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Abstract

We propose a principled probabilistic formulation of ob-
ject saliency as a sampling problem. This novel formula-
tion allows us to learn, from a large corpus of unlabelled
images, which patches of an image are of the greatest in-
terest and most likely to correspond to an object. We then
sample the object saliency map to propose object locations.
We show that using only a single object location proposal
per image, we are able to correctly select an object in over
42% of the images in the PASCAL VOC 2007 dataset, sub-
stantially outperforming existing approaches. Furthermore,
we show that our object proposal can be used as a simple
unsupervised approach to the weakly supervised annotation
problem. Our simple unsupervised approach to annotating
objects of interest in images achieves a higher annotation
accuracy than most weakly supervised approaches.

1. Introduction
With the prevalence of media sharing websites such as

Flicker, researchers have easy access to terabytes of liber-

ally licensed images. The primary bottleneck that prohibits

the use of this data lies in the difficulty of annotating it.

In this paper we show how such images can be automat-

ically annotated. Our primary focus lies on two types of

annotation: Given an image, (i) find a bounding box tightly

containing one object of interest (this unsupervised annota-

tion is comparable to the weakly supervised multi-instance

learning [8, 28, 29] approaches), and (ii) produce a binary

mask highlighting regions of interest. Unlike other anno-

tations (e.g. find 1000 boxes covering every object in the

image [3, 25]) annotation (i) can be easily validated with a

simple “Yes/No” from a human, and can be directly used to

learn an object detector (see section 5.3).

As the word “saliency” is widespread in the literature

and used to refer to whatever a researcher currently consid-

ers interesting, it is important to distinguish between dif-
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ferent usages of the word. We will use “human saliency”

to refer to methods that predict where a human looks, or

what they will label as interesting in an image, and “object

saliency” to refer to methods that annotate the location of a

predefined set of object types. As humans look at objects

and find them interesting, there is substantial overlap be-

tween the two problems, and methods for one problem may

be applied to the other.

Human saliency was first formulated as a predictor of

human fixation in images [16]. Recent applications in

computer vision have led to an increased interest in ob-

ject saliency formulations [3, 6, 13, 15, 31] that propose

salient bounding boxes in images as potential object loca-

tions. These boxes can be used to speed up object detection

[3, 31] or weakly supervised object annotation for training

a detector [8, 29].

Most existing approaches for object saliency can be char-

acterised as extensions of expert-driven human saliency

methods or supervised learning methods. Object saliency

methods that build on expert-driven human saliency ap-

proaches [6, 13, 15] tend to use cognitive psychologi-

cal knowledge of the human visual system and finds im-

age patches on edges and junctions as salient using lo-

cal contrast or global unique frequencies. Recently, ob-

ject saliency approaches based on supervised learning have

emerged [3, 20, 25]. In these approaches, data from manual

annotation of images are used to mark patches of interest.

These annotations can then be used to train a saliency model

(based on global and local image features) to predict patches

of interest in unseen images.

We propose an unsupervised approach to object saliency

(fig.1) that does not rely on any information outside of a

large corpus of unlabelled images. As it is not possible to

predict what a person will find salient, without either ask-

ing or observing them, our research attempts to answer the

related question “What should a person be interested in?”
We show that an answer lies in the most surprising patches

of an image, or those that have the least probability of being

sampled from a corpus of similar images.

To understand the relationship between our approach and
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Figure 1. Our approach to object saliency and object location proposal in comparison with some existing techniques. Other methods
include: context aware [13], spectral residual [15], frequency tuned [1], MSR [12], Alexe NMS [3], and Rahtu [25].

expert driven approaches, consider two broad scenarios:

Things and Stuff Addleson [2] observed that image

patches can be loosely categorised as belonging to one

of two types of objects, Things and Stuff. Things be-

ing individual objects such as a person or a car, and

stuff being amorphous object-classes such as road or

grass that can be recognised as reoccurring stochastic

patterns. The majority of the natural world is “stuff”,

and as such, if we use descriptors of the world that are

robust to the small amount of stochastic variation that

“stuff” classes exhibit, we will invariably find “things”

or foreground objects as being more salient. This ten-

dency to find “things” as being salient is intensified by

sampling from similar images. With the majority of

an image being “stuff”, images sharing the same dom-

inant patterns typically contain similar “stuff” rather

than similar “things”.

Edges and Junctions The two most important types of fil-

ters in expert-based filter banks are those that detect

edges and junctions, as these filters are highly useful in

selecting foreground objects. To understand why our

saliency measure exhibits the same bias towards edges

and junctions, consider an image composed of a sin-

gle, approximately homogeneous object with a smooth

boundary, and a homogeneous background. We al-

low the resolution of the image to vary as n2 dots per

square inch. The number of pixels lying in the inte-

rior of the object, or the background, will be O(n2),
while the number of the pixels adjacent to an object

edge will be O(n) and the number of pixels adjacent

to a junction (corresponding to an edge intersection)

will be O(1). Consequently, for most choices of n, it

is much less likely that either an edge or a junction will

be sampled from an image and thus our approach will

consider them to be more salient.

The combination of these attributes leads to an object

saliency map with highly desirable properties: Our saliency

map exhibits a bias towards selecting junctions or the inter-

section of objects as salient regions, and a secondary bias

towards the objects themselves because they occur infre-

quently in the set of similar images. However, it remains

robust to the presence of junctions in reoccurring “stuff”,

such as brick work or tree branches, that frequently confuse

filter-bank driven approaches.

Sampling Bounding Boxes It remains an open problem

as to how bounding boxes (boxes that propose the loca-

tion of objects) should be sampled from a per pixel object

saliency map. Each sequentially selected box should tightly

fit around one object, and never around an object that has

been sampled before. However, the presence of an object

in one box can cause neighbouring boxes to appear salient,

leading to the selection of boxes which highly overlap each

other and only partially overlap the actual object.

Suppression based sampling techniques, such as non-

maximum suppression, are commonly used to avoid such

oversampling. Under such formulations [3, 7] the selec-

tion of a box will act as a hard [3] or soft [7] constraint

that blocks heavily overlapping boxes from being simul-

taneously selected. However, non-maximum suppression

carries its share of disadvantages [12]. In particular, if a se-

lected box narrowly misses an object it may block the future

selection of a box that overlaps this object. To avoid these

near misses, we propose a novel sampling method which

encourages the selection of a box that “explains away” pos-

sible bounding boxes in the area blocked by non-maximum

suppression.

Pipeline: Figure 1 illustrates our approach to object

saliency. Our probabilistic patch based approach allows us

to leverage the use of a corpus of unlabelled images. Fur-

thermore, our object proposals, based on sampling our ob-

ject saliency map, correctly locate objects in many images

on the first proposal. This is an ideal behaviour for using our

object proposal as an unsupervised approach to annotating

objects of interest in weakly labelled data.

2. Prior work
Early works on human saliency were developed from bi-

ological models of the human visual system, and estimated

fixation points where a human viewer would initially focus.

These methods made use of the feature-integration theory

of attention [30] to predict human fixation points in images

and such are ill-suited for finding regions of interest. Our

interest, motivated by applications in object detection, lies

in object saliency approaches that can detect salient regions

323732373239



as potential object locations.

Object saliency methods have made use of global

frequency-based features [1, 15], which finds regions char-

acterised by rare frequencies in the Fourier domain as

salient. However, due to their global nature, they have

difficulty in finding the full extent of objects [13]. More

recently, global and local features have been combined to

identify regions of interest in images [3, 6, 12, 13]. In

[6, 13] local patches or segments are compared against all

other patches or segments in the image, using colour dis-

tances. Saliency is then defined as the uniqueness of local

patches or segments compared to the rest of the image. Un-

like our approach, these methods are evaluated on simple

datasets (e.g. MSRA [1]) with a single salient object per

image, they do not provide means of proposing multiple ob-

ject locations in an image, and they do not consider the use

of other similar images.

Recently three approaches [3, 12, 25] have provided ob-

ject location proposals on the challenging PASCAL VOC

dataset [9]. [12] develops an unsupervised approach that in-

tegrates both saliency computation and object location pro-

posal. Object locations are proposed as rectangular regions

which contain pixels that can not be reconstructed using

the pixels outside the region (based on colour). [3] starts

by sampling rectangular regions based on the global fre-

quency saliency map of [15] then adds additional cues such

as colour contrast and super-pixel straddling. Parameters

and weights for the different cues are learned on a fully an-

notated auxiliary dataset. Similar to [3], [25] also proposes

a bounding box selection method based on supervised learn-

ing. We evaluate directly against these three methods on the

PASCAL VOC dataset [9]. However, unlike these existing

approaches to saliency, our method builds knowledge about

the current image from similar unlabelled images. In partic-

ular we define a patch as salient if it is uncommon not only

in the current image, but also in other similar images drawn

from a large corpus of unlabelled images.

Other methods have made use of multiple images for

saliency. In [20] patches are classified as unique based

on a support vector machine (SVM) learned from similar

manually annotated images. In contrast, our method is un-

supervised and does not need manually annotated images.

In [32] the current image is registered to similar images and

the difference between the registered image and the simi-

lar images are used as the saliency map. This requires the

use of a very large auxiliary dataset which needs to contain

similar images with the same background but without the

salient object. Our patch based approach does not require

near identical similar images.

Most object location proposal methods [3, 12, 25, 31]

which report on the challenging PASCAL VOC dataset at-

tempt to achieve a high recall rate given a large number of

object location proposals. In this paper we are interested

in the weakly supervised object annotation task [32], which

requires high precision of a few object proposals.

In weakly supervised object annotation, an algorithm at-

tempts to place a tight bounding box around objects of inter-

est, after taking as input two sets of images: one of images

not containing the objects, and the other set of images con-

taining them. Most existing methods [8, 22, 28, 29] formu-

late this as a multiple instance learning problem. However,

the simplest method to annotate the object of interest in an

image is to assume that the most object like region in the

image is the object of interest, i.e. to take the first location

proposed as a potential object. This simple approach com-

pletely ignores the available weak labels (indicating which

images contains the object of interest). Surprisingly, as Siva

et al. [28]1 showed a relatively high accuracy for the weakly

supervised annotation task can be achieved by this simple

approach. In this paper we show that our saliency based

object location proposal achieves higher weakly supervised

annotation accuracy than other methods that propose object

locations, or even those weakly supervised learning meth-

ods that make additional use of annotated weak labels.

Outside of saliency, object detection, and weakly super-

vised learning, there are several other related works. CMU

has done exciting work on image in-painting [14] that moti-

vated our decision to sample from related images and their

more recent work [27] may provide a better method of find-

ing related images; their work [17] finds related images and

uses these images for object pop-up via background sub-

traction. Unlike our work, they used image warps to match

patches taken from different views of the same scene. Also

related, is the concept of abnormality detection in video

and in images [4, 5, 33], as we consider abnormal data-

points with low a priori probability to be salient. We differ

from [5, 33] in that we are interested in detecting abnormal

patches rather than scenes and we make no use of video

based cues, and from [4] in that we do not model the re-

lationship between patches and we make use of a marginal

density estimator rather than the MAP, giving us greater ro-

bustness, and allowing us to potentially detect salient re-

gions using only a single image (see fig. 7).

3. Sampling-based Saliency
Given an image I and a large corpus of unlabelled im-

ages D, we wish to find a saliency map SI for image I . We

define salient patches, as those belonging to image I , that

have the least probability of being sampled from a set of

imagesDI similar to I . HereDI includes the current image

I and other images obtained from the corpus of unlabelled

images D and patches are n×n regions around each image

pixel. We must now compute px, a number proportional to

the probability of sampling patch x from DI .

1 The main method of [28] used the weak annotation but they show

results for annotating object location using the most object like instance

proposed by [3].
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We make the assumption that the probability of sampling

a patch x from an image J ∈ DI can be formulated by

uniformly selecting a patch y in J , and then perturbing it by

some noise in an informative feature space. This gives us:

px ∝ Pr(X = x|DI) (1)

=

∫
DI

Pr(X = x|J) dJ (2)

=

∫
DI

∫
J

Pr(X = x|y) Pr(y|J) dy dJ (3)

∝
∫
DI

∫
J

Pr(X = x|y) dy dJ (4)

Assuming the noise is uniform and Gaussian2 over the space

of image patches, we have:

px ∝
∫
DI

∫
J

exp

(
−d(x, y)2

σ2

)
dy dJ (5)

and we replace the proportionality sign in (5) with equality

and take this as our definition of px. Here d(x, y) is the

Euclidean distance between the feature representations of

patches x and y.

For efficient computation, it is important to note that the

Gaussian distribution is short-tailed, and for our purposes

px can be approximated as:

px ≈
∑

y∈Nm(x,DI\{I})
exp

(−d(x, y)2
σ2

)
+

∑
y∈Nm(x,{I})

exp

(−dI(x, y)
σ2

)
(6)

where Nm(x,DI \ {I}) are the m approximate nearest

neighbours (ANNs) of patch x taken from all images us-

ing distance measure d in DI except I and computed

using Fast Library for Approximate Nearest Neighbours

(FLANN) [21]. Note that that image setDI includes the im-

age I , and when selecting a patch from it some care must be

taken not to sample from adjacent patches that always have

similar appearance. Instead we want to find other patches

y spatially far from the patch x as these matches will cor-

respond to repeating patterns i.e. stuff. Following [13], a

spatial distance bias is introduced to discourage matching

spatially close patches in the same image, and we use

dI(x, y) =

(
d(x, y)2

1 + c · (l(x)− l(y))2

)
(7)

where c is a constant, l() is the location of patches in nor-

malised image coordinates, and c = 3 per [13].

We now have px the probability of a patch with the same

feature response as x being sampled from DI . A high value

2This assumption is robust to choice of distribution. After normalisa-

tion of the distances, we get good performance using a standard deviation

σ of 1; We tried also exponential and Cauchy distributions, empirically it

made little difference.

Figure 2. Saliency (S̄x) is first computed based on the probability
of sampling image patches from the current image or other simi-
lar images. Then each pixel is weighted by their distance to high
salient pixels (Sc). Finally, the saliency map is smoothed based on
image segmentation (SI ).

of px indicates that the patch x is common in the image

corpus, and the saliency of patch x is obtained as:

Sx = 1− px (8)

where px, over all patches x in the image I , was normalised

to the range [0, 1]. To account for scale changes in salient

objects, we compute saliency Sx (8) at four different im-

age scales [1, .8, .5, .3] and average the result over the four

scales S̄x as the patch saliency.

Post-Processing Two post-processing steps are applied to

S̄x. First, as in [13], immediate context information is in-

cluded by weighting the saliency value of each pixel by

their distance from the high salient pixel locations. Second,

a segmentation based smoothing is applied to the saliency

map to recover image boundary information.

To encode immediate context information, high salient

pixel locations F = S̄x > T are found and the saliency

value at all pixel location i is weighted by their distance to

F .

Sc(i) = S̄x(i)

⎛
⎝ ∑

y∈N64(i,F)

exp

(
− (l(i)− l(y))2

σl

)⎞⎠ (9)

where N64(i,F) are the 64 nearest neighbours of i in F ,

l() is the normalised image coordinate of pixels. As shown

in fig. 2, the resulting saliency map Sc is blurred due to

the use of overlapping patches and image boundaries (edges

between objects and background) are not preserved. To re-

cover some of the image boundary information, we segment

image I using the segmentation technique of [11]. For each

segment region, the average saliency from Sc is obtained

and used as the final saliency value for that segment, pro-

ducing our saliency map SI .

Similar Images In (6), a set of similar images DI to the

current image I must be obtained from a corpus of unla-

belled images D. We follow the approach of [14] and se-

lect 20 similar images from D, using Euclidean distance on

GIST [23] descriptors and a 30 × 20 thumbnail image in

Lab colour space.

Patch Features d(x, y) is the Euclidean distance between

the feature representation of patches x and y. We represent

each n × n patch using the concatenation of two features.

First, the n×n patch is represented as a vector of length 3n2
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Figure 3. An illustration of sampling. Sampling from the saliency
map without non-maximum suppression (NMS) results in an over
sampling of high saliency regions. While this allows exact align-
ment to the true object to be found in the first 3 salient boxes,
objects in a lower salient region are missed. Sampling with NMS
means that the lower saliency region will still be sampled from.
However, the selection of a box that narrowly misses the object
may cause the later rejection of the most salient box containing
the object. Our coherent sampling recovers from many of these
cases. Best viewed in colour.

in Lab colour space. The Lab colour vector is concatenated

to the 128 bin SIFT [18] descriptor of the n× n patch. The

resulting vector of length 3n2 + 128 is used as the feature

descriptor of the patch.

4. Bounding Box Sampling
Bounding boxes that should contain an object can be se-

lected by sampling from a per-pixel saliency map. In the

past several options have been explored [19], such as thresh-

olding the saliency map followed by connected region de-

tection [15] or selecting a bounding box containing 95%

of the image saliency [19]. Such approaches typically as-

sume one object per image and select a single salient re-

gion. For proposing multiple bounding boxes per image

the saliency map may be randomly sampled from [3], or

sampled from the highest score to the lowest score with

non-maximum suppression (NMS) [12]. Random sampling

based on saliency map density results in over-sampling re-

gions of high saliency. This may be desirable if it is difficult

to find the exact object location. However, in this case, low

saliency regions containing objects will be missed. While

non-maximum suppression ensures that even low salient re-

gions are sampled from, it does not allow for the repeated

sampling of high salient regions. This can cause true ob-

ject locations to be narrowly missed even if the object has

been successfully detected. A comparison between the two

approaches can be seen in fig. 3.

We propose coherent sampling, as a variant of non-

maximum suppression designed to avoid narrowly missing

a detected object (see fig. 3). Consider an image in which

we have already selected a set T of object locations, and we

wish to add one more location to it. As with NMS, we se-

lect the box with the highest saliency score (b0) that is not

near the other T locations. Unlike standard NMS sampling

we do not automatically add b0 (the box with the highest

saliency score) to the top T proposed boxes. Instead we

consider B, the set of all boxes that would be blocked by b0,

including itself, and seek b∗ ∈ B, the box that best explains

the saliency of all bounding boxes in B.

To find such a box, we describe the region from which

the boxes in B are drawn using a saliency weighted average

BoW SIFT histogram:

μSIFT =
1∑N

i=0 di

N∑
i=0

dif
SIFT(bi) (10)

where f SIFT(bi) is the dense SIFT BoW histogram represen-

tation of bi and di is the saliency score of box bi. Then to

maximise the overlap with the salient boxes in B that will

be suppressed, b∗ is chosen as the box with the closest his-

togram to μSIFT.

b∗ = argmin
bi
‖ f SIFT(bi)− μSIFT ‖2 (11)

The saliency score di for box bi is defined as:

di =
1

|bi|r
∑
p∈bi

S(p)− 1

|ui|r
∑
p∈ui

S(p) (12)

| · | refers to the size of the box in pixels, ui is a buffer

around the box bi that ensures we select local maxima. It is

chosen to be a maximum of 10 pixels wide, and r is a soft

bias on the box size. When r = 0 the highest density box

fills the image and if r = 1 the highest density box is typi-

cally only a single pixel wide. To sample boxes at different

scales, instead of alternating between 4 explicit choices of

scale [3], we alternate between sampling with a soft bias to-

wards large scales with r = 0.5 and a bias towards smaller

patches with r = 0.75.

5. Experiments
All results are reported on the PASCAL VOC 2007 [9]

Train and Validation set, the standard dataset used for the

weakly supervised annotation task [8, 24, 28, 29]. Our

corpus of unlabelled images D consists of 98, 000 images

obtained from LABELME [26], PASCAL VOC 2007, and

2012 [9] datasets.

For all experiments we fixed σ = 1 for (6), σl = 0.2 for

(9), and at each pixel location a patch of size 7 × 7 pixels

was used as the Lab colour representation and a 4 × 4 cell

SIFT descriptor with each cell being 4 pixel was used.

5.1. Object Proposals
Performance Metric: The precision recall curve (PRC) is

used to evaluate the performance of the object location pro-

posals as it captures the behaviour of both precision and

recall as the number of proposed boxes increases. Alterna-

tively, the recall rate as a function of the number of object
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location proposals is used by [3]. Note that recall rate vs ob-

ject proposals is good for comparing the recall rate at high

number of proposed locations but not for evaluating the pre-

cision when only one object location is proposed. For com-

pleteness, we report both PRC and the recall rate vs object

proposals.

We report the precision and recall as function of the num-

ber of objects proposed per image following the PASCAL

challenge [9]. This differs from [12], in that it treats multi-

ple detections of the same object as false positives. Correct

detection is also per PASCAL challenge [9] and is defined as

the area of intersection of the two boxes divided by the area

of union is greater than 0.5.

We are also interested in detecting only one object from

each image because this is important for the weakly super-

vised annotation task (see section 5.2). As a result, we also

report recall and precision based on detecting one object per

image. Let Di,j ∈ {0, 1} be a vector indicating if the jth

box proposed by the saliency algorithm correctly detects an

object in the ith image, then:

Rone(j) =

∑N
i=1 max(Di,1, . . . , Di,j)

N
(13)

P one(j) =

∑N
i=1 max(Di,1, . . . , Di,j)

jN
(14)

where N is the number of images in the dataset, j is the

number of boxes proposed per image, Rone and P one are the

recall and precision assuming one object per image.

We compare coherent sampling (Our) to:

Alexe NMS Objectness method of [3]3 using NMS sam-

pling. This is a supervised approach that uses 50 man-

ually annotated images.

Alexe MN The same supervised method of [3] using multi-

nomial sampling.

MSR The unsupervised method of [12]. Boxes were ob-

tained from the authors and has less than 100 boxes

per image (hence the flat line for MSR in fig. 4(c)).

Rahtu The supervised approach of [25]4 in which a struc-

tured support vector machine (SVM) is used to gener-

ate a ranked list of rectangular regions.

Comparison with Competitors: The PRC curves for the

first 1000 proposed boxes are shown in fig. 4 and a visuali-

sation of the proposed bounding boxes is provided in fig. 5.

Based on the average precision our proposed object loca-

tions substantially out-perform our competitors. Particu-

larly, our first object proposal per image correctly locates

an object in 42% of the images nearly 10% higher than our

closest competitor (see table 1). However, as seen from the

recall vs number of proposed windows, table 2, while our

3http://www.vision.ee.ethz.ch/˜calvin/objectness/
4http://www.cse.oulu.fi/CMV/Downloads/ObjectDetection

Figure 5. Best bounding boxes taken from the top 10 proposed ob-
ject locations by our coherent sampling method (Our), MSR [12],
Alexe et al. NMS [3], and Rahtu et al. [25]. Blue is ground truth.

Our Alexe MN [3] Alexe NMS [3] MSR [12] Rahtu [25]

VOC07 42.3 20.4 30.8 32.6 32.5

VOC07-6x2 42.8 19.6 27.6 27.7 29.6

Table 1. Percent of images in which an object is correctly located
by the first object proposal.

# Prop Our Alexe MN [3] Alexe NMS [3] MSR [12] Rahtu [25]

1 0.17 0.08 0.12 0.13 0.13

2 0.21 0.14 0.19 0.20 0.16

10 0.34 0.32 0.39 0.35 0.26

100 0.57 0.50 0.66 0.42 0.51

1000 0.79 0.64 0.86 0.42 0.75

Table 2. Recall vs # of object location proposed on the PASCAL

2007 TrainVal dataset (excludes objects annotated as difficult).
Our Alexe MN [3] Alexe NMS [3] MSR [12] Rahtu [25]

VOC07 31.1 25.8 23.4 24.0 23.6

VOC07-6x2 42.4 33.8 28.8 29.6 29.0

Table 3. Comparison of different object proposal based on the an-
notation of weakly labelled data.
method has a higher recall than [3] at the first box, the recall

at 1000 boxes is lower than that of [3]. The choice of [3] vs

our proposed method or a hybrid approach would depend

on the application, and whether high recall or precision is

more important. We show in section 5.2 that our object pro-

posals are particularly suitable for the task of annotating of

weakly labelled data which requires maximal precision at

the first proposed object location.

NMS Sampling vs Coherent Sampling: NMS sampling

obtains an average precision of 0.117 vs the coherent sam-

pling of 0.120. Overall the contribution of coherent sam-

pling is small compared to NMS sampling. However, for

the initial object proposal there is a 3% boost in precision

which is beneficial for the weakly supervised annotation

task (see section 5.2).

5.2. Weakly Supervised Object Annotation
In weakly supervised object annotation, a set of images

with the object of interest and a set of images without the

object of interest is given and the goal is to locate the ob-

ject of interest in all images that contain it. As discussed

in section 2, we select the first object location proposal in

each image as the annotation of the object of interest. We

test the weakly supervised annotation accuracy on the 20

classes of PASCAL VOC 2007 (VOC07) as defined in [29]

and 6 classes (aeroplane, bicycle, boat, bus, horse, and mo-

torbike) with Left and Right pose separately (VOC07-6x2)

as defined in [8].
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(a) All Objects (b) One Object per Image (c) Hit Rate (d) Hit Rate

Figure 4. Precision recall curve and recall vs number of object location proposal on the PASCAL 2007 TrainVal dataset. (d) is a zoomed in
view of (c). Best viewed in colour.

VOC07 VOC07-6x2
Init Final Init Final

Nguyen [22]∗ – 22.4 – 25

Siva and Xiang [29] 28.9 30.4 39.6 49

Siva et al. [28] 29.0 – 37.1 47

PandeyNoCrop [24] – – 36.7 59†

PandeyCrop [24] – – 43.7 61†

Deselaers1Feat [8] – – 35.0 40
Deselaers4Feat [8] – – 39.0 50

Our 31.1 32.0 42.4 55

*As reported in [29]. † Requires aspect ratio to be set for initialisation.

Table 4. Average annotation results for PASCAL datasets using
different weakly supervised learning methods.

Comparison with Other Saliency Methods: We compare

our object proposal based annotation (Our) results against

other object proposal methods in table 3. For all meth-

ods, except Alexe MN, we select the first object location

proposal per image as the object of interest (annotation

for weakly labelled data). For Alexe MN, we select the

top 100 proposed bounding boxes and from these we se-

lect the bounding box with the highest objectness score,

with objectness scores taken from [3]. Our object proposal

has a relative improvement from all other object proposal

methods of at least 21% on PASCAL07 and 25% on the

PASCAL07-6x2 datasets.

Comparison with Weakly Supervised Methods: As seen

in [24, 28, 29], the initial annotation of the object of inter-

est can be iteratively refined by training a deformable part-

based model (DPM) detector [10] and applying the trained

detector to the weakly annotated images known to contain

the object of interest. We iteratively train the DPM using

our object location proposals as the initial annotation, fol-

lowing [29]. Note for the iterative refinement we make use

of weak annotation, while the initialisation is unsupervised,

the final iterative annotation result is weakly supervised. A

numeric evaluation of all methods can be found in table 4.

Overall our object proposal based annotation obtains

high initial annotation accuracy and high iteratively refined

annotation accuracy; outperforming almost all existing ap-

proaches using a much simpler approach. However, on the

more restrictive single pose subset (VOC07-6x2) our anno-

tation accuracy is lower than that of Pandey and Lazeb-

nik [24] who make use of prior knowledge regarding the

aspect ratio of bounding boxes.

(a) VOC07 (b) MSRA

Figure 6. Per-pixel accuracy vs CA [13], SR [15], FT [1], HC [6],
RC [6].

Figure 7. Variations of our
method: Our A - using similar
images without current image
DI \ {I}, Our W - using only
the current image I , and Our
A+W - using similar images
with current image DI .

5.3. Evaluation of Saliency Maps
As in [13] we evaluate the saliency map’s ability to

predict foreground pixels by reporting the precision recall

curve (PRC) and average precision (AP) as a function of

the saliency map threshold. We use the PASCAL 2007 seg-

mentation data (422 images in the train and validation set),

where all object segments are used as foreground pixels. We

evaluate on the PASCAL dataset as it is a more challenging

dataset and the common dataset used for the task of annotat-

ing weakly labelled object data. For completeness we also

report PRCs for the MSRA saliency dataset [1].

Figure 6 shows the PRCs of our method and some other

existing saliency approaches; some examples can be seen

in fig. 8. Our approach perform better than many exist-

ing methods; particularly note the better performance over

the spectral residual (SR) method [15], used in the object

proposals of [3], and the context aware (CA) method [13],

which is closest to our formulation.

On the more restrictive MSRA dataset (fig. 6b), texture

based models are unneeded and better results can be achived

using coarsely quantized color models such as histogram

contrast (HC) or region contrast (RC) [6]. Of the two meth-

ods, HC has similar performance to our approach while RC
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Figure 8. Our image saliency in comparison to CA [13], SR [15],
and FT [1] methods.
has better performance. RC [6] explicitly targets segmen-

tation regions of unique colour. In MSRA, unique colors

often indicate salient objects but on VOC, unique color is

often indicative of a small patch of sky (see fig. 8 bott. left).

In section 2, we defined as salient patches with a low

probability being sampled from a set of similar images DI .

In fig. 7, we analyse the contribution of using the current

image I in addition to other similar images when comput-

ing the saliency map. We plot the precision-recall curve

of the saliency map computed using similar images with-

out current image DI \ {I} (across image saliency A), us-

ing just the current image I (within image saliency W),

and both combined DI (our combined A+W). Note that

although across-image saliency and within-image saliency

have similar performance, combining them provides a boost

in performance, particularly in the region of high-precision

we are most concerned with.

6. Conclusion
We have presented a novel unsupervised approach to the

problems of saliency and bounding box annotation5, and

shown how it substantially outperforms all other saliency

based approaches to bounding box annotation on real world

data. In comparison to existing approaches tailored for the

problem of detection from weak annotation, we outperform

all existing methods on the full VOC dataset. The power and

conceptual simplicity of our approach makes it an attractive

candidate to be combined with supervised approaches and

to be applied to a wide variety of problems.
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