
Abstract 

Recently, the regularized coding-based classification 
method (e.g. SRC and CRC) shows a great potential for 
face recognition. However, most existing coding methods 
ignore the statistical information from the training data,
which actually plays an important role in classification. To 
address this problem, we develop a general regression and 
representation model (GRR) for classification. GRR not 
only has advantages of CRC, but also introduces the prior 
information and the specific information to enhance the 
classification performance. In GRR, we combine the 
leave-one-out strategy with K Nearest Neighbors to learn 
the prior information from the training data. Meanwhile, 
the specific information is obtained by using the iterative 
algorithm to update the feature weights of the test sample.
Finally, we classify the test sample based on the 
reconstruction error of each class. The proposed model is 
evaluated on public face image databases. And the 
experimental results demonstrate the advantages of GRR 
over state-of-the-art methods. 

1. Introduction 
Linear regression has been widely applied to pattern 

classification. To prevent overfitting, the L2-regularizer is 
generally used in the linear regression model. In the past 
years, the L1-regularizer, which is closely linked to sparse 
representation, becomes a hot theme in information theory, 
signal/image processing and related areas. Meanwhile, 
numerous findings of neuroscience and biology form a 
physiological base for sparse representation [1-3]. 

Recently, many efforts have been made to apply sparse 
representation methods to pattern classification tasks, 
including signal/image classification and face recognition 
etc. Labusch et al. presented a simple sparse-coding strategy 
for digit recognition and achieved state-of-the-art results on 
the MNIST benchmark [4]. J.C. Yang et al. addressed the 
problem of generating a super-resolution (SR) image from a 
single low-resolution input image via sparse representation 
[5]. J. Mairal et al. elaborated a framework for learning 

multi-scale sparse representations of images with 
applications to image denoising and inpainting [6]. J.C. 
Yang et al. employed sparse coding instead of vector 
quantization to capture the significant properties of local 
image descriptors for image classification [7]. Particularly,
Wright et al. introduced a sparse representation based 
classification (SRC) and successfully applied it to identify 
human faces with varying illumination changes, occlusion 
and real disguise [8]. A test sample image is coded as a 
sparse linear combination of the training images, and then 
the classification is achieved by identifying which class 
yields the least residual. Subsequently, M. Yang and L. 
Zhang constructed a Gabor occlusion dictionary for SRC to 
reduce the computation cost by using Gabor feature [9]. 
Although the newly-emerging SRC shows great potential 
for pattern classification, it lacks theoretical justification. J. 
Yang et al. provided an insight into SRC and analyzed the 
role of L1-optimizer [10]. They thought that L1-optimizer 
contains two properties sparsity and closeness. However, 
L0-optimizer can only achieve the sparsity. Sparstiy 
determines a small number of nonzero representation 
coefficients and closeness makes the nonzero representation 
coefficients concentrate on the training samples with the 
same class label as the given test sample. Wright et al. give a 
recent review of sparse representation for computer vision 
and pattern recognition [11]. In addition, many related tasks 
have been reported [12-16].

With the widely use of sparse representation for 
classification, some scholars question the role of sparseness 
for image classification [17, 18]. L. Zhang et al. analyzed 
the working principle of SRC and believed that it is the 
collaborative representation that improves the image 
classification accuracy rather than the L1-norm sparstiy. 
Consequently, L. Zhang et al. presented a collaborative 
representation based classification with regularized least 
square (CRC) [19]. Compared with SRC, CRC delivers 
very competitive classification results with little 
computation time. Subsequently, M. Yang et al. proposed a 
relaxed collaborative representation model (RCR) which 
effectively captures the similarity and distinctiveness of 
different features for pattern classification [20].  

 Most of the previous works focus on investigating the 
importance of the L1-regularizer/L2-regularizer. However, 
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these works ignore some statistical information hidden in
the training data. This paper aims to explore the prior 
information (learned from the training set offline) and the 
specific information (learning from the testing sample 
online) so as to enhance the classification performance 
under different conditions. To this end, we propose a model 
named General Regression and Representation (GRR) for 
pattern classification. The overview of GRR is shown in Fig. 
1. Compared to other classification method, the novelty of 
the proposed model is twofold:  

� First, GRR captures the prior information from the 
training set via the generalized Tikhonov 
regularization in conjunction with the leave-one-out 
strategy and K Nearest Neighbor method; 

� Second, we propose two models of GRR: Basic GRR 
(B-GRR) and Robust GRR (R-GRR) by combining the 
prior information and the specific information with 
different strategies; 

To evaluate the proposed method, we perform 
experiments on the AR and the Extended Yale B databases, 
and the experimental results demonstrate the effectiveness 
and robustness of the proposed GRR. 

2. General Regression and Representation 
Model for Classification (GRR) 

In this study, GRR contains two models: Basic GRR and 
Robust GRR. We will introduce these two models in detail 
as follows. 

2.1. Basic GRR 

Most of current works don’t make full use of the 
statistical information of training set. To address this 
problem, we introduce the concept of prior information and 
propose a basic general regression and representation model 
for classification. Specifically, let A be the matrix formed 
by the K nearest neighbors of the test sample from training 
set and y be the test sample. P is the weight matrix of 
reconstruction errors, and Q is the weight matrix of
representation coefficients. P and Q are matrices containing 
the prior information. Our model is  

2 2ˆ argmin -� �
P Qx

x y Ax x (1) 

We call the above model as the basic general regression 
and representation (B-GRR). Actually, this model can be 
reformulated as follows:  

ˆ arg min - -T T� �
x

x (y Ax) P(y Ax) x Qx (2) 

If P and Q are known, from [26], we know there is a 
close-form solution:  

T -1 Tˆ ( +�x A PA Q) A Py (3) 

However, P and Q are unknown beforehand. The 
remaining problem is how to learn P and Q. Here, we 
employ a generative method to evaluate these two matrices.
Specifically, we use the leave-one-out strategy in 
conjunction with K Nearest Neighbor to learn the prior 
information matrices P and Q. Denote by (t )

iy the i-th 
sample of training set. (t)

iA is the K nearest neighbors of 
(t )
iy  from the training set. We can initialize P0, Q0 as P0=I

and Q0=I. The (t )
iy  is coded on (t)

iA  as follows:  

( t ) 0 0

2 2(t ) (t ) (t ) (t ) (t )

P Qx
ˆ arg min -

i
i i i i i� �x y A x x (4) 

Then, P and Q can be directly derived by using Eq. (5)
and Eq. (6) respectively:

1
1cov( ) � �P = { E + I} (5) 

where 1=[ , , , ]i KE � �e e e and 
2(t) (t) (t)ˆi i i i� �y A xe . Here, 

1� is the regular parameter, and cov( )� is an operator to 
compute the covariance matrix. 

1
2cov( ) � �Q = { X + I} (6) 

where (t) (t) (t)
1ˆ ˆ ˆ=[x , , x ,x ]i KX � � . 2�  is the regular parameter.  

In the testing stage, the solution of x̂ in Eq. (1) is easily 
derived by using Eq. (3). We can reconstruct the test sample 
y as ˆ ˆ( )i i��y A x by employing the coefficients associated 
with i-th class. The corresponding reconstruction error of 
i-th class is defined:

2 2
ˆ ˆr ( ) - ( ) ( )i i i� ��y y A x x (7) 

The decision rule is: if r ( ) min r ( )l ii
�y y , y is assigned to 

Class l. 

Figure 1: An overview of General Regression and Representation 
model for classification
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B-GRR makes full use of the prior information of the 
training set. It works well when the testing samples share the 
same probability distribution with the training samples. The 
algorithm of B-GRR for classification is summarized in 
Algorithm 1. 

2.2. Robust GRR  

In face recognition problems, illumination, expression or 
pose changes may cause differences between test samples 
and training samples. Therefore, it is necessary to introduce 
the specific information of the test sample to alleviate the 
effect caused by the differences between test samples and 
training samples. This specific information is to give a 
weight to each image pixel, which can be learned online via 
the iteratively reweighted method, as adopted in RSC [12].

Based on this idea, we present a robust general regression 
and representation model (R-GRR) for classification. 
Compared with B-GRR, R-GRR not only includes the prior 
information matrices P and Q, but also owns the specific 
information matrix W. The model is given below: 

2 21/2ˆ arg min -� �
QPx

x W (y Ax) x
            

(8) 

If P, Q and W are known, the above model has a close-form 
solution:  

T 1/2 1/2 -1 T 1/2 1/2ˆ [ +T T�x A (W ) P(W )A Q] A (W ) P(W )y (9) 

Since P and Q can be learned offline using the same 
method as in Basic GRR, the remaining problem is to learn 
the specific information (matrix W) online. Specifically, 
given a test sample y, we firstly compute the coding 
residuals e of y so as to initialize the weight. The residual e
is initialized as e=y-yini, and yini is the initial estimation of 
the true images from the observe samples. In this study, we 
simply set yini as the mean image of all samples in the coding 
dictionary since we don’t know which class the test image y
belongs to. With the initialized yini, our method can estimate 
the W iteratively. W actually is a diagonal matrix, Wi,i

(i.e. ( )ie�	 ) is the weight assigned to each pixel of the test 
image. The weight function [12] is: 

2

2

exp( ( ) )
( )

1 exp( ( ) )
i

i
i

e
e

e�

� 


	

� 

�

�
� �

                      (10) 

where,
 and � are positive scalars. 
In addition, Eq. (9) is the explicit solution of Eq. (8). The 

convergence is achieved when the difference of the weights 
between adjacent iterations satisfies the following
condition: 

( ) ( 1) ( 1)

2
/t t t �� �� W W W (11) 

where, �  is a small positive value. 
The R-GRR algorithm for classification is summarized in 

Algorithm 2. 

3. Further Analysis of GRR 
In this section, we will further analysis the role of P, Q

and W in GRR. P (a symmetric matrix) is the weight matrix 
of reconstruction errors and learned from the training set. 
The diagonal elements of matrix P stand for the importance 
of image pixels or features. The non-diagonal elements 
represent the cross relationship between image pixels or 

Algorithm 1 B-GRR
Input: Dictionary A, test sample y. Initial values P0and
Q0
1. Normalize the columns of A to have unit L2-norm.
2. The prior information matrices P and Q are learned

from training set by using the generalized Tikhonov
regularization, leave-one-out strategy and KNN.

3. The test sample y is coded on its K nearest neighbors A
via Eq. (1).

4. Compute the residuals of each class.
Output: y is assigned to the class which yields the 
minimum residual.

Algorithm 2 R-GRR
Input: Dictionary A, test sample y. Initial values P0, Q0
and yini.
1. Normalize the columns of A to have unit L2-norm, test 

sample y with L2-norm and yt initialized as yini.
2. The prior information matrices P and Q are learned 

from the training set by using the generalized 
Tikhonov regularization, leave-one-out strategy and 
KNN.

3. The test sample y is coded on its K nearest neighbors A.
a) Compute residual ( ) ( )t t� �y ye
b)Estimate weights  

( ) ( ) ( ) ( ) 2
( )

( ) ( ) ( ) ( ) 2

exp( ( ) )
( )

1 exp( ( ) )
i

i

i

t t t t
t

t t t t

e
e

e�


 � 

	


 � 

�

�
� �

c) Code
2 2( ) 1/2

QP
ˆ argmin ( ) -t� �

x
x W (y Ax) x

d)Compute the reconstructed test sample
( ) ( )t t�y Ax , and let t = t + 1

e) Go back to step a) until the maximal number of 
iterations is reached, or convergence is met as 
shown in Eq. (11)

4. Compute the residuals of each class. 
Output: y is assigned to the class which yields the 
minimum residual.
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features. The matrix Q can be considered as a regularization 
term. In general, the regularization term is determined 
manually. Here, Q is learned from the training set and 
represents the relationship between samples in the coding 
dictionary.  

We also give an example to show the advantages of 
Robust GRR (R-GRR) as shown in Fig. 3. In our example, 
two classes of face images from the AR database, as shown 
in Fig. 2, are used for training. We test two cases of 
real-world disguise images: the images with sunglasses and 
the images with scarves. In Fig. 3 (a) and Fig. 3 (b), the left 
column contains the disguise images. In our test, we use 
R-GRR, RSC, B-GRR and CRC to deal with occlusion. For 
each occluded image, the reconstructed images (recovered 
clean image) and the residual images (recovered occlusion) 
are shown in Fig. 3. From Fig. 3, we can see that R-GRR 
achieves comparable result with RSC and significantly 
outperforms other methods. 

4. Experimental Results 
In this section, we perform experiments on public face 

image databases and compare the proposed model GRR 
with state-of-the-art methods. Note that here in SRC and 
RSC, the matlab function “l1-ls” [21] is used to calculate the 
sparse representation coefficients. In the following 

experiment, the parameters 
 and � of Eq. (10) are 
determined by the rule in paper [12]. 1� and 2� are set to 0.1,
10-7, respectively.  The parameter K is determined by 
experiments. Fig. 7 plots the recognition rates versus the 
variation of the parameter K on the different experiments. 

Dim 54 120 300
NN 68.0 70.1 71.3
LRC 71.0 75.4 76.0
SRC 83.3 89.5 93.3

CRC[19] 80.5 90.0 93.7
RSC[12] 86.8 94.0 96.0
B-GRR 81.3 90.4 93.6
R-GRR 85.6 95.3 97.3

Table 1. The recognition rates (%) of each classifier for face 
recognition on the AR database 

Dim 50 100 200
NN 78.5 85.8 90.2
LRC 93.3 94.8 95.2
SRC 93.7 94.7 95.6
CRC 91.9 94.7 96.5
RSC 94.2 97.0 98.2

B-GRR 92.1 94.9 97.1
R-GRR 94.3 97.5 98.4

Table 2. The recognition rates (%) of each classifier for face 
recognition on the Extended Yale B database 

4.1. Face Recognition without Occlusion 
We evaluate the performance of B-GRR and R-GRR on 

the AR and the Extended Yale B database with illumination 
and expression changes but without occlusion. In these 
experiments, PCA is first used to reduce the dimensionality 
of face image.  

AR Database 

The AR face database [22] contains over 4000 color face 
images of 126 persons, including frontal views of faces with 
different facial expression, lighting conditions and 
occlusions. The pictures of 120 individuals were taken in 
two sessions (separated by two weeks) and each session 
contains 13 color images. Fourteen face images (each 
session contains 7) of 100 individuals are selected and used 
in our experiment. The face portion of each image is 
manually cropped and then normalized to 60� 43 pixels.  

In this experiment, images from the first session are used 
for training, and images from the second session are used 
for testing. Then LRC (linear regression classification [14]),
SRC, CRC, RSC, B-GRR and R-GRR are employed for 
classification. The NN classifier is also used to provide a 

Figure 2: Two classes of samples from the AR database

Test image   R-GRR       RSC       B-GRR      CRC       

(a) Recovered clean image and occluded part via four methods 
for the image with sunglasses

Test image  R-GRR       RSC       B-GRR      CRC

(b) Recovered clean image and occluded part via four methods 
for the image with scarf

Figure 3: The advantages of R-GRR
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baseline. The parameter K of R-GRR means we choose the 
K nearest neighbors of test image from training set to form 
the coding dictionary. K is set to 650 here. The recognition 
rates of each classifier versus the variation of dimensions 
are listed in Table 1. From Table 1, we can see that R-GRR 
gives better performance than state-of-the-art methods in all 
dimensions except that R-GRR is slightly worse than RSC 
when dimension is 54. However, it’s difficult to achieve 
better performance when dimension is low for all the 
methods. The maximal recognition rates of NN, LRC, SRC, 
CRC, RSC, B-GRR and R-GRR are achieved when the 
dimension is 300. 

Extended Yale B Database 

The extended Yale B face image database [23] contains 
38 human subjects under 9 poses and 64 illumination 
conditions. The 64 images of a subject in a particular pose 
are acquired at camera frame rate of 30 frames / second, so 
there are only small changes in head pose and facial 
expression for those 64 images. All frontal-face images 
marked with P00 are used in our experiment, and each is 
resized to 48×42 pixels. 

In our experiment, we use the first 32 images of each 
individual for training and the remaining images are used 
for testing. Based on the PCA-transformed features, NN, 
LRC, SRC, CRC, RSC, B-GRR and R-GRR are employed 
for classification. The parameter K is 800. The recognition 
rates of each classifier corresponding to the variation of 
feature dimensions are listed in Table 2. Table 2 shows that 

the proposed R-GRR achieves the best recognition rates in 
all dimensions for face recognition. When the feature 
dimension is 100, R-GRR gives about 3% improvement of 
recognition rate over LRC, SRC and CRC, respectively. 

Methods Sunglasses Scarves
CRC 65.5 88.5

SRC[8] 87.0 59.5
GSRC[9] 93.0 79.0
CESR[15] 99.0 42.0
RSC[12] 99.0 97.0
R-GRR 99.5 99.0

Table 3. The recognition rates (%) of each classifier for face 
recognition on AR database with disguise occlusion 

4.2. Face Recognition with Occlusion 
In this section, we examine the robustness of R-GRR 

when face images suffer different occlusions, such as real 
disguise or block occlusion. Here, R-GRR combines 
advantages of the prior information Q and the specific 
information W to enhance the classification performance 
and set P as unit matrix. As we know, P reflects the 
probability distribution of reconstruction errors. If there are 
great differences between the test sample and the training 
samples, the resulting reconstruction error does not follow 
the original distribution. In this case, using P may cause 
negative effect on the classification performance. In the 
following experiments, we mainly compared our methods 
with CRC, SRC, RSC, correntropy-based sparse 
representation (CESR) [15] and Gabor-SRC [9].

Face Recognition with Real Disguise 

A subset of AR face image database is used in our 
experiment. The subset contains 100 individuals, 50 males 
and 50 females. All the individuals have two session images 
and each session contains 13 images. The face portion of 
each image is manually cropped and then normalized to 
42� 30 pixels.  

In the first experiment, we choose the first four images 
(with various facial expressions) from the session 1 and 
session 2 of each individual to form the training set. The 
total training images is 800. There are two image sets (with 
sunglasses and scarves) for testing. Each set contains 200 
images (one image per session of each individual with 
neutral expression). The sample images of one person as 
shown in Fig. 4 (a). The parameter K is 300 for the test set 
with sunglasses and 760 for the test set with scarves. The 
face recognition results of each method on the two testing 
set are listed in Table 3. From Table 3, we can see that 
R-GRR achieves the best recognition results among all the 
methods. Moreover, the performances of RSC and CESR 

Training images Testing images

(b)

Figure 4: Sample images for one person of AR database. (a) 
Sample images of the first experiment. (b) Sample images of the 
Second experiment.

Training images

Testing images

(a)
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are both higher when facial image with sunglasses. However, 
CESR only achieves 42% when facial images with scarves. 

In the second experiment, four neutral images with 
different illumination from the first session of each 
individual are used for training. The disguise images with 
various illumination and glasses or scarves per individual in 
session 1 and session 2 for testing. The sample images of 
one person as shown in Fig. 4 (b). We set the parameter K as 
220, 300, 240 and 320 for the four test set, respectively. The 
recognition results of each method are shown in Fig. 5.
From Fig. 5, we can see clearly that R-GRR gives better 
performance than CRC, SRC, GSRC, CESR and RSC on 
different testing subsets. Both SRC and CESR do well on 
the subsets with sunglasses but poor in the cases with 
scarves. However, GSRC achieves better result on the 
subsets with scarves and worse result on the subsets with 
sunglasses. Compared to RSC, at least 4.3% improvement is 
achieved by R-GRR for each testing set. Meanwhile, it is 
worth noticing that the recognition rate of R-GRR is 71.6%, 
63.6% higher than SRC and CESR on the testing images 
with scarves from session 2, and 44.3% higher than GSRC 
on the testing images with sunglasses from session 2.  
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GSRC
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Face Recognition with Block Occlusion 

In this experiment, we use the same experiment setting as 
in [8, 12] to test the robustness of R-GRR. Subsets 1 and 2 

of Extended Yale B are used for training and subset 3 is 
used for testing. The face images are resized to 96� 84. The 
parameter K is 200. Fig. 6 shows recognition rates curve of 
SRC, GSRC, CESR, RSC and R-GRR versus the various 
levels of occlusion (from 0 percent to 50 percent). From Fig. 
6, we can see that the proposed R-GRR overall outperforms 
SRC, GSRC, CESR and RSC. When the occlusion 
percentage is 50%, GRR achieves the best recognition rate 
91.9, compared to 65.3 for SRC, 87.4 for GSRC, 57.4 for 
CESR, and 87.6 for RSC. It’s surprising that the 
performance of CESR is very poor. Probably, it is not suit to 
deal with this block occlusion case. 

5. Conclusions 
This paper presents a general regression and 

representation (GRR) model for face recognition. In GRR, 
we learn the prior information from the training set by 
combining the leave-one-out strategy and KNN in the 
framework of generalized Tikhonov regularization. Also,
we learn the specific information from the test sample by 
using the iteratively reweighted algorithm. Actually, we 
provide two models: B-GRR and R-GRR, which combine 
the prior information and the specific information using 
different strategies. Experiments on face datasets 
demonstrated that the validity of our model and its 
performance advantages over state-of-the-art classification 
methods. 
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Figure 7: The recognition rate curves of R-GRR versus the variation of parameter K on the different experiments. (a) the images 
without occlusion for test; (b) the images without occlusion for test; (c) the images with sunglasses for test; (d) the images with scarf for 
test; (e)the images with sunglasses (sg-X) or scarf (sc-X) in session X for test; (f) the images with block occlusion (50%) for test.
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