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Abstract

In this paper, we explore the effectiveness of patch-
based gradient feature extraction methods when applied
to appearance-based gait recognition. Extending existing
popular feature extraction methods such as HOG and LDP,
we propose a novel technique which we term the Histogram
of Weighted Local Directions (HWLD). These 3 methods are
applied to gait recognition using the GEI feature, with clas-
sification performed using SRC. Evaluations on the CASIA
and OULP datasets show significant improvements using
these patch-based methods over existing implementations,
with the proposed method achieving the highest recognition
rate for the respective datasets. In addition, the HWLD can
easily be extended to 3D, which we demonstrate using the
GEV feature on the DGD dataset, observing improvements
in performance.

1. Introduction

Automatic human recognition is a major research area

in computer vision, with gait being an attractive biometric

due to its ability to operate on low resolution video, without

interrupting or interacting with the subject. Recent algo-

rithms can achieve close to 100% under controlled condi-

tions [10], subject to variations in capture conditions, ap-

pearance changes (e.g. clothing), and dataset size.

Most recent research has focused on appearance-based

approaches to gait recognition, particularly the gait energy

image (GEI) [4] and its variants, such as the 3D gait energy

volume (GEV) [9], due to greater recognition performance

and overall simplicity. The GEI is constructed from silhou-

ettes (or binary voxel volumes in the case of the GEV), en-

coding the gait features as a single image template. Due

to this, the feature can be sensitive to segmentation errors,

and like other appearance-based techniques, to changes of

appearance in the subject. Extensions to the GEI have been

proposed to address this [6], though their success is limited

to certain classes of problems [7].

Though the image domain is different (averaged silhou-

ettes vs. gray-scale image), the problems encountered are

similar to those found in appearance-based face recogni-

tion, where the features extracted need to be robust towards

unwanted variations in the image, whether they be due to

lighting or pose. Patch-based feature descriptors such as

histogram of oriented gradients (HOG) [2], and more com-

monly, local binary patterns (LBP) are used for this purpose

to great effect, offering relatively high recognition perfor-

mance at lower computational complexity. An extension to

the LBP, local directional patterns (LDP) [8] provide even

better accuracy under noisy conditions or situations like

changes in illumination.

HOG has been used in gait recognition [5], but has yet

to be applied directly to GEIs. In this paper, we explore the

effectiveness of HOG and LDP when applied to GEIs for

gait recognition. We also propose a new feature descrip-

tor, which we call the histogram of weighted local direc-

tions (HWLD), borrowing concepts from both HOG and

LDP. Like the HOG, the proposed method is a histogram

based on local gradient directions. However, the raw direc-

tions are discrete, mapped to each pixel’s eight neighbours,

with the magnitudes to the possible directions determined

from directional response kernels commonly used in LDP.

Weights are applied based on the relative strengths of the

directions at each pixel like the LDP.

This method takes the strengths of the two base systems,

in that it keeps the richer local appearance description of-

fered by the LDP, yet keeps a more compact feature size

possible with the HOG. The second point allows us to ex-

tend the HWLD to 3D volumes, avoiding the prohibitively

large number of histogram bins required for a similar LDP

implementation.

Performance of the HWLD is compared with HOG and

LDP by applying them to the GEI, with experiments carried

out on the CASIA [12] and OULP [7] datasets. Classifica-
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tion is performed using sparse representation classification

(SRC) [11] as it has been shown to perform well for gait

recognition [10]. Evaluation of the HWLD when applied to

GEVs is also performed on the DGD dataset [10], compar-

ing it with a baseline implementation also using SRC.

The remainder of this paper is organised as follows. Sec-

tion 2 outlines the applicability of patch-based feature ex-

traction techniques to the GEI. Section 3 discusses the pro-

posed novel feature extraction technique, HWLD and Sec-

tion 4 details the classification. Experiments and results are

discussed in Section 5 followed by the conclusion in Sec-

tion 6.

2. The GEI and Local Histogram Feature De-
scriptors

GEIs represent the static and dynamic behaviour of hu-

man motion within a gait cycle as a single image template

by averaging the normalised binary silhouettes over that cy-

cle. The GEI is computed by,

GEI =
1

T

T∑
t=1

It, (1)

where T is the number of frames within the gait cycle and

I is the silhouette image at frame t.

Due to the nature of the GEI, various forms of errors can

be introduced into the feature image. Firstly, errors in the

segmentation, as well as actual appearance changes in the

subject, can cause changes to the appearance of the GEI.

Poor normalisation and alignment of individual silhouettes

can also contribute to artifacts, effectively creating a blur-

ring effect on the final GEI.

Finally, the registration between the probe and gallery

GEIs can also be an issue when performing classification.

This can be addressed using local grid-based histogram

methods, as its coarse spatial sampling introduces some tol-

erance to these alignment issues.

Though more importantly, the use of histograms allows

linear comparisons of feature values that are not scalar in

nature, such as those produced from LBP/LDP. LBP fea-

tures were originally used as a texture descriptor, though

have since been successfully applied in face recognition for

their robustness to appearance changes due to illumination

and pose, issues that are similar to those described above

for GEIs. The LDP is an extension to the LBP, providing

superior performance.

Another commonly used local histogram feature descrip-

tor is the HOG. This section will provide an overview of the

LDP and HOG feature descriptors and a way to apply them

to GEIs for gait recognition.
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Figure 1. 2D local directional kernels.

2.1. Local Direction Pattern

The local directional pattern (LDP) is an extension of

the local binary pattern (LBP), and has been shown to be

a robust feature for use in various face recognition applica-

tions [8]. Like the LBP, it assigns an eight bit binary key to

each pixel of an input image (in this case, a GEI), represent-

ing the local appearance at that pixel.

To compute the LDP, a set of 8 directional kernels are

applied to extract the dynamic response (k0, k1, ..., k7) in

each of the 8 neighbouring pixel directions. The kernels

used are based on the Kirsch compass kernels [8], which

are shown in Figure 1.

The dynamic response values are sorted in descending

magnitude, and the top n values are selected. The 8 possible

directions each correspond to a bit in an 8-bit value. The

selected n bits are set to 1, and the resulting value is the

feature ‘key’ for that pixel. For the purposes of this paper

n = 3.
The resulting feature map is partitioned into a grid, and

a histogram is computed for each local patch. 56 histogram

bins are used, corresponding to the 56 unique key values

(8C3). The histogram values from each region are then con-

catenated to form the final feature vector. Figure 2 shows

the process of computing the LDP feature from a GEI.

The LDP however, is not suitable for applications using

3D data, such as the GEV.With 26 neighbours per voxel, the

number of unique keys, and therefore required histogram

bins, become infeasible. At n = 3, the number of bins

required is 2600.

2.2. Histogram of Oriented Gradients

The histogram of oriented gradients (HOG) is a very

common feature descriptor used for object detection and

recognition. Though it has been used in face recogni-

tion [2], it is less popular than LBPs due to poorer perfor-

mance in that context. Recently, it has also been applied to

gait recognition [5], showing significant improvements over

a GEI/PCA baseline [4].

In [5], the HOG is applied directly to the raw image, and

the magnitudes of the gradients are weighted by the silhou-

ette mask. The HOG features are then averaged over the

gait cycle to arrive at the final feature vector.

In this paper, the HOG operator will be applied directly
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Figure 2. Computation of binary-coded LDP from a GEI image. The GEI is convolved with the directional kernels. The resulting values

are sorted by rank (RNK), and the top 3 are assigned a 1 in its corresponding bit in the binary number (BIN). The decimal representation

of this number is the LDP value for the pixel. The GEI is partitioned into a grid and a histogram is computed for each patch from the LDP

values.

to the GEI image instead. The GEI encodes the temporal

features into the image appearance; applying the HOG to

individual frames and then averaging will lose this infor-

mation. Whether this approach is actually preferable or not

will not be evaluated in this paper.

To compute the HOG feature, the gradient vector at each

pixel in the GEI is first found. The 1st order gradient oper-

ator ([−1, 0, 1] and [−1, 0, 1]T) is applied to extract the hor-

izontal (gh) and vertical gradient (gv) magnitudes, which is

then combined to calculate the final gradient magnitude (g)
and orientation (θ) as below,

g =
√
gh2 + gv2 θ = atan2(gh, gv). (2)

The image is then partitioned into a grid, with the gradients

placed into histograms at each patch based on the gradi-

ent orientation. The histograms contain 9 equal-width bins,

with each gradient weighted by the gradient’s magnitude.

Applying the HOG to the GEV is possible, as the number

of bins used can be adjusted. Selecting the values required

to represent an angle in 3D space can be cumbersome, with

the directional kernels used to compute the LDP providing

a more elegant solution. This motivates the development of

the histogram of weighted local directions.

3. Histogram of Weighted Local Directions
The initial motivation for developing this new feature is

to extend the LDP into 3D for use in gait energy volumes.

Due to the binary pattern coding used however, the number

of unique code combinations (and therefore, the required

number of histogram bins) increases to 2600 with the 26

possible directions in 3D voxel space and n = 3. This num-

ber rises rapidly as n increases, with 65780 unique values

at n = 5.
The solution is to simply remove the binary pattern cod-

ing from the algorithm, moving towards are more HOG-like

implementation. However, the proposed algorithm would

retain the 8 discrete directions, with magnitudes computed

using the directional kernels. Multiple gradient directions

for each pixel are still used, as this should provide a richer

description of the local appearance than simply using one,

as many pixels would not have a dominant gradient direc-

tion. The contributions to the histogram are weighted, as

a function of its directional response values. We term this

method the histogram of weighted local gradients (HWLD).

The initial computation of the HWLD is identical to that

of the LDP; the directional kernels are convolved with the

GEI to extract the directional response values, which are

used to rank the directions in terms of their magnitude. The

GEI is partitioned into a grid, and a histogram is formed

for each patch. The first n directions at each pixel are used

to populate the corresponding histogram, though their con-

tribution is weighted by their magnitudes. The weighting

factor, w, is proportional to the relative dominance of each

direction at the pixel, such that,

wj = ‖kj‖
(

7∑
i=0

‖ki‖
)−1

, (3)

where j is a given direction index, and k is the response

value.

3.1. Applying HWLD to 3D Data

The gait energy volume (GEV) [9] is the 3D analogue

of the GEI. With the advent of cheap and accurate real-time

depth cameras, gait recognition from a frontal perspective

may be viable, with many attractive properties [9]. To create

the GEV, the depth image is first projected into world coor-

dinates and a binary voxel volume created from the surface

reconstruction. The GEV is then constructed from these

volumes similar to how a GEI is constructed from a binary

silhouette image.

To extend the HWLD feature to 3D, we must first de-

fine the directional kernels to be used. There are twenty six
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Figure 3. 3D local directional kernels. 3 unique cases are pre-

sented, showing the kernel direction and the corresponding weight

values. The other 23 kernels can be obtained by applying rota-

tional transforms to these.

3× 3× 3 directional kernels defined for each of the neigh-

bouring voxel directions. Like the Kirsh compass kernels,

the direction-facing voxel and its adjacent voxels are given

a positive value, while all others, except the centre voxel,

are assigned a negative value. The centre voxel is set to 0.

Each of the 26 kernels must be of the same magnitude, and

sum to 0 (Equation 4).∑
K = 0, ‖K‖ = 1. (4)

Examples of the kernels are shown in Figure 3, depicting the

three possible unique cases and their corresponding kernel

values. The other 23 kernels can be obtained by applying

rotational transformations to these.

The rest of the algorithm follows that of the 2D case.

The response values are calculated and weights obtained.

The GEV is divided into a series of 3D patches, with his-

tograms constructed for each patch using the top n direc-

tions. To capture a greater range of appearances due to the

larger number of possible directions, n = 5 is used for the

3D HWLD. Note that a similar LDP implementation would

require 65780 histogram bins per volume patch.

4. Classification
Recently, sparse representation based classification [3]

has gained popularity and has been used as an effective clas-

sification method for face [11] and gait [10]. Initial investi-

gation into sparse representation has shown improvement

over traditional classification methods. Hence, we use a

sparse representation based classifier to evaluate the pro-

posed algorithms and baselines.

Classification is initialised by forming a dictionary that

represents all the subjects in the gallery with a total of N
extracted feature vectors (τ1, τ2, ..., τN ) packaged into the

columns of a matrix, A ∈ R
n−1×N , where n is the number

of subjects in the gallery. The objective is to identify the test

subject, γ, in terms of the dictionary matrix that satisfies the

following linear equation,

γ = Aα, (5)

where by determining the coefficient vector α =
[0, ..., 0, δi1, ..., δik, 0, ..., 0] (where δ are non zero elements

and k is the number of feature vectors in the ith subject),

we can determine that γ corresponds to the ith subject. The

above objective can be achieved by computing the most

sparse coefficients for a given subject γ, with respect to the

training subjects in the dictionary, using the following opti-

misation problem,

argmin α̂ = ||α||1, s.t. γ = Aα. (6)

Ideally the non-zero elements in the sparse coefficients

should represent the test subject. However, due to com-

plicating factors and modelling errors, the sparsest solution

can produce non-zero entries that corresponds to multiple

subjects. However, we can find the most significant entry

by individually analysing the strength of coefficients as-

sociated with multiple subjects. To do this, the modified

sparse coefficient, α̂i = [0, ..., 0, δi1, ..., δik, 0, ...0] is de-

fined, where k is number of feature vectors in the dictionary

corresponding to the ith subject. Using α, the normalised

distance of the ith subject to the test subject, γ is calculated

as follows,

Di(γ) = ‖γ −Aα̂‖. (7)

The smaller the distance, Di(γ), the more likely γ corre-

sponds to the ith subject.

5. Experiments and Results
5.1. Evaluation of 2D approaches

Profile views from CASIA dataset B [12] and OULP-

C1V1-A database [7] are used to evaluate the proposed ap-

proaches in 2D. Both identification and verification experi-

ments are performed, with CMS and ROC results compared.

Evaluations are performed using the framework outlined in

the respective datasets.

CASIA dataset B contains multiple gait sequences of 125
subjects for 3 different conditions - 6 sequences of normal

walk (nw), 2 sequences of different clothing (cl) and 2 se-

quences of carrying bag (bg). For the 2D experiments, intra

and inter-class experiments follow the evaluation outlined

in [12] where intra-class experiments are performed on the

nw sequences, with 4 allocated to the gallery and 2 to the

probe. In inter-class tests, 4 cycles from nw are used as the

gallery, while the 2 sequences in each of the other classes

make up the probe in their individual experiments.

In addition to the segmented silhouettes provided with

the dataset (labeled as S1 in this experiment), higher qual-

ity silhouettes are segmented using a graph-based segmen-

tation algorithm similar to [1] (labeled as S2). The original

silhouettes contains significantly more segmentation errors

and examples of the differences, as well as its effects on the

GEI, can be seen in Figure 4. These two sets of silhouettes
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Feature Seg. PCAMDA
Rank-1 Rank-3 TAC @ FAR 3% TAC @ FAR 5% AUC

nwnw nwbg nwcl nwnw nwbg nwcl nwnw nwbg nwcl nwnw nwbg nwcl nwnw nwbg nwcl

HWLD S2 - 100 92.2 96.5 100 96.6 97.6 99.6 87.7 96.8 99.6 91.6 97.3 0.999 0.984 0.991
S2 � 100 91.3 96.5 100 94.8 98.2 99.5 86.7 96.3 99.5 90.3 96.3 0.999 0.980 0.993

S1 - 99.1 90.4 94.8 99.1 93.0 97.4 98.2 87.8 94.8 98.7 92.5 96.0 0.997 0.984 0.986

LDP S2 - 98.2 85.1 93.8 99.2 92.1 97.3 98.2 84.9 95.0 99.1 89.1 96.3 0.995 0.961 0.984

S2 � 100 79.2 92.1 100 87.9 94.7 99.0 81.9 92.6 99.0 85.0 94.0 0.998 0.952 0.978

S1 - 97.4 83.4 93.6 99.2 90.2 98.8 97.8 82.8 94.2 98.6 87.2 98.1 0.992 0.954 0.991

HOG S2 - 99.1 80.8 96.3 100 91.3 97.3 98.6 80.2 95.4 99.1 84.6 95.9 0.999 0.962 0.989

S2 � 99.2 78.3 93.8 100 88. 97.4 98.6 78.8 94.0 99.5 84.5 94.9 0.999 0.951 0.987

S1 - 98.2 80.2 96.2 99.1 92.2 98.1 98.2 80.0 94.2 98.7 85.1 96.2 0.998 0.970 0.993

GEI S2 - 98.2 57.4 80.9 100 65.2 91.3 97.2 58.1 87.6 98.2 62.5 89.3 0.994 0.860 0.954

S2 � 100 74.1 91.2 100 75.6 92.0 99.5 66.5 91.0 100 71.5 92.7 0.999 0.920 0.966

S1 � 100 64.3 82.6 100 69.6 87.8 99.1 60.2 82.6 99.6 71.3 88.9 0.999 0.864 0.946

GEI [10] - � 100 68.5 80.3 - - - - - - - - - - - -

SGEI [6] - � 99.0 72.0 64.0 - - - - - - - - - - - -

Table 1. Identification and verification results for CASIA dataset. Seg refers to the silhouette set used (S1 or S2). PCAMDA refers to the

use of feature modeling (PCA and MDA). Our experiments are compared with other state-of-the-art results found in the literature for this

dataset.

Figure 4. Example silhouettes and computed GEI comparing S1

(top) and S2 (bottom).

are used to compare the performance of the algorithms in

the presence of segmentation noise.

GEIs are cropped to the lower half of the image to min-

imise the appearance changes in the upper body. LDP, HOG

and HWLD features are computed from the GEI using a

patch size of 5 × 5. PCA and MDA is applied to the fea-

tures, with classification performed using SRC.

From the performance measures in Table 1, we can see

that the proposed HWLD is able to perform equal, or bet-

ter than the other techniques in all test cases and achieves

the state-of-the-art performance on the CASIA dataset. We

also see good performance of the LDP and HOG, with LDP

favouring the nwbg case and HOG favouring nwcl. This

result is slightly unexpected as LBP/LDP approaches gen-

erally provide better performance to HOG in face recogni-

tion. This could simply be due to the different nature of

a GEI compared to a face image, though the performance

of the LDP may have been limited due to the small patch

size, as we are trying to populate 56 histogram bins with 25

samples, compared to 8 or 9 bins in the HWLD and HOG.

[8] finds slightly improved performance in face recognition

with a patch size of 10× 10 compared to 5× 5.
When comparing the results of the S1 silhouettes to

S2, we see an improvement using the cleaner silhouettes,

though the improvement is only slight for many of the test

cases using the local patch methods. Contrasting this with

the much more significant improvements seen when using

just the GEI, demonstrates the greater tolerance to segmen-

tation errors in these algorithms. It is also noted that better

performance is achieved in the patch-based methods when

PCA and MDA is not applied to the feature vectors in inter-

class tests. The reason for this is unknown, though we spec-

ulate that this could be due to ‘over-fitting’, with the SRC

dictionary templates failing to properly generalise to varia-

tions in the subjects’ appearance.

The proposed approach is also evaluated on the OULP-

C1V1-A dataset of the OU-ISIR Gait database [7], which

consists of silhouettes from a maximum of 3961 subjects

which are grouped based on the captured view angle (55,

65, 75, 85, All). Each subject has 2 sequences and from

them one centered gait cycle for the particular view is se-

lected. In this paper, we use the distributed cleaned seg-

mented silhouettes from the near-profile view (A-85) and

from gait cycles that cover all the angles (A-All). Only

intra-class test cases are considered as following the test-

ing protocol in [7]. First sequence is in each group are used

as gallery and the other one is used as probe.

Table 2 shows the recognition performances based on

rank and AUC metrics. Again it shows the effectiveness

of the propose HWLD algorithm with the AUC close to 1

for the A-All class. The results shown are computed using

PCA-MDA, with experiments without it (not shown) per-

forming slightly less. This provides further support for the

over-fitting hypothesis previously mentioned, as these are

intra-class tests.

The results for the GEI are lower than the GEI imple-
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mentation in [7]. The reason for this is likely due to using

only the lower half of the GEI. Since this is an intra-class

evaluation, there are no significant appearance changes in

the upper body for us to ignore.

Feature
A-85 A-All

Rank 1 Rank 5 AUC Rank 1 Rank 5 AUC

HWLD 87.7 94.7 0.992 95.5- 98.5 0.999

LDP 83.7 91.2 0.992 95.1 98.3 0.999

HOG 56.5 74.5 0.954 75.9 89.9 0.984

GEI+ PCA 81.1 92.0 0.985 90.8 97.2 0.997

[7] 85.7 93.1 - 94.2 97.1 -

Table 2. Recognition Performance on OULP-C1V1-A.

5.2. Evaluation of HWLD in 3D

Experiments in 3D are conducted using the DGD [10].

The DGD contains 3D depth data for 35 subjects in multiple

sequences with 6 varying conditions; 5 sequences of normal

walk (nw) and fast walk (fw), 4 sequences of walking with-

out shoes (ns) and 2 sequences of front carrying bag (fc),
side carrying bag (sc) and back carrying bag (bc). An intra-

class test is carried out using the nw sequences. 3 of the 5

nw cycles for each subject are assigned to the gallery while

the remaining cycles are used as the probe. In inter-class

tests, all 5 nw cycles are used as the gallery, and all avail-

able cycles in each of the other classes (fw, sc, fc, bc, ns) are
treated as the probe in their respective experiments. GEVs

from frontal depth images in the DGD are extracted using

the method described in [9]. Similar to the 2D experiments,

HWLD features are extracted as explained in Section 3.1.

The Rank-1 cumulative match scores of this experiment

is presented in Table 3. We see a slight, but consistent im-

provement over the baseline implementation that is in line

with the results in [10].

6. Conclusion
In this paper, we have proposed the Histogram of

Weighted Local Directions (HWLD) for use in gait recog-

nition. The proposed HWLD features demonstrate state-of-

the-art performances, showing significant improvements in

Feature
Rank-1

nwnw nwfw nwfc nwsc nwbc nwns

HWLD 100 100 100 96.5 97.1 100

GEV+MDA 100 99.6 93.1 94.2 96.7 96.2

[10] 100 98.2 94.1 92.4 95.6 96.8

Table 3. Rank-1 cumulative match scores that compare the pro-

posed and state-of the-art method on 3D data using DGD database.

inter-class tests over existing implementations for the CA-

SIA dataset. Superior performance of the feature on the

high population OULP dataset, which contains more than

3000 subjects, shows that the proposed method is stable

over a large population. The HWLD can also be easily ex-

tended to 3D, with evaluations using GEVs on the DGD

dataset beating all known results.

Furthermore, we demonstrate that local histogram fea-

ture extraction techniques are much more stable to mi-

nor segmentation errors. They also show improved perfor-

mance in the absence of feature conditioning processes such

as PCA and/or MDA in inter-class tests.
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