The average improvement is about 9% on the
Caltech-Test dataset, 11% on the TUD-Brussels dataset and
17% on the ETH dataset. It is reported in [10] that LatSvm-
V2 has the best performance among the 14 state-of-the-
art approaches evaluated on the ETH dataset. The aver-
aeg miss rate for LatSvm-V2 is 51%. By integrating with
our framework, 10 algorithms outperform LatSVM-V2 and

1http://www.ee.cuhk.edu.hk/˜xgwang/2ped.html
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Figure 6. Miss rate improvement of the framework for each of the
state-of-the-art 1-pedestrian detectors on Caltech-Test (left), TUD-
Brussels (middle) and ETH (right). X-axis denotes the miss rate
improvement.

the best performing one (LatSVM-V2+Our) reaches the av-
erage miss rate of 41%. The current best performing ap-
proaches on the Caltech-Test dataset is the MultiResC and
the contextual boost in [6], both of which use context in-
formation and have an average miss rate 48%. With our
framework, MultiResC+Our is improved to 43%. With our
framework, the current best performing approach on the
TUD-Brussels dataset, i.e. MultiFtr+Motion, is improved
from 55% to 50%. This experiment shows that the multi-
pedestrian detector provides rich complementary informa-
tion to current state-of-the-art 1-pedestrian detection ap-
proaches even when context [25] or motion [33] is used by
these approaches.

7. Conclusion

In this paper, we propose a new probabilistic framework
for single pedestrian detection aided by multi-pedestrian de-
tection. DPM is used to learn the multi-pedestrian detec-
tor which effectively captures the unique visual patterns ap-
pearing in multiple nearby pedestrians. Detection perfor-
mance is improved by modeling the relationship between
the configurations of single-pedestrian detection results and
those of multi-pedestrian detection results. It is very flexible
to incorporate with new features (e.g. color self-similarity,
local binary pattern, motion and depth), other deformable
part-based models (e.g. the tree and loopy models), and
learning methods (e.g. boosting). Existing pedestrian de-
tection results can be directly used as the input of our frame-
work. Extensive experimental evaluation shows that the
proposed framework can significantly improve all the state-
of-the-art single-pedestrian detection approaches, and that
the multi-pedestrian detector provides rich complementary
information to current state-of-the-art single-pedestrian de-
tection approaches, even if motion or context is used by
these approaches. Over the 15 state-of-the-art approaches
under investigation, the average improvement is 9% on the
Caltech-Test dataset, 11% on the TUD-Brussels dataset and
17% on the ETH dataset. The lowest miss rate is reduced
from 48% to 43% on the Caltech-Test dataset, from 55% to
50% on the TUD-Brussels dataset and from 51% to 41% on
the ETH dataset.

Acknowledgment: This work is supported by the Gen-
eral Research Fund sponsored by the Research Grants
Council of Hong Kong (Project No. CUHK 417110 and
CUHK 417011), National Natural Science Foundation of
China (Project No. 61005057), and Guangdong Innovative
Research Team Program (No.201001D0104648280).

References

[1] A. Bar-Hillel, D. Levi, E. Krupka, and C. Goldberg. Part-
based feature synthesis for human detection. In ECCV, 2010.
2

[2] O. Barinova, V. Lempitsky, and P. Kohli. On detection of
multiple object instances using hough transforms. In CVPR,
2010. 1, 2

[3] L. Bourdev and J. Malik. Poselets: body part detectors
trained using 3D human pose annotations. In ICCV, 2009.
2

[4] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In CVPR, 2005. 1, 2, 6, 8

[5] C. Desai, D. Ramanan, and C. Fowlkes. Discriminative mod-
els for multi-class object layout. In ICCV, 2009. 2

[6] Y. Ding and J. Xiao. Contextual boost for pedestrian detec-
tion. In CVPR, 2012. 2, 7

[7] S. K. Divvala, D. Hoiem, J. H. Hays, A. A. Efros, and
M. Hebert. An empirical study of context in object detec-
tion. In CVPR, 2009. 2

[8] P. Dollár, S. Belongie, and P. Perona. The fastest pedestrian
detector in the west. In BMVC, 2010. 6

[9] P. Dollár, Z. Tu, P. Perona, and S. Belongie. Integral channel
features. In BMVC, 2009. 2, 6

[10] P. Dollár, C. Wojek, B. Schiele, and P. Perona. Pedestrian
detection: an evaluation of the state of the art. IEEE Trans.
Pattern Anal. Mach. Intell., 34(4):743 – 761, 2012. 1, 6

[11] M. Enzweiler and D. M. Gavrila. A multilevel mixture-of-
experts framework for pedestrian classification. IEEE Trans.
Image Process., 20(10):2967–2979, 2011. 2

[12] A. Ess, B. Leibe, and L. V. Gool. Depth and appearance for
mobile scene analysis. In ICCV, 2007. 2, 6

[13] P. Felzenszwalb, R. B. Grishick, D.McAllister, and D. Ra-
manan. Object detection with discriminatively trained part
based models. IEEE Trans. Pattern Anal. Mach. Intell.,
32:1627–1645, 2010. 1, 2, 4, 5, 6

[14] P. F. Felzenszwalb and D. P. Huttenlocher. Pictorial struc-
tures for object recognition. Int’l J. Computer Vision, 61:55–
79, 2005. 2

[15] C. Galleguillosy, B. McFeey, S. Belongiey, and G. Lanckriet.
Multi-class object localization by combining local contextual
interactions. In CVPR, 2010. 2

[16] R. Girshick, P. Felzenszwalb, and D. McAllester. Object de-
tection with grammar models. In NIPS, 2011. 2

[17] A. Hare. Handbook of small group research. Macmillan,
1962. 1

[18] C. Lampert, M. Blaschko, and T. Hofmann. Beyond sliding
windows: object localization by efficient subwindow search.
In CVPR, 2008. 2

320232023204



10
−3

10
−2

10
−1

10
0

10
1

10
2

.20

.30

.40

.50

.64

.80

1  

false positives per image

m
is

s 
ra

te

 

 95 VJ

91 Shapelet

86 PoseInv

80 LatSvm−V1

73 HikSvm

68 HOG

68 MultiFtr

68 HogLbp

63 LatSvm−V2

62 LatSvm−V2−E

62 Pls

61 MultiFtr+CSS

57 FPDW

56 ChnFtrs

51 MultiFtr+Motion

48 MultiResC 10
−3

10
−2

10
−1

10
0

10
1

10
2

.20

.30

.40

.50

.64

.80

1  

false positives per image

m
is

s 
ra

te

 

 
95% Shapelet

95% VJ

90% LatSvm−V1

88% PoseInv

83% HikSvm

82% HogLbp

78% HOG

73% MultiFtr

71% Pls

70% LatSvm−V2

66% LatSvm−V2−E

63% FPDW

60% ChnFtrs

59% MultiFtr+CSS

55% MultiFtr+Motion

10
−3

10
−2

10
−1

10
0

10
1

.10

.20

.30

.40

.50

.64

.80

1  

false positives per image

m
is

s 
ra

te

 

 
92% PoseInv

91% Shapelet

90% VJ

77% LatSvm−V1

72% HikSvm

64% HOG

61% MultiFtr+CSS

60% FPDW

60% MultiFtr+Motion

60% MultiFtr

57% ChnFtrs

55% HogLbp

55% Pls

52% LatSvm−V2−E

51% LatSvm−V2

10
−3

10
−2

10
−1

10
0

10
1

10
2

.20

.30

.40

.50

.64

.80

1  

false positives per image

m
is

s 
ra

te

 

 86 VJ+Our

73 Shapelet+Our

66 HogLbp+Our

65 LatSvm−V1+Our

62 PoseInv+Our

59 MultiFtr+Our

58 HOG+Our

58 LatSVM−V2+Our

58 HikSvm+Our

57 LatSVM−V2−E+Our

57 Pls+Our

55 MultiFtr+CSS+Our

53 FPDW+Our

52 ChnFtrs+Our

46 MultiFtr+Motion+Our

43 MultiResC+Our 10
−3

10
−2

10
−1

10
0

10
1

10
2

.20

.30

.40

.50

.64

.80

1  

false positives per image

m
is

s 
ra

te

 

 
80% Shapelet+Our

77% VJ+Our

74% LatSvm−V1+Our

70% HogLbp+Our

69% PoseInv+Our

66% HikSvm+Our

65% HOG+Our

64% MultiFtr+Our

63% LatSVM−V2+Our

62% Pls+Our

59% LatSVM−V2−E+Our

59% FPDW+Our

57% ChnFtrs+Our

55% MultiFtr+CSS+Our

50% MultiFtr+Motion+Our

10
−3

10
−2

10
−1

10
0

10
1

.20

.30

.40

.50

.64

.80

1  

false positives per image

m
is

s 
ra

te

 

 
68% Shapelet+Our

63% VJ+Our

56% LatSvm−V1+Our

53% PoseInv+Our

50% MultiFtr+Our

49% HikSvm+Our

49% MultiFtr+CSS+Our

48% FPDW+Our

47% MultiFtr+Motion+O

47% ChnFtrs+Our

47% Pls+Our

47% HOG+Our

46% HogLbp+Our

43% LatSVM−V2−E+Ou

41% LatSVM−V2+Our

(a) Caltech-Test (b) TUD-Brussels (c) ETH
Figure 5. Detection results of existing approaches (top) and integrating them with our framework (bottom) on the datasets Caltech-Test (a),
TUD-Brussels (b) and ETH (c). The results of integrating existing approaches with our framework are denoted by ’+Our’. For example,
the result of integrating HOG [4] with our framework is denoted by HOG+Our.
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