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Abstract

Single-sample face recognition is one of the most chal-
lenging problems in face recognition. We propose a novel
face recognition algorithm to address this problem based on
a sparse representation based classification (SRC) frame-
work. The new algorithm is robust to image misalignment
and pixel corruption, and is able to reduce required training
images to one sample per class. To compensate the miss-
ing illumination information typically provided by multiple
training images, a sparse illumination transfer (SIT) tech-
nique is introduced. The SIT algorithms seek additional il-
lumination examples of face images from one or more addi-
tional subject classes, and form an illumination dictionary.
By enforcing a sparse representation of the query image,
the method can recover and transfer the pose and illumi-
nation information from the alignment stage to the recog-
nition stage. Our extensive experiments have demonstrated
that the new algorithms significantly outperform the exist-
ing algorithms in the single-sample regime and with less
restrictions. In particular, the face alignment accuracy is
comparable to that of the well-known Deformable SRC al-
gorithm using multiple training images; and the face recog-
nition accuracy exceeds those of the SRC and Extended SRC
algorithms using hand labeled alignment initialization.

1. Introduction

Face recognition is one of the classical problems in com-

puter vision. Given a natural image that may contain a hu-

man face, it has been known that the appearance of the face
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image can be easily affected by many image nuisances, in-

cluding background illumination, pose, and facial corrup-

tion/disguise such as makeup, beard, and glasses. Hence,

to develop a face recognition system whose performance

can be comparable to or even exceed that of human vision,

the computer system needs to address at least the following

three closely related problems: First, it needs to effectively

model the change of illumination on the human face. Sec-

ond. it needs to align the pose of the face. Third, it needs

to tolerance the corruption of facial features that leads to

potential gross pixel error against the training images.

In the literature, many well-known solutions have been

studied to tackle these problems [13, 32, 14, 9], although a

complete review of the field is outside the scope of this pa-

per. More recently, a new face recognition framework called

sparse-representation based classification (SRC) was pro-

posed [26], which can successfully address most of the

above problems. The framework is built on a subspace

illumination model characterizing the distribution of a

corruption-free face image sample (stacked in vector form)

under a fixed pose, one subspace model per subject class

[2, 1]. When an unknown query image is jointly represented

by all the subspace models, only a small subset of these

subspace coefficients need to be nonzero, which would pri-

marily correspond to the subspace model of the true sub-

ject. Therefore, by optimizing the sparsity of such an over-

complete linear representation, the dominant nonzero coef-

ficients indicate the identity of the query image. In the case

of image corruption, since the corruption typically only af-

fects a sparse set of pixel values, one can concurrently opti-

mize a sparse error term in the image space to compensate

for the corrupted pixel values.

In practice, a face image may appear at any image lo-

cation with random background. Hence, a face detection

and registration step is typically first used to detect the face

image. Most of the methods in face detection would learn
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a class of local image features/patches that are sensitive to

the appearance of key facial features [27, 23, 17]. Using

either an active shape model [5] or an active appearance

model [4], the location of the face can be detected even

when the expression of the face is not neutral or some fa-

cial features are occluded [21, 12]. However, using these

face registration algorithms alone is not sufficient to align

a query image to training images for SRC. The main rea-

sons are two-fold: First, except for some fast detectors such

as Viola-Jones [23], more sophisticated detectors are ex-

pensive to run and require learning prior distribution of the

shape model from meticulously hand-labeled training im-

ages. More importantly, these detectors would register the

pixel values of the query image with respect to the average
shape model learned from all the training images, but they

typically cannot align the pixel values of the query image

to the training images for the purpose of recognition, as re-

quired in SRC.

Following the sparse representation framework in [26,

24], we propose a novel algorithm to effectively extend

SRC for face alignment and recognition in the small sam-

ple set scenario. We observe that in addition to the well-

understood image nuisances aforementioned, one of the re-

maining challenges in face recognition is indeed the small

sample set problem. For instance, in many biometric,

surveillance, and Internet applications, there may be only

a few training examples per subject that are collected in the

wild, and the subjects of interest may not be able to undergo

an extended image collection session in a laboratory.1

Unfortunately, most of the existing SRC-based align-

ment and recognition algorithms would fail in such sce-

narios. For starters, the original SRC algorithm [26] as-

sumes a plurality of training samples from each class must

sufficiently span its illumination subspace. The algorithm

would perform poorly in the single sample regime, as we

will shown in our experiment later. In [24], in order to guar-

antee the training images contain sufficient illumination pat-

terns, the test subjects must further go through a nontrivial

passport-style image collection process in a dark room in or-

der to be entered into the training database. More recently,

another development in the SRC framework is simultane-

ous face alignment and recognition methods [28, 15, 30].

Nevertheless, these methods did not go beyond the basic as-

sumption used in SRC and other prior art that the face illu-

mination model is measured by a plurality of training sam-

ples for each class. Furthermore, as shown in [24], robust

face alignment and recognition can be solved separately as

a two-step process, as long as the recovered image transfor-

mation can be carried over from the alignment stage to the

1In this paper, we use Viola-Jones face detector to initialize the face

image location. As a result, we do not consider scenarios where the face

may contain a large 3D transformation or large expression change. These

more severe conditions can be addressed in the face detection stage using

more sophisticated face models as we mentioned above.

recognition stage. Therefore, simultaneous face alignment

and recognition could make the already expensive sparse

optimization problem even more difficult to solve.

1.1. Contributions

Single-sample face alignment and recognition represents

an important step towards practical face recognition solu-

tions using images collected in the wild or on the Internet.

We contend that the problem can be solved quite effectively

by a simple yet elegant algorithm. The key observation is

that one sample per class mainly deprives the algorithm of

an illumination subspace model for each individual class.

We show that a sparse illumination transfer (SIT) dictio-

nary can be constructed to compensate the lack of the il-

lumination information in the training set. Due to the fact

that most human faces have similar shapes, only one sub-

ject is often sufficient to provide images of different illu-

mination patterns, although adding more subjects may fur-

ther improve the accuracy. The subject(s) for illumination

transfer can be selected outside the set of training subjects

for recognition. Finally, we show that the other image nui-

sances, including pose variation and image corruption, can

be readily corrected by a single reference image of arbitrary
illumination condition per class combined with the SIT dic-

tionary. The SIT dictionary also does not need to know the

information of any possible facial corruption for the algo-

rithm to be robust. To the best of our knowledge, this work

is the first to propose a solution to perform facial illumina-

tion compensation in the alignment stage and illumination

and pose transfer in the recognition stage.

In terms of the algorithm complexity, the construction of

the SIT dictionary is extremely simple when the illumina-

tion data of the SIT subject(s) are provided, and it does not

necessarily involve any dictionary learning algorithm. The

algorithm is also fast to execute in the alignment and recog-

nition stages compared to the other SRC-type algorithms

because a sparse optimization solver such as those in [29] is

now faced with much smaller linear systems.

This paper bears resemblance to the work called Ex-

tended SRC [6], whereby an intraclass variant dictionary

was similarly added to be a part of the SRC objective func-

tion for recognition. Our work differs from [6] in that the

proposed SIT dictionary can be constructed from a selection

of independent subject(s) only for the purpose of illumina-

tion transfer. As a result, the SIT dictionary is impartial to

the training classes. Furthermore, by transferring both the

pose and illumination from the alignment stage to the recog-

nition stage, our algorithm can handle insufficient illumina-

tion and misalignment at the same time, and allows for the

single reference images to have arbitrary illumination con-

ditions. Finally, our algorithm is also robust to moderate

amounts of image pixel corruption, even though we do not

need to include any image corruption examples in the SIT

354535453547



dictionary, while in [6] the intraclass variant dictionary uses

both normal and corrupted face samples. We also compare

our performance with [6] in Section 4.

2. Sparse Representation-based Classification
In this section, we first briefly review the SRC formula-

tion and introduce the notation.

Assume a face image b ∈ R
d in grayscale can be written

in vector form by stacking its pixels. In the training stage,

given L training subject classes, assume ni well-aligned

training images Ai = [ai,1,ai,2, · · · ,ai,ni
] ∈ R

d×ni of the

same dimension as b are sampled for the i-th class under the

frontal position and various illumination conditions. These

training images are further aligned in terms of the coordi-

nates of some salient facial features, e.g., eye corners and/or

mouth corners. For brevity, the training images under such

conditions are said to be in the neutral position. Further-

more, we do not consider facial expression change in this

paper. Based on the illumination subspace assumption, if b
belongs to the i-th class, then b lies in the low-dimensional

subspace spanned by the training images in Ai, namely,

b = Aixi. (1)

In the query stage, the query image b may contain an un-

known 3D pose that is different from the neutral position.

In image registration literature [18, 13, 24], an image trans-

formation can be modeled in the image domain as τ ∈ T ,

where T is a finite-dimensional group of transformations,

such as translation, similarity transform, and homography.

The goal of the alignment is to recover the transformation τ ,

such that an unwarped query image b0 of the same subject

in the neutral position can be written as b0
.= b ◦ τ = Aixi.

In robust face alignment, the issue is often further exac-

erbated by the cascade of complex illumination patterns and

moderate image pixel corruption and occlusion. In the SRC

framework [26, 24], the combined effect of image misalign-

ment and sparse corruption is modeled by

τ̂i = arg min
xi,e,τi

‖e‖1 subj. to b ◦ τi = Aixi + e, (2)

where the alignment is achieved on a per-class basis for

each Ai, and e ∈ R
d is the sparse alignment error as the

objective function. After linearizing the nonlinear image

transformation function τ , (2) can be solved iteratively by a

standard �1-minimization solver. In [24], it was shown that

the alignment based on (2) can tolerate translation shift up

to 20% of the between-eye distance and up to 30◦ in-plane

rotation, which is typically sufficient to compensate moder-

ate misalignment caused by a good face detector.

Once the optimal transformation τi is recovered for each

class i, the transformation is carried over to the recognition

algorithm, where the training images in each Ai are trans-

formed by τ−1
i to align with the query image b. Finally,

a global sparse representation x with respect to the trans-

formed training images is sought by solving the following

sparse optimization problem:

x∗ = arg minx,e ‖x‖1 + ‖e‖1.
subj. to b =

[
A1 ◦ τ−1

1 , · · · , AL ◦ τ−1
L

]
x + e

(3)

One can further show that when the correlation of the face

samples in A is sufficiently tight in the high-dimensional

image space, solving (3) via �1-minimization guarantees to

recover both the sparse coefficients x and very dense (spar-

sity ρ ↗ 1) randomly signed error e [25].

3. Sparse Illumination Transfer
3.1. Single-Sample Alignment

In this section, we first propose a novel face alignment

algorithm that is effective even when a very small number

of training images are provided per class. In the extreme

case, we specifically consider the single-sample face align-
ment problem where only one training image ai of arbitrary
illumination is available from Class i. The same algorithm

easily extends to the case when multiple training images are

provided.

To mitigate the scarcity of the training images, some-

thing has to give to recover the missing illumination model

under which the image appearance of a human face can

be affected. Motivated by the idea of transfer learning

[7, 20, 16], we stipulate that one can obtain the illumina-

tion information for both alignment and recognition from a

set of additional subject classes, called the illumination dic-
tionary. The additional face images have the same frontal

pose as the training images, and can be collected offline and

can be different from the query classes A = [A1, · · · , AL].
In other words, no matter how scarce the training images

of the query classes are, one can always obtain a potentially

large set of additional face images of unrelated subjects who

may have similar face shapes as the query subjects and may

provide sufficient illumination examples.

The illumination dictionary for an additional class L + 1
is defined as follows. Assume face images of sufficient

illumination patterns (aL+1,1,aL+1,2, · · · ,aL+1,n) .=
(c1, c2, · · · , cn) are samples from the class, further assume

all images in vector form are normalized to have unit length.

Then the illumination dictionary by the (L + 1)-th subject

can be written as the difference of two face images of the

same shape:

C1 = [c2 − c1, · · · , cn − c1] . (4)

The multiplication of C1y by vector y can further gener-

ate more complex illumination patterns that involve multi-

ple images in the columns of C1.

We need to emphasize here that although the construc-

tion of C1 in (4) is straightforward, by no means it is the
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only way to obtain an illumination dictionary. In the lit-

erature, many other algorithms are well known, such as

the quotient image [22, 19] and edge-preserving filters [3].

The focus of this paper is not on the illumination trans-

fer function per se, but how its application on face im-

ages can enable single-sample alignment and recognition

under the SRC framework. In addition, the illumination

transfer shown later in (5) can be solved by efficient �1-

minimization algorithms. Therefore, it has speed advan-

tages compared to other more sophisticated methods. This

approach was also used in [6] in the definition of the intr-

aclass variant dictionary, but only for recognition. We will

compare the performance of the two methods in Section 4.

Another issue with the illumination dictionary is that,

if additional subject classes beyond L + 1 are provided,

one can continue to construct additional dictionaries C =
[C1, C2, · · · ]. However, a somewhat unconventional obser-

vation we have discovered during our experiment is that if

the first dictionary C1 is carefully chosen, a single addi-

tional subject class is sufficient to achieve extremely good

performance for face alignment and recognition. In Section

4, we will show that using a single illumination class, our

alignment accuracy using only one reference image is com-

parable to that of [24] using multiple reference images, and

the subsequent recognition accuracy further exceeds those

using manual alignment results.

Clearly, this singular subject needs to have the facial ap-

pearance that is close to the “mean face,” which has been

used in face recognition to refer to the average appear-

ance of faces over a population [2]. On the other hand,

using those examples with abnormal facial features such

as glasses and beard could easily reduce the performance.

Without loss of generality, we assume C = C1 in this pa-

per. In Section 4.4, we will examine the efficacy of design-

ing different illumination dictionaries with more subjects.

Figure 1. Examples of the elements of an illumination dictionary

C constructed from the YaleB database.

Nevertheless, given the limited number of training im-

ages in practice, the illumination dictionary itself also can-

not be arbitrarily large. Therefore, an effective solution

should be able to achieve accurate alignment while only re-

lying on a few illumination samples. Our solution is called

sparse illumination transfer (SIT):

τ̂i = arg minτi,xi,yi,e ‖yi‖1 + λ‖e‖1,
subj. to b ◦ τi = aixi + Cyi + e

(5)

where λ is a parameter that balances the weight of y and

e, which can be chosen empirically. In our experiment,

we found λ = 1 generally led to good performance for

both uncorrupted and corrupted cases. Finally, the objective

function (5) can be solved efficiently using �1-minimization

techniques such as those discussed in [24, 29].2 Figure 2

shows two examples of the alignment results.

Figure 2. Single-sample alignment results on Multi-PIE. The solid

red boxes are the initial face locations provided by a face detector.

The dash green boxes show the alignment results. Left: The sub-

ject wears glasses. Right: The subject image has 30% of the face

pixels corrupted by random noise.

3.2. Single-Sample Recognition

Next, we propose a novel face recognition algorithm that

extends the SRC framework to the single-sample regime.

Similar to the above alignment algorithm, the algorithm also

applies trivially when multiple training samples per class

are available.

Given the same reference image ai as in (5), again we as-

sume ai is sampled from a random illumination condition.

The key idea of our algorithm is to transfer and apply the es-

timated image transformation τi and the SIT compensation

Cyi directly from the alignment step (5) to the recognition

step. More specifically, for each reference image ai of class

i, define its warped version as

ãi
.= (aixi + Cyi) ◦ τ−1

i . (6)

The modified reference image ãi aligns the orientation of

ai towards the query image, and at the same time adjusts

the appearance of ai to take into account the transferred

illumination model Cyi. Some examples about this effect

are shown in Figure 3. After the SIT is applied to all the

training images, we obtain the following warped training
dictionary of L columns:

Ã = [ã1, · · · , ãL] . (7)

The SIT recognition algorithm solves a sparse represen-

tation of the query image b in the following linear system:

x∗ = arg minx,e ‖x‖1 + λ‖e‖1,
subj. to b = Ãx + e

(8)

2In addition to seeking a sparse representation y, an alternative solution

could minimize the �2-norm of y instead, as used in [24, 31]. We have also

tested the variation, and found the difference between the two solutions to

the small, with minimizing ‖y‖1 slightly better than minimizing ‖y‖2.
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Figure 3. Examples of warping a single reference image ãi =
(ai + Cyi) ◦ τ−1

i for recognition. Left: Query image b. Middle
Left: Reference image ai. Middle Right: Illumination transfer

information Cyi. Right: Warped reference ãi has closer pose and

illumination to b than the original image ai.

where the parameter λ can be chosen empirically.

In (8), the SIT dictionary Ã only has L columns rep-

resenting the training images from the L class, respectively.

As a result, the recognition algorithm to recover the class la-

bel of b can be simplified from the original SRC algorithm

[26], where the class corresponding to the largest coefficient

magnitude in x is the estimated class of the query image b.

Figure 4 shows the estimated coefficients of an example of

SIT recognition.

Figure 4. Illustration of SIT recognition. Top Left: b. Top Right:
e. Bottom: Sparse representation x with the correct reference

image ai superimposed.

Before we move on to examine the performance of the

new recognition algorithm (8), one may question the effi-

cacy of enforcing a sparse representation in the constraint

(8). The question may arise because in the original SRC

framework, the data matrix A = [A1, · · · , AL] is a collec-

tion of highly correlated image samples that span the L illu-

mination subspaces. Therefore, it makes sense to enforce a

sparse representation as also validated by several followup

studies [25, 8, 31]. However, in single-sample recognition,

only one sample ai is provided per class. Therefore, one

would think that the best recognition performance can only

be achieved by the nearest-neighbor algorithm.

There are at least two arguments to justify the use of

sparse representation in (8). One one hand, as discussed in

[26], in the case that e is a small dense error and the nearest-

neighbor solution corresponds to a one-sparse binary vector

x0 = [· · · , 0, 1, 0 · · · ]T in the formulation (8), then solving

(8) via �1-minimization can also recover the sparsest solu-

tion, namely, x∗ ≈ x0. On the other hand, in the case that e
represents a gross image corruption, as long as the elements

of Ã in (8) remain tightly correlated in the image space, the

�1-minimization algorithm can compensate the dense error

in the query image b [25]. This is a unique advantage over

nearest-neighbor type algorithms.

4. Experiment
In this section, we present a comprehensive experi-

ment to demonstrate the performance of our alignment and

recognition algorithms. The illumination dictionary is con-

structed from YaleB face database [10]. YaleB contains

5760 single light source image of 10 subjects under 9 poses

and 64 illumination conditions. For every subject in a par-

ticular pose, an image with ambient (background) illumina-

tion was also captured. In our experiments, we only use the

first subject with its 65 aligned frontal images (64 illumina-

tions + 1 ambient) to construct our illumination dictionary.

The dictionary C is constructed by subtracting the ambient

image from the other 64 illumination image. For a fair com-

parison, all the experiments in this section share the same

YaleB illumination dictionary.

For the training and query subjects, we choose images

from a much larger CMU Multi-PIE database [11]. Except

for Section 4.3, 166 shared subject classes from Session 1

and Session 2 are selected for testing. In Session 1, we ran-

domly select one frontal image per class with arbitrary il-

lumination as the training image. Then we randomly select

two different frontal images from Session 1 or Session 2 for

testing. The outer eye corners of both training and query

images are manually marked as the ground truth for regis-

tration. All the training face images are manually cropped

into 60×60 pixels based on the locations of eyes out-corner

points, and the distance between the two outer eye corners

is normalized to be 50 pixels for each person. We again

emphasize that our experimental setting is more practical

than those used in some other publications, as we allow the

training images to have arbitrary illumination and not nec-

essarily just the ambient illumination.

We compare our algorithms with several state-of-the-art

face alignment and recognition algorithms under the SRC

framework. For the alignment benchmark, we compare

with the deformable SRC (DSRC) algorithm [24] and the

misalignment robust representation (MRR) algorithm [30].
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For the recognition benchmark, we compare with DSRC,

MRR based on the above automatic alignment results to

find face regions. We also compare with the original SRC

algorithm [26] and Extended SRC (ESRC) [6] with the face

region location provided by manual labeling.

4.1. Simulation on 2D Alignment

We first demonstrate the performance of the SIT align-

ment algorithm dealing with simulated 2D deformation, in-

cluding translation, rotation and scaling. The added de-

formation is introduced to the query images based on the

ground truth coordinates of eye corners. The translation

ranges from [-12, 12] pixels with a step of 2 pixels. Sim-

ilar to [24], we use the estimated alignment error ‖e‖1 as

an indicator of success. More specifically, let e0 be the

alignment error obtained by aligning a query image from

the manually labeled position to the training images. We

consider the alignment successful if |‖e‖1 − ‖e0‖1| ≤
0.01‖e0‖1.

We compare our method with DSRC and MRR. As

DSRC and MRR would require to have multiple reference

images per class, to provide a fair comparison, we evaluate

both algorithms under two settings: Firstly, seven reference

images are provided per class to DSRC.3 We denote this

case as DSRC-7. Secondly, one randomly chosen image per

class as the same setting as the SIT algorithm. We denote

this case as DSRC-1 and MRR-1.

We draw the following observations from the alignment

results shown in Figure 5:

1. SIT works well under a broad range of 2D deforma-

tion, particularly when the translation in x or y direc-

tion is less than 20% of the eye distance (10 pixels) and

when the in-plane rotation is less than 30◦.

2. Clearly, SIT outperforms both DSRC-1 and MRR-1

when the same setting is used, namely, one sample

per class. The obvious reason is that DSRC and MRR

were not designed to handle the single-sample align-

ment scenario.

3. SIT slightly outperforms DSRC-7, where DSRC-7 has

access to seven training images of different illumina-

tion conditions. Furthermore, the SIT dictionary is

derived from a single subject class from the unrelated

YaleB database. It validates that illumination examples

of a well-chosen subject are sufficient for SIT align-

ment.

4.2. Single-Sample Recognition

In this subsection, we evaluate the SIT recognition algo-

rithm based on single reference images of the 166 subject

3The training are illuminations {0,1,7,13,14,16,18} in Multi-PIE Ses-

sion 1.

classes shared in Multi-PIE Sessions 1 & 2. We compare its

performance with SRC, ESRC, DSRC, and MRR.

First, we note that the new SIT framework and the ex-

isting sparse representation algorithms are not mutually ex-

clusive. In particular, the illumination transfer (6) can be

easily adopted by the other algorithms to improve the illu-

mination condition of the training images, especially in the

single-sample setting. In the first experiment, we demon-

strate the improvement of SRC and ESRC with the illumi-

nation transfer. Since both algorithms do not address the

alignment problem, manual labels of the face location are

assumed to be the aligned face location. The comparison is

presented in Table 1.

Table 1. Single-sample recognition accuracy via manual align-

ment.
Method Session 1 (%) Session 2 (%)

SRCM 88.0 53.6

ESRCM 89.6 56.6

SRCM + SIT 91.6 59.0

ESRCM + SIT 93.6 59.3

We observe that since the training images are selected

from Session 1, there is no surprise that the recognition

rates of those testing images also from Session 1 are sig-

nificantly higher than those of Session 2. The comparison

further shows adding the illumination transfer information

to the SRC and ESRC algorithms meaningfully improves

their performance by 3% – 4%.

Second, we compare DSRC, MRR, and SIT in the full

pipeline of alignment plus recognition shown in Table 2.

Table 2. Single-sample alignment + recognition accuracy.

Method Session 1 (%) Session 2 (%)

DSRC 36.1 35.7

MRR 46.2 34.6

SIT 79.9 65.7

Compared with the past reported results of DSRC and

MRR, their recognition accuracy decreases significantly

when only one training image is available per class. It

demonstrates that these algorithm were not designed to per-

form well in the single-sample regime. In both Session 1

and Session 2, SIT outperforms both algorithms by more

the 30%. It is more interesting to compare the Session 2

recognition rates in Table 1 and Table 2, the more difficult

and realistic experiment. SIT that relies on a SIT dictio-

nary to automatically alignment the testing images achieves

65.7%, which is even higher than the ESRC rate of 59.3%

with manual alignment.

4.3. Robustness under Random Corruption

In this subsection, we further compare the robustness of

the SIT recognition algorithm to random pixel corruption.
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Figure 5. Success rate of face alignment under four types of 2D deformation: x-translation, y-translation, rotation, and scaling. The amount

of translation is expressed in pixels, and the in-plane rotation is expressed in degrees.

We again compare the overall recognition rate of SIT with

DSRC and MRR, the two most relevant algorithms.

To benchmark the recognition under different corruption

percentage, it is important that the query images and the

training images have close facial appearance, otherwise dif-

ferent facial features would also contribute to facial corrup-

tion or disguise, such as glasses, beard, or different hair

styles. To limit this variability, in this experiment, we use

Multi-PIE Session 1 for both training and testing, although

the images should never overlap. We use all the subjects

in Session 1 as the training and testing sets. For each sub-

ject, we randomly select one frontal image with arbitrary

illumination for testing. Various levels of image corruption

from 10% to 40% are randomly generated in the face re-

gion. Similar to the previous experiments, the face regions

are detected by Viola-Jones detector. The performance of

the three algorithms is shown in Table 3.

Table 3. Recognition rates (%) under various random corruption.

Corruption 10% 20% 30% 40%

DSRC 32.9% 31.7% 28.9% 24.1%

MRR 24.9% 14.5% 11.7% 9.2%

SIT 74.3% 70.3% 67.1% 55.8%

The comparison is more illustrative than Table 2. For in-

stance, with 40% pixel corruption, SIT still maintains 56%

accuracy; with 10% corruption, SIT outperforms DSRC and

MRR by more than 40%.

4.4. Multiple-Subject SIT Dictionaries

The last topic of our discussion is the effect of choosing

multiple subject classes for building the SIT dictionary, as

we previously mentioned in (4). In the above alignment and

recognition comparison, we have seen that SIT is compa-

rable to or outperforms the existing face recognition algo-

rithms using just a one-subject illumination dictionary. In

this experiment, we provide some empirical observations to

investigate the change of its alignment accuracy from us-

ing one subject to 10 subjects. Figure 6 again shows the

alignment success rates when the face bounding box un-

dergoes x-axis and y-axis translation, respectively, between

[-12, 12] pixels.

Figure 6. SIT alignment success rates from one to 10 subjects.

We observe that adjusting the size of the illumination

dictionary does affect the alignment performance. How-

ever, the change is not monotonically increasing with more

subject classes. In particular, for x-translation, all dictio-

naries are able to maintain good performance (above 98%

recognition rate) even when the translation is as large as

±10 pixels. For y-translation, the single-sample illumina-

tion dictionary slightly outperforms the others with more

subjects when the translation is large.
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5. Conclusion and Discussion

In this paper, we have presented a novel face recognition

algorithm specifically designed for single-sample alignment

and recognition. Although we have provided some excit-

ing results that represent a meaningful step forward towards

a real-world face recognition system, there remain several

open problems that warrant further investigation. First, al-

though the current way of constructing the illumination dic-

tionary is efficient, the method is not able to separate the

effect of surface albedo, shape, and illumination completely

on face images. Therefore, a more sophisticated illumi-

nation transfer algorithm could lead to better overall per-

formance. Second, although we have demonstrated em-

pirically in Section 4.4 that including more subjects in the

illumination dictionary may not necessarily lead to better

performance, one could study whether a better dictionary

learning algorithm could be applied to formulate the illumi-

nation dictionary that might represent more face shapes and

illumination patterns.
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