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Abstract

Despite the success of current state-of-the-art object
class detectors, severe occlusion remains a major chal-
lenge. This is particularly true for more geometrically ex-
pressive 3D object class representations. While these rep-
resentations have attracted renewed interest for precise ob-
ject pose estimation, the focus has mostly been on rather
clean datasets, where occlusion is not an issue. In this pa-
per, we tackle the challenge of modeling occlusion in the
context of a 3D geometric object class model that is ca-
pable of fine-grained, part-level 3D object reconstruction.
Following the intuition that 3D modeling should facilitate
occlusion reasoning, we design an explicit representation of
likely geometric occlusion patterns. Robustness is achieved
by pooling image evidence from of a set of fixed part de-
tectors as well as a non-parametric representation of part
configurations in the spirit of poselets. We confirm the po-
tential of our method on cars in a newly collected data set of
inner-city street scenes with varying levels of occlusion, and
demonstrate superior performance in occlusion estimation
and part localization, compared to baselines that are un-
aware of occlusions.

1. Introduction
In recent years there has been a renewed interest in 3D

object (class) models for recognition and detection. This

trend has lead to a fruitful confluence of ideas from ob-

ject detection on one side and 3D computer vision on the

other side. State-of-the-art methods are not only capable

of view-point invariant object categorization, but also give

an estimate of the object’s 3D pose [28, 21], and the loca-

tions of its parts [20, 26]. Some go as far as estimating 3D

wireframe models and continuous pose from single images

[40, 19, 39].

Still, viewpoint-invariant detection and modeling is far

from being solved, and several open research questions re-

main. Here, we focus on the problem of (partial) occlusion

by other scene parts. Knowing the detailed part-level occlu-

Figure 1. Fully automatic 3D shape, pose, and occlusion estimation.

sion pattern of an object is valuable information both for the

object detector itself and for higher-level scene models that

use the object class model. In fact, 3D object detection un-

der severe occlusions is still a largely open problem. Most

detectors [5, 9] break down at occlusion levels of ≈ 20%.

However, when working with an explicit 3D represen-

tation of an object class, it should in principle be possible

to estimate that pattern. Addressing self-occlusion is rather

straight-forward with a 3D representation [37, 40], since it

is fully determined by the object shape and pose. On the

other hand, inter-object occlusion is much harder to model,

because it introduces relatively many additional unknowns

(the occlusion states of all individual regions/parts of the

object). Some part-based models resort to a data-driven

strategy: every individual part can be occluded or unoc-

cluded, and that latent state is estimated together with the

object shape and pose [20, 12].

Such a model has two weaknesses: first, it does not make

any assumptions about the nature of the occluder, and can

therefore lead to rather unlikely occlusion patterns (e.g. ar-

bitrarily scattered small occluders). And second, it will have

limited robustness, require careful tuning, and be hard to

adapt to different scenarios. The latter is due to the tendency

to simply label any individual part as occluded whenever it

does not fit the evidence, and the associated brittle trade-off

between the likelihood of occlusion and the uncertainty of

the image evidence.

We argue that in many scenarios a per-part occlusion

model is unnecessarily general. Rather, one can put a strong

prior on the co-occurrence of part occlusions, because most

occluders are compact objects, and all one needs to know
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about them is the (also compact) projection of their outline

onto the image plane. We therefore propose to restrict the

possible occluders to a small finite set that can be explic-

itly enumerated, and to estimate the type of occluder and

its location during inference. The very simple, but pow-

erful intuition behind this is that when restricted to com-
pact regions inside the object’s bounding box, the number
of possible occlusion patterns is in fact very small. Still

such an occluder model is more general than one that only

truncates the bounding box from left, right, above or below

(e.g. [35, 6]) or at image boundaries [32], c.f . Fig. 2. E.g.,

the proposed model can represent a vertical pole occluding

the middle of the object, a frequent case in urban scenarios.

The contribution described in this paper is a viewpoint-

invariant method for detailed reconstruction of severely oc-

cluded objects in monocular images. To obtain a com-

plete framework for detection and reconstruction, the novel

method is initialized with a variant of the poselets frame-

work [2] adapted to the needs of our 3D object model. The

object representation itself has three parts: a deformable

shape model in the form of an active shape model defined

over local object parts, an appearance model which inte-

grates evidence from detectors for the parts as well as their

configurations, and an occlusion model in the form of a set

of occlusion masks. Experiments on images with strong oc-

clusions show that the model can correctly infer even large

occluders, and enables monocular 3D modeling in situa-

tions where representations without occlusion model fail.

2. Related work
In the early days of computer vision, 3D object models

with a lot of geometric detail [27, 3, 22, 30] commanded a

lot of interest, but unfortunately failed to tackle challeng-

ing real world imagery. Most current object class detectors

provide coarse outputs in the form of 2D or 3D bounding

boxes along with classification into a discrete set of view-

points [38, 28, 21, 9, 24, 29, 33, 25, 13]. Recently, there

has been renewed interest in providing geometrically more

detailed outputs, with different degrees of geometric con-

sistency across viewpoints [20, 40, 37, 26, 15, 39]. Such

models have the potential to enhance high-level reasoning

about objects and scenes, e.g. [16, 7, 34, 14, 36].

Unfortunately occlusion, which is one of the most chal-

lenging impediments to visual object class modeling, has

largely remained untouched in the context of such fine-

grained object models. Recent attempts at occlusion rea-

soning in 2D object recognition include modeling the visi-

bility/occluder mask [10, 35, 32, 11, 17], training detectors

for occluded objects in specific frequently found configura-

tions [31], using depth and/or motion cues [6, 23], asserting

an “occluder part” when part evidence is missing [12], ap-

plying RANSAC to choose a subset of parts [20], encoding

occlusion states using local mixtures [15], and using a large

number of partial object detectors which cluster together to

give the full object [2], without explicit occluder modeling.

Fixed global object models have been known to give

good results for fully visible object recognition [5], of-

ten outperforming part-based models. However, part-based

models have unsurprisingly been found preferable for oc-

clusion invariant detection [2, 12]; in fact even when

“global” models are extended to cope with occlusions [35,

17] they are divided into many local cells, which are ef-

fectively treated as parts with fixed relative locations. Part-

based 3D object models with strong geometric constraints

as [20, 40] are thus strong candidates for part-level oc-

clusion reasoning: they can cope with locally missing ev-

idence, but still ensure the relative part placement always

corresponds to a plausible global shape. On the downside,

these are computationally fairly expensive models, there-

fore their evaluation on images in [20] is limited to a small

bounding box around the object of interest. We thus pro-

pose a two-layer model, where objects are first detected

with a variant of the poselet method [2] to obtain a rough

localization and pose; then a detailed shape, pose and oc-

clusion mask are inferred with an explicit 3D model as in

[40, 39], which also includes the additional clues for part

placement afforded by the preceding detector. Note that the

two layers go together well, since spatially compact occlud-

ers will leave configurations of adjacent object parts (“pose-

lets”) visible.

3. Model
We propose to split 3D object detection and model-

ing into two layers. The first layer is a representation

in the spirit of the poselet framework [2], i.e. a collec-

tion of viewpoint-dependent part configurations tied to-

gether by relatively loose geometric constraints. The pur-

pose of this layer is to find, in a large image, approximate

2D bounding boxes with rough initial estimates of the ob-

jects’ pose. The part-based structure enables the model to

deal with partial occlusion, and provides evidence for visi-

ble configurations that can be used in the second layer.

The second layer is a 3D active shape model based on lo-

cal parts, augmented with a collection of explicit occlusion

masks. The ASM tightly constrains the object geometry to

plausible shapes, and thus can more robustly predict object

shape when parts are occluded, respectively predict the lo-

cations of the occluded parts. The model also includes the

activations of the configurations from the first layer as

additional evidence, tying the two layers together.

3.1. Parts and part configurations

We start the explanation with the local appearance

model. The atomic units of our representation are parts,

which are small square patches located at salient points of

the object. The patches are encoded with densely sam-
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(a) (b)

Figure 2. (a) Two larger part configurations comprising of mul-

tiple smaller parts, as well as their relative distributions, (b) a few

example occlusion masks.

pled shape-context descriptors [1], and a multi-class Ran-

dom Forest is trained to recognize them. The classifier is

viewpoint-invariant, meaning that one class label includes

views of a part over all poses in which the part is visi-

ble [39]. This marginalization over viewpoints speeds up

part detection (which is the bottleneck of the method) by an

order of magnitude1 compared to individual per-viewpoint

classifiers [1, 29, 40], while we did not observe a perfo-

mance drop at the system level in spite of visibly blurrier

part likelihoods. Additionally, the classifier also has a back-

ground class, which will be used for normalization (c.f .

Sec.3.4). Like [29, 40, 39] we exploit the fact that with

modern descriptors the part classifier can be trained mostly

on synthetic renderings of 3D CAD models rather than on

real data, which massively reduces the annotation effort.

The basic unit of the first layer are larger part

configurations ranging in size from 25% to 60% of the

full object extent. These are defined in the spirit of pose-
lets: Small sets of the local parts described above are cho-

sen and clustered (with standard k-means) according to the

parts’ spatial layout. The advantage of this clustering is that

it discovers when object portions have high variability in

appearance, e.g. the rear portion of sedans vs. hatchbacks

as seen in a side view. To account for the spatial variability

within a configuration, a single component DPM detector

[9] is trained for each configuration. We found that for these

detectors real training data is needed, thus they are trained

on annotated training images.

3.2. Geometric model

As explained earlier, we employ different geometric

models for the initial detection and the subsequent 3D

modeling. The first layer follows the philosophy of the

ISM/poselet method. For each configuration the mean off-

set from the object centroid as well as the mean relative

scale are stored during training, and at test time detected

configurations cast a vote for the object center and scale.

These votes are then combined via greedy agglomerative

clustering, similar to [2]. After non-maximum suppression,

the output of the first layer consists of a set of approxi-

mate 2D bounding boxes, each with a coarse pose estimate

1Also, training is two orders of magnitude faster.

(quantized to 8 canonical viewpoints) and a list of activated

configurations.

The second layer utilizes a more explicit representation

of global object geometry that is better suited for estimating

detailed 3D object shape and pose. In the tradition of active
shape models we learn a deformable 3D wireframe from

annotated 3D CAD models, like in [40, 39]. The wireframe

model is defined through an ordered collection of n vertices

in 3D-space, chosen at salient points on the object surface in

a fixed topological layout. Following standard point-based

shape analysis [4] the object shape and variability are repre-

sented as the sum of a mean wireframe μ and deformations

along r principal component directions pj . The geometry

parameters sk determine the amount of deviation from the

mean shape (in units of standard deviation σj along the re-

spective directions): X(s) = μ +
∑r

k=1 skσkpk + ε. The

parts described above are defined as small windows around

the 2D projection of such a vertex (≈ 10% in size of the full

object width). The parts cover the full extent of the rep-

resented object class, thus they allow for fine-grained es-

timation of 3D geometry and continuous pose, as well as

for detailed reasoning about occlusion relations. We point

out once more that these parts are viewpoint-independent,

i.e. a part covers the appearance of a vertex over the entire

viewing sphere.

3.3. Explicit occluder representation

While the first layer contains only implicit information

about occluders (in the form of supposedly visible, but un-

detected configurations), the second layer includes an ex-

plicit occluder representation. Occluders are assumed to

block the view onto a spatially connected region of the ob-

ject. Due to the object being modeled as a sparse collection

of parts, occluders can only be distinguished if the visibility

of at least one part changes, which further reduces the space

of possible occluders. Thus, one can well approximate the

set of all occluders by a discrete set of occlusion masks a
(for convenience we denote the empty mask which leaves

the object fully visible by a0). Fig. 2(b) shows exemplary

occlusion masks.

With that set, we aim to explicitly recover the occlu-

sion pattern during second-layer inference, by selecting

one of the masks. All parts falling inside the occlusion

mask are considered occluded, and consequently their de-

tection scores are not considered in the objective function

(Sec. 3.4). Instead, they are assigned a fixed low score, cor-

responding to a weak uniform prior that prefers parts to be

visible and counters the bias to “hide behind the occluder”.

Occlusion of parts is modeled by indicator functions

oj(s,θ, a), where j represents the part index, s represents

the object geometry (3.2) and θ the viewpoint. The set of

masks ai act as a prior that specifies which parts occlusions

can co-occur. For completeness we mention that object self-
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occlusion is modeled with the same indicator variables, but

does not require separate treatment, since it is completely

determined by shape and pose.

3.4. Shape, pose, and occlusion estimation

During inference, we attempt to find instances of the 3D

shape model and of the occlusion mask that best explain the

observed image evidence.

Recall that we wish to estimate an object’s 3D pose

(5 parameters, assuming no in-plane rotation), geometric

shape (7 ASM shape parameters), and an occluder index

(1 parameter). Taken together, we are faced with a 13-

dimensional search problem, which would be prohibitively

expensive even for a moderate image size. We therefore first

cut down the search space in the first layer with a simpler

and more robust object detection step, and then fit the full

model locally at a small number of (candidate) detections.

First layer inference starts by detecting instances of our

part configurations in the image with the correspond-

ing DPM detectors. Each detected configuration casts an

associated vote for the full object 2D location and scale

q = (qx, qy, qs), and for the pose θ = (θaz, θel). At this

point, the azimuth angle is restricted to a small set of dis-

crete steps and the elevation angle is fixed, both to be refined

in the second layer. The votes are clustered with a greedy

agglomerative clustering scheme as in [2] to obtain detec-

tion hypotheses H, each with a list of contributing configu-

rations {l1 . . . lp} that voted for the object’s presence.

Part location prediction from first layer. Since the con-

figurations are made up of multiple parts confined to a spe-

cific layout with little spatial variability (Sec. 3.1), their de-

tected instances li already provide some information about

the part locations in image space. The means μij and co-

variances σ2
ij of the parts’ locations within a configuration’s

bounding box are estimated from the training data, and vij
are binary flags indicating which parts j are found within

the configuration li. Fig. 2(a) illustrates two such larger

configurations, whose detection can be used to predict

the location of the constituent parts as gaussian distribu-

tions with the respective means and covariances relative to

the bounding box of the configuration.2

Second layer objective function. After evaluating the first

layer of the model we are left with a sparse set of (putative)

detections, such that we can afford to evaluate a relatively

expensive objective function. We denote an object instance

by h = (s, f,θ,q, a) , comprising of shape parameters s
(eqn. 3.2), camera focal length f , viewpoint parameters for

azimuth and elevation θ, and translation and scale parame-

ters in image space q. The projection matrix P that maps

the 3D vertices Xj(s) to image points xj is assumed to de-

pend only on θ, and q, while f is fixed, assuming similar

2In practice it is beneficial to only use configurations whose part

predicitons are sufficiently accurate, as determined by cross-validation.

perspective effects for all images: xj=P(f,θ,q)Xj(s).
Fitting the model amounts to finding a MAP-estimate of

the objective function L(h):
ĥ = argmaxh [L(h)] , (1)

L(h)=max
ς

[
1∑m

j=1 oj(s,θ, a0)

m∑
j=1

(
Lv+Lo+Lc

)]
. (2)

The factor 1/
∑m

j=1 oj(s,θ, a0) normalizes for the varying

number of self-occluded parts at different viewpoints. For

each potentially visible part there are three terms: Lv is the

evidence Sj(ς,xj) for part j if it is visible, found by look-

ing up the detection score at image location xj and scale ς .

Part likelihoods are normalized with the background score

Sb(ς,xj), as in [33]. Lo assigns a fixed likelihood c to the

part, if it lies under the occlusion mask. Lc measures how

well the part j is predicted by the larger configurations.

Lv = oj(s,θ, a) log
Sj(ς,xj)

Sb(ς,xj)
, (3)

Lo =
(
oj(s,θ, a0)− oj(s,θ, a)

)
c , (4)

Lc=
oj(s,θ, a)

p

p∑
i=1

vij log
(
1+λN (xj ;μij ,σ

2
ij)

)
. (5)

Second layer inference. The objective (2) is a mixed

discrete-continuous function which is neither convex nor

smooth, and thus cannot be easily maximized. We find an

approximate MAP-estimate ĥ with sample-based stochastic

hill-climbing. Specifically, we maintain a set of weighted

samples (particles), each corresponding to a distinct set of

values in the space of object hypotheses {s,θ,q, a}. Par-

ticles are iteratively updated, by re-sampling individual pa-

rameters from independent Gaussians centered at the cur-

rent values, similar to [18]. In our scheme the variances of

these Gaussians are gradually reduced according to a fixed

annealing schedule. Other than the remaining parameters,

the mask indices a are discrete and have no obvious order-

ing. To define similarity between them we sort the set of

masks w.r.t. the Hamming distance from the current one,

then we sample the offset in this ordering from a Gaussian.

The inference is initialized at the location, scale and pose

returned by the first layer, while the initial shape parameters

are chosen randomly and the occlusion mask is set to a0.

4. Experiments
In the following, we evaluate the performance of our

approach in detail, focusing on its ability to recover fine-

grained, part-level accurate object shape and accompanying

occlusion estimates. In particular, we quantify the ability of

our method to localize entire objects (Sect. 4.3), to localize

their constituent parts (Sect. 4.5), and to estimate occluded

object portions (in the form of part occlusion labels), for

varying levels of occlusion (Sect. 4.4).
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The free parameters for (4) and (5) are estimated by

cross-validation on the 3D Object Classes [28], for which

part level annotations are publicly available [40]. The set of

288 occlusion masks has been generated automatically and

pruned manually to exclude very unlikely masks.

4.1. Data set

As a testbed we have collected a novel, challenging data

set of inner-city street scenes. It consists of 101 images of

resolution 2 mega-pixels, showing street scenes with cars,

with occlusions ranging from 0% to > 60% of the bounding

box as well as the parts. Although there are several pub-

licly available car datasets, none of them is suitable for our

purposes, sinc we found that part detector performance de-

teriorates significantly for objects smaller than 60 pixels in

height. Some datasets do not contain occluded cars (e.g.

3D Object Classes [28], EPFL Multiview Cars [24]); oth-

ers do, but have rather low resolution (Ford Campus Vision

and Lidar, Pascal VOC [8]), which makes them unsuitable

for detailed geometric model fitting – and also seems unre-

alistic, given today’s omnipresent high-resolution cameras.

We further opted for taking the pictures ourselves, in or-

der to avoid the strong bias of internet search towards high-

contrast, high-saturation images. Figures 4,5 show example

images from the new data set.3

4.2. Model variants and baselines

We evaluate and compare the performance of the follow-

ing competing models: (i) a naive baseline without 3D esti-

mation, which places a fixed canonical 3D car (the mean

of our active shape model) inside the detected first-layer

bounding box in the estimated (discrete) pose. (ii) the ASM

model of [40, 39], which corresponds to the second layer of

our model without any form of occlusion reasoning (i.e. as-

suming that all parts are visible except for self-occlusions),

and without using the part configurations from the first

layer. (iii) the proposed model, including prediction of oc-

cluders, but not using the configurations during second-

layer inference. (iv) our full model with occluder prediction

and leveraging additional evidence from configurations
for second-layer inference.

4.3. Object localization

We commence by verifying that our first layer, i.e. a

combination of DPM configuration detectors and poselet-
style voting, is competitive with alternative algorithms for

detecting objects in 2D. To that end we compare our first

layer, trained on a dataset comprising of around 1000 full

car images downloaded from the internet, with the original

poselet implementation [2] pre-trained on Pascal VOC [8]

3The data set, along with all training data and annota-

tions, pre-trained models, and source code is made available at

http://www.igp.ethz.ch/photogrammetry/downloads.

Figure 3. Object detection acuracy of different 2D detectors.

(training code for [2] is not publicly available). We also in-

clude the deformable part model (DPM, [9]), both trained

on the same 1000 car images (using default parameters),

as well as the pre-trained model (on Pascal VOC [8]), as a

popular state-of-the-art reference. Unfortunately neither of

these implementations directly outputs a viewpoint.

Protocol. We follow the classical object detection proto-

col of Pascal VOC [8], plotting precision vs. recall for 50%
intersection-over-union between predicted and ground truth

bounding box.

Results. Precision-recall curves are shown in Fig. 3. We ob-

serve that the original poselets [2] already perform reason-

ably well on our data (67% AP). The pre-trained DPM [9]

improves the results to 76% AP , and the retrained model,

to 79% AP. Our first layer outperforms both by a significant

margin, achieving 88% AP, which we consider a solid basis

for the subsequent 3D inference. In particular we point out

that the combination of a strong part detector with Hough-

style voting reaches high recall (up to 95%) at reasonable

precision. The fact that only few instances are irrevocably

lost in the first layer confirms that splitting into a coarse

detection layer and a detailed modeling layer is a viable ap-

proach (see Tab. 1).

Full < 80% < 60%

dataset visibility visibility

Total cars 165 96 48

Detected 147 85 42

Table 1. First-layer detection results (bounding box and 1D pose).

Subsequent second-layer results are given for the detected in-

stances (line “detected”).

4.4. Occlusion estimation

We proceed by evaluating how well our model can dis-

tinguish between occluded and unoccluded parts. Note that

while this ability is potentially also useful for further rea-

soning about the occluder, its primary importance here lies

in the 3D object modeling itself: a good estimate of the part-

level occlusion state is necessary in order not to mistakenly

use evidence from background structures, and hence forms
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the basis for recovering the objects’ 3D extent and shape.

Protocol. The predicted part occlusions are evaluated as

two-class classification: we first remove all self-occluded

parts, and then compare occlusion labeling oj induced by

the estimated occluder ai to ground truth annotations.

Results. Tab. 2 shows the percentages of correctly inferred

part occlusions. First, we observe that the acuracy de-

creases with increasing occlusion level, matching our in-

tuition. Baseline 1 is obviously not applicable, since it

offers no possibility to decide about part-level occlusion.

To make the second baseline comparable, which also does

not make occlusions explicit, we place a threshold (equal

in value to c used in the likelihood (2)) on part detection

scores and call parts with too low scores occluded. Al-

though that heuristic works surprisingly well, our occlusion

inference outperforms the baseline by significant margins

(4.5 – 5.9%) for all levels of occlusion. Additionally us-

ing the active configurations from the first layer during

inference boosts classification performance by a further 1.2
– 3.0%. We point out that the additional evidence provided

by the larger configurations is most beneficial at high lev-

els of occlusion, and that even for heavily occluded vehicles

that are only 30 – 60% visible, 83.1% of the part occlusions

are correctly predicted.

Full < 80% < 60 %

dataset visibility visibility

baseline 1 — — —

baseline 2 [40, 39] 79.5% 76.7% 75.6%

w/o configurations (ours) 84.4% 82.6% 80.1%

w/ configurations (ours) 85.6% 84.7% 83.1%

Table 2. Part-level occlusion prediction (percentage of correctly

classified parts). See text for details.

4.5. Part localization

The primary goal of our occlusion model is better 3D ob-

ject modeling: we wish to correctly predict objects’ spatial

extent, shape and pose, to support higher-level tasks such

as monocular depth estimation, free-space computation and

physically plausible, collision-free scene understanding. To

quantify the ability to recover 3D extent and shape, we as-

sess how well individual parts of the 3D geometric model

can be localized. Since we have no 3D ground truth, part

localization accuracy is measured in the 2D image plane by

comparing to manual annotations.

Protocol. We follow the common evaluation protocol of hu-

man body pose estimation and report the average percent-

age of correctly localized parts, using a relative threshold

adjusted to the size of the car. The threshold is set to 20
pixels for a car of size 500 × 170 pixels, i.e. ≈ 4% of the

total length.

Results. Part localization results for different levels of oclu-

sion are given in Tab. 3. We make the following observa-

tions. First, baseline 1 performs poorly, i.e. the bounding

box and pose predictions of a 2D detector and/or a rigid av-

erage car are insufficient. Second our occlusion-aware ap-

proach outperforms the 3D-ASM of [40, 39] without occlu-

sion modeling by 2.5% on the entire dataset, and that mar-

gins increase to 5.3% for the heavily occluded cars. Third,

adding evidence form configurations brings only a small

improvement for the full dataset, but the improvement is

more pronounced for heavier occlusions. Finally, we man-

age to sucessfully localize > 80% of the parts even at oc-

clusion levels of 40% or more.

Fig. 5 shows qualitative examples, highlighting the dif-

ferences between the naive baseline 1, the baseline ap-

proach without occlusion modeling [40, 39], and the two

evaluated variant of our model. Clearly, the fits with-

out occlusion model are severely disturbed in the pres-

ence of even moderate occlusion. Our approach without

configurations seems to perform as well as the full model

when it comes to predicting the occluder, but is slightly

more prone to mistakes concerning the overall object shape

(e.g., rows a, b). Figure 4 shows further qualitative results

of the full model.

Full < 80% < 60 %

dataset visibility visibility

baseline 1 32.0% 33.6% 39.7%

baseline 2 [40, 39] 80.0% 75.6% 74.5%

w/o configurations (ours) 82.5% 80.0% 79.8%

w/ configurations (ours) 82.7% 80.7% 83.5%

Table 3. Part localization accuracy (percentage of correctly local-

ized parts). See text for details.

5. Conclusion
We have explored the problem of occlusion in the context

of geometric, part-based 3D object class representations for

object detection and modeling. We have proposed a two-

layer model, consisting of a robust, but coarse 2D object de-

tector, followed by a detailed 3D model of pose and shape.

The first layer accumulates votes from view-point depen-

dent part configurations, such that it can tolerate quite

large degrees of occlusion, but does not explicitly detect

them. The second layer combines an explicit deformable

3D shape model over smaller parts with evidence from the

first-level configurations, as well as with an explicit oc-

clusion model in the form of a collection of possible oc-

clusion masks. Although that representation of occlusion is

rather simple, experiments on detecting and modeling cars

in a dataset of street scenes have confirmed the model to cor-

rectly estimate both the occlusion pattern and the car shape

and pose even under severe occlusion, clearly outperform-

ing a baseline that is agnostic about occlusions.
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Figure 4. Example detections using our full system.
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