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Abstract

An important problem in multi-stage biometric verifica-
tion is to select an appropriate reject region. A reject re-
gion says which samples to be rejected. Rejecting impos-
tor samples does not incur any cost in terms of user incon-
venience, however, erroneously rejecting genuine samples
leads to both user and administrator inconvenience. The
problem becomes severe in the applications that involve a
huge number of biometric transactions. Such applications
necessitate the reject rate of genuine samples to be con-
trolled. However, to date, no work has studied on control-
ling genuine reject rate (GRR) in multi-stage biometric ver-
ification. In this paper, we focused on controlling GRR and
to this end, developed a rejection method called symmetric
rejection method.

Our rejection method adds the following benefits to
multi-stage biometric verification: (1) it enables the sys-
tem administrator to control GRR, (2) it allows to calculate
the reject region without estimation of score distributions,
and (3) it does not use any assumption on the functional
form of score distributions. We performed experiments on
(1) two fingerprint datasets of 6000 users and (2) two face
datasets of 3000 users. For fingerprint data, we achieved
18.96 percent to 70.89 percent reduction in EER by reject-
ing 1.5 percent to 9.4 percent genuine scores and for face
data, we achieved 3.27 percent to 85.83 percent reduction in
EER by rejecting 0.3 percent to 14.4 percent genuine scores.

1. Introduction

In an 𝑛-stage biometric verification system (e.g., [11],
[10], [2], [3], [16], and [12]), if the verifier in stage 𝑖 is not
confident enough to decide whether the sample is genuine
or impostor, the sample is rejected and a new sample is sub-
mitted to the verifier in stage 𝑖 + 1 to get a more confident
decision. If all the verifiers in stages 1 through 𝑛 − 1 fail
to give a genuine or impostor decision, the verifier in stage
𝑛 (last stage) gives the final decision. The option to reject

the ‘confusing’ samples by the verifiers in stages 1 through
𝑛 − 1 is called reject option (see [5], [7], [17], [15], and
[4]), which builds the skeleton of a multi-stage biometric
verification system.

Reject option is exercised by selecting a reject region that
says which samples to be rejected. Typically, a reject region
consists of two reject thresholds 𝐴 and 𝐶 such that 𝐴 < 𝐶.
The sample is rejected if the corresponding score (in studies
[11] and [10]) or corresponding probability ratio (in studies
[3], [16], and [12]) falls inside the reject region 𝐴𝐶. Based
on the location and width of the reject region, different re-
ject regions can reject different number of scores and yield
different error rates. This phenomenon poses the challenge–
how to select an appropriate reject region?

A reject region rejects both genuine and impostor scores.
Rejecting impostor scores incurs no cost in terms of user
inconvenience. However, erroneously rejecting genuine
scores leads to both user and administrator inconvenience.
The problem becomes severe in the applications that involve
a huge number of users or biometric transactions. In such
applications, selecting an inappropriate reject region (that
yields huge genuine score rejection) can render the verifier
impractical. Therefore, it is necessary to control the reject
rate of genuine scores in each stage of multi-stage biometric
verification.

However, to the best of our knowledge, no work has stud-
ied on controlling genuine (score) reject rate in multi-stage
biometric verification. Rejection methods proposed in [11],
[10], and [2] use the whole confusion region as the reject re-
gion. Using the whole confusion region as the reject region
has two major drawbacks: 1) it rejects a large number of
genuine scores, which causes severe user and administrator
inconvenience and 2) by rejecting all scores inside the con-
fusion region, it treats every score inside the confusion re-
gion in the same manner, however, the probability of a score
being genuine or impostor is not same in every part of the
confusion region. Rejection methods proposed in [3] and
[16] calculate the reject region based on sequential proba-
bility ratio test (see [18]) and rejection method in [12] cal-
culates the reject region based on minimum log-likelihood
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Figure 1. Illustration of symmetric rejection. 𝐴𝐶 is the symmetric
reject region, 𝑍𝐸2 is the genuine score region, 𝐸1𝑂 is the im-
postor score region, 𝐸1𝐸2 is the confusion region, and 𝐵 is the
threshold where EER occurs before exercising reject option.

ratio. Rejection methods in [3], [16], and [12] have the fol-
lowing two drawbacks: 1) they assume that biometric sam-
ples are independent, which may not be true in practice (see
[13] and [6]) and 2) they calculate reject region by estimat-
ing score distributions, which is an expensive and difficult
task (see [8] and [14]).

In this paper, we focused on controlling the genuine re-
ject rate (GRR) in multi-stage biometric verification. To this
end, we developed a rejection method, referred to as “Sym-
metric Rejection Method", to determine the reject region.
Symmetric rejection method enables the system adminis-
trator to 1) control the genuine reject rate at each stage and
2) determine the reject region without estimation of genuine
and impostor score densities.

We evaluated the performance of symmetric rejection
method by experimenting on two biometric modalities: fin-
gerprint and face, where each modality contains two differ-
ent training sets and testing sets. In experiments, symmetric
rejection method shows significant promise in reducing er-
ror rates.

Rest of the paper is organized as follows. In Section 2,
we describe the proposed symmetric rejection method. In
Section 3, we describe experiments and corresponding re-
sults. Finally, we conclude in Section 4 giving our future
research direction.

2. Symmetric Rejection Method

Let 𝑋 be the genuine score set and 𝑌 be the impostor
score set generated by the verifier 𝑉 for user 𝑈 . Let 𝑓𝐺(𝑥)
and 𝑓𝐼(𝑦) be the distributions estimated from scores in 𝑋
and 𝑌 respectively. Without loss of generality, we assume
that 1) verifier 𝑉 outputs dissimilarity scores (and hence
genuine scores are typically expected to have smaller val-
ues than impostor scores) and 2) the scores lie in the inter-
val [0, 1]. Fig. 1 illustrates 𝑓𝐺(𝑥) and 𝑓𝐼(𝑦) on the score-
line [0, 1]. In the scoreline, 𝑍𝐸2 is the genuine score region,
𝐸1𝑂 is the impostor score region,𝐸1𝐸2 is the confusion re-
gion where 𝑓𝐺(𝑥) and 𝑓𝐼(𝑦) overlap, and𝐵 is the threshold
where EER occurs before exercising reject option.

Below, we introduce some notation to describe the sym-

metric rejection method. Let 𝑃𝑄 be a region in the score-
line. Then

∙ 𝑁𝐺,𝑃𝑄 is the number of genuine scores in 𝑃𝑄.

∙ 𝑁𝐼,𝑃𝑄 is the number of impostor scores in 𝑃𝑄.

∙ 𝑁𝐺,𝑇𝑜𝑡𝑎𝑙 is the total number of genuine scores.

∙ 𝑁𝐼,𝑇𝑜𝑡𝑎𝑙 is the total number of impostor scores.

∙ 𝑃𝐺,𝑃𝑄 is the proportion of genuine scores in 𝑃𝑄, cal-
culated by 𝑁𝐺,𝑃𝑄

𝑁𝐺,𝑇𝑜𝑡𝑎𝑙
.

∙ 𝑃𝐼,𝑃𝑄 is the proportion of impostor scores in 𝑃𝑄, cal-
culated by 𝑁𝐼,𝑃𝑄

𝑁𝐼,𝑇𝑜𝑡𝑎𝑙
.

Symmetric rejection method: Select a reject region 𝐴𝐶
(see Fig. 1) in the scoreline [0, 1] such that–

𝑃𝐺,𝐵𝐶 = 𝑃𝐼,𝐴𝐵 (1)

where 𝐴 ∈ [𝐸1, 𝐵) and 𝐶 ∈ (𝐵,𝐸2]. That is, the propor-
tion of genuine scores in 𝐵𝐶 is equal to the proportion of
impostor scores in 𝐴𝐵. 𝐴𝐶 is called the symmetric reject
region. Here 𝐵 is the threshold where EER occurs before
exercising reject option and 𝐸1𝐸2 is the confusion region.

Below, we introduce some symbols corresponding to
symmetric rejection:

𝛼𝐺 = 𝑃𝐺,𝐵𝐶 𝛽𝐺 = 𝑃𝐺,𝐴𝐵 𝜆𝐺 = 𝑃𝐺,𝐵𝐸2

𝛼𝐼 = 𝑃𝐼,𝐴𝐵 𝛽𝐼 = 𝑃𝐼,𝐵𝐶 𝜆𝐼 = 𝑃𝐼,𝐸1𝐵

Then, the probability of a genuine score being rejected,
genuine reject rate (GRR) can be computed as follows:

GRR = 𝑃𝐺,𝐴𝐶 = 𝛼𝐺 + 𝛽𝐺. (2)

Note that GRR is a function of 𝛼𝐺. When the value of
𝛼𝐺 is zero, 𝛽𝐺 is also zero. Therefore, no scores are re-
jected and GRR is zero (which is minimum). When the
value of 𝛼𝐺 is equal to 𝜆𝐺, 𝛽𝐺 is equal to 𝑃𝐺,𝐸1𝐵 . There-
fore, all scores inside the confusion region are rejected and
GRR is equal to 𝜆𝐺+𝑃𝐺,𝐸1𝐵 (which is maximum). Hence
we can control GRR by setting the value of 𝛼𝐺. Algorithm
1 shows how to calculate symmetric rejection region 𝐴𝐶
for a given 𝛼𝐺 that gives GRR equal to 𝛼𝐺 + 𝛽𝐺.

In Algorithm 1, note that symmetric reject region 𝐴𝐶 is
calculated directly from genuine and impostor scores (see
steps 14-15), without estimating score densities.

Note–In algorithm 1, we use a function
𝑓𝑢𝑛𝑐𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝐸𝐸𝑅(𝐺, 𝐼) which calculates the EER
before exercising reject option given array of genuine
scores 𝐺 and array of impostor scores 𝐼 . Because the
calculation of EER before exercising reject option is trivial,
we did not give details of this function.
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Algorithm 1 Algorithm to find a symmetric reject region.

Input: 𝐺[1 :𝑀 ]: array of 𝑀 genuine scores,
𝐼[1 : 𝑁 ]: array of 𝑁 impostor scores, and
𝛼𝐺: proportion of genuine scores that can be
erroneously rejected by region 𝐵𝐶 in Fig. 1.

Output: Symmetric reject region 𝐴𝐶

1: 𝐸𝐸𝑅𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 ← 𝑓𝑢𝑛𝑐𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝐸𝐸𝑅(𝐺, 𝐼);
/*𝑓𝑢𝑛𝑐𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝐸𝐸𝑅(𝐺, 𝐼) is a function which
calculates the EER before exercising reject option.
Variable 𝐸𝐸𝑅𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 stores the calculated EER.*/

2: 𝜆𝐺 ← 𝐸𝐸𝑅𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙;/*From Fig 1, 𝜆𝐺 = 𝑃𝐺,𝐵𝐸2
,

which is EER before exercising reject option.*/
3: 𝜆𝐼 ← 𝐸𝐸𝑅𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙;/*From Fig 1, 𝜆𝐼 = 𝑃𝐼,𝐸1𝐵 ,

which is EER before exercising reject option.*/
4: 𝐺𝑠𝑜𝑟𝑡𝑒𝑑[1 :𝑀 ]← sorted 𝐺[1 :𝑀 ];
5: 𝐼𝑠𝑜𝑟𝑡𝑒𝑑[1 : 𝑁 ]← sorted 𝐼[1 : 𝑁 ];
6: 𝐺𝑒𝑛𝐵𝐸2

← (𝑀 ∗ 𝜆𝐺); /*Calculate the number of gen-
uine scores in 𝐵𝐸2.*/

7: 𝐼𝑚𝑝𝐸1𝐵 ← (𝑁 ∗ 𝜆𝐺); /*Calculate the number of im-
postor scores in 𝐸1𝐵.*/

8: 𝐺𝑒𝑛𝐼𝑛𝑑𝑒𝑥𝐶𝑢𝑡 = 𝑀 − 𝐺𝑒𝑛𝐵𝐸2
; /* Genuine scores

stored in 𝐺𝑠𝑜𝑟𝑡𝑒𝑑[1 : 𝐺𝑒𝑛𝐼𝑛𝑑𝑒𝑥𝐶𝑢𝑡] are declared as
genuine before exercising reject option.*/

9: 𝐼𝑚𝑝𝐼𝑛𝑑𝑒𝑥𝐶𝑢𝑡 = 𝐼𝑚𝑝𝐸1𝐵 + 1; /* Impostor scores
stored in 𝐼𝑠𝑜𝑟𝑡𝑒𝑑[𝐼𝑚𝑝𝐼𝑛𝑑𝑒𝑥𝐶𝑢𝑡 : 𝑁 ] are declared as
impostor before exercising reject option.*/

10: 𝐺𝑒𝑛𝐵𝐶 =𝑀 ∗𝛼𝐺; /*Calculate the number of genuine
scores in 𝐵𝐶.*/

11: 𝐼𝑚𝑝𝐴𝐵 = 𝑁 ∗𝛼𝐺; /*Calculate the number of impostor
scores in 𝐴𝐵.*/

12: 𝐼𝑛𝑑𝑒𝑥𝑅𝑖𝑔ℎ𝑡 = 𝐺𝑒𝑛𝐼𝑛𝑑𝑒𝑥𝐶𝑢𝑡 + 𝐺𝑒𝑛𝐵𝐶 ; /*Variable
𝐼𝑛𝑑𝑒𝑥𝑅𝑖𝑔ℎ𝑡 stores the index of the right threshold 𝐶
in 𝐺𝑠𝑜𝑟𝑡𝑒𝑑.*/

13: 𝐼𝑛𝑑𝑒𝑥𝐿𝑒𝑓𝑡 = 𝐼𝑚𝑝𝐼𝑛𝑑𝑒𝑥𝐶𝑢𝑡 − 𝐼𝑚𝑝𝐴𝐵; /*Variable
𝐼𝑛𝑑𝑒𝑥𝐿𝑒𝑓𝑡 stores the index of the left threshold 𝐴 in
𝐼𝑠𝑜𝑟𝑡𝑒𝑑.*/

14: 𝐴← 𝐼𝑠𝑜𝑟𝑡𝑒𝑑[𝐼𝑛𝑑𝑒𝑥𝐿𝑒𝑓𝑡]; /*Get the value of 𝐴.*/
15: 𝐶 ← 𝐺𝑠𝑜𝑟𝑡𝑒𝑑[𝐼𝑛𝑑𝑒𝑥𝑅𝑖𝑔ℎ𝑡]; /*Get the value of 𝐶.*/
16: return AC;

3. Performance Evaluation with Fingerprint
and Face Biometrics

We evaluated the performance of symmetric rejection
method on a public database, namely, NIST-BSSR1 [1],
[9]. NIST-BSSR1 database consists of three datasets– 1)
NIST-Fingerprint-Face, 2) NIST-Fingerprint, and 3) NIST-
Face. We experimented on NIST-Fingerprint and NIST-
Face datasets. NIST-Fingerprint is comprised of fingerprint
scores from one system run on images of 6000 individu-
als. For each individual, the set contains one score from

the comparison of two left index fingerprints and another
from two right index fingerprints. NIST-Face is comprised
of scores from two face systems (C and G) run on images
from 3000 individuals. For each individual, the set contains
one score from the comparison of face X with a later face,
Y, and a score from face X and another later face, Z. The
two datasets used in our study are summarized in Table 1.

We did experiment separately for left index fingerprints,
right index fingerprints, face scores from matcher C, and
face scores from matcher G. Recall, we assume that the ver-
ifier or matcher outputs dissimilarity scores which lie in the
interval [0, 1]. However, the scores in NIST-Fingerprint and
NIST-Face datasets are similarity scores and lie in different
interval. Hence, to keep consistency in the experiments, we
converted the similarity scores into dissimilarity scores and
normalized the scores so that they lie in the interval [0, 1].
We used min-max normalization in our experiments.

For each experiment, scores from the first half users were
used in training and scores from the rest half users were
used in testing. We experimented with 20 different symmet-
ric regions (𝐴𝐶s), obtained from the training set of genuine
and impostor scores. We applied each symmetric reject re-
gion 𝐴𝐶 on the testing set and calculated corresponding
equal error rates (EERs) and genuine reject rates (GRRs).

How we selected 20𝐴𝐶s: We selected 20 different sym-
metric regions (𝐴𝐶s) by varying the value of 𝛼𝐺, from zero
to 𝜆𝐺. Recall that when the value of 𝛼𝐺 is zero, no scores
are rejected, which is the minimum rejection, and when the
value of 𝛼𝐺 is equal to 𝜆𝐺, all scores in the confusion re-
gion are rejected, which is the maximum rejection. We set
the initial value of 𝛼𝐺 to zero. Then we increment the value
𝛼𝐺 20 times, each time by 𝜆𝐺

20 .
Performance metrics: We evaluated the symmetric re-

jection method using EER versus GRR trade-off curves that
plot GRRs on the 𝑥-axis and corresponding EERs on the
𝑦-axis. Moreover, we plotted percentage reduction in EER
versus GRR curves to show the performance improvement
in terms of reduction in equal error rate.

For comparative study, besides applying each symmetric
reject region 𝐴𝐶 on the testing set, we apply each symmet-
ric reject region 𝐴𝐶 on the training set. We consider the
EER-GRR trade-off curve obtained from the training set as
the expected trade-off curve and see how much the EER-
GRR curve obtained from the testing set deviate from the
expected one. Low deviation indicates high promise of the
symmetric rejection method in the tested biometric modal-
ity.

3.1. Results of Fingerprint Dataset

Fig. 2 and Fig. 3 show the distributions of genuine and
impostor scores for left index finger and right index finger
respectively. Distributions in Fig. 2a and Fig. 3a represent
training sets and distributions in Fig. 2b and Fig. 3b repre-
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NIST-Fingerprint NIST-FACE
Left Index Right Index Matcher C Matcher G

No. of users 6000 6000 3000 3000
Total genuine scores 6000*1 6000*1 3000*2 3000*2
Total impostor scores 6000*5999 6000*5999 3000*5998 3000*5998

Table 1. Summary of NIST-Fingerprint and NIST-Face datasets.
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Figure 2. Distribution of genuine and impostor scores for left index
finger. (a) Distribution for training dataset. (b) Distribution for
testing dataset.
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Figure 3. Distribution of genuine and impostor scores for right in-
dex finger. (a) Distribution for training dataset. (b) Distribution
for testing dataset.
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Figure 4. EER-GRR trade-off curve obtained by symmetric rejec-
tion method on NIST-Fingerprint dataset.
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Figure 5. Percentage reduction in EER vs. GRR curve obtained by
symmetric rejection method on NIST-Fingerprint dataset.

sent testing sets. We observe that 1) for both left and right
index fingers, distributions of training and testing sets are

almost same, which indicates that the training sets are good
representatives of the testing sets and 2) proportion of gen-
uine and impostor scores in the confusion regions for left
index finger is higher than that for right index finger.

Fig. 4 shows the EER-GRR trade-off curves, when sym-
metric rejection was applied on NIST-Fingerprint dataset.
Fig. 4a shows the results for left index finger and Fig.
4b shows the results for right index finger. In each figure
we plotted two curves: one curve is generated from test-
ing score distribution and the other curve is generated from
training score distribution. Our observations from Fig. 4
are listed below.
∙ Observation 1: EER-GRR trade-off curves obtained

from training data and testing data are almost same for
both left and right index fingers. These results reflect
that the training data are representatives of test data.

∙ Observation 2: EER decreases monotonically with the
increase of GRR (except for GRR value 0.11 in right
index finger dataset). For testing data of left index fin-
ger, EER decreases from 0.075 to 0.017, when GRR
increases from 0 to 0.15. For testing data of right in-
dex finger, EER decreases from 0.052 to 0.0156, when
GRR increases from 0 to 0.09.

∙ Observation 3: The last stepsize of GRR is very high
in all cases (for example, in case of left index finger,
the last step of GRR is from 0.15 to 0.45). This is be-
cause of how we chose the symmetric reject regions
(𝐴𝐶s). Recall, we selected 20 different (𝐴𝐶s), by
varying the value of 𝛼𝐺, from zero to 𝜆𝐺. We in-
cremented 𝛼𝐺 by equal step size of 𝜆𝐺

20 . However,
because the tail of the impostor score distribution is
monotonically increasing, in each step, the increment
of 𝛽𝐺 is higher than the previous step. As a conse-
quence, in each step, the increment of GRR (𝛼𝐺+𝛽𝐺)
is higher than the previous step. Therefore, in the last
step the increment of GRR is very high.

Performance improvement: Fig. 5 shows that the per-
centage reduction in EER achieved with symmetric rejec-
tion in comparison to the EER without reject option. For left
index finger, symmetric rejection achieved from 19.51 per-
cent to 78.92 percent reduction in EER, when GRR varies
from 0.0138 to 0.149 (i.e., with 1.38 percent to 14.9 per-
cent genuine score rejection). For right index finger, sym-
metric rejection achieved from 18.96 percent to 70.89 per-
cent reduction in EER, when GRR varies from 0.015 to
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Figure 6. Distribution of genuine and impostor scores for face
matcher C. (a) Distribution for training dataset. (b) Distribution
for testing dataset.
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Figure 7. Distribution of genuine and impostor scores for face
matcher G. (a) Distribution for training dataset. (b) Distribution
for testing dataset.

0 0.050.10.150.20.250.30.350.40.450.50.55
0

0.01

0.02

0.03

0.04

0.05

0.06

Genuine Reject Rate

E
q

u
al

 E
rr

o
r 

R
at

e

 

 

Test
Train

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

Genuine Reject Rate

E
q

u
al

 E
rr

o
r 

R
at

e

 

 

Test
Train

(a) Matcher C (b) Matcher G

Figure 8. EER-GRR trade-off curve obtained by symmetric rejec-
tion method on NIST-Face dataset.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
0

10
20
30
40
50
60
70
80
90

100

Genuine Reject Rate

%
 R

ed
u

ct
io

n
 in

 E
E

R

 

 

Test
Train

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10
20
30
40
50
60
70
80
90

100

Genuine Reject Rate

%
 R

ed
u

ct
io

n
 in

 E
E

R

 

 

Test
Train

(a) Matcher C (b) Matcher G

Figure 9. Percentage reduction in EER vs. GRR curve obtained by
symmetric rejection method on NIST-Face dataset.

0.094 (i.e., with 1.5 percent to 9.4 percent genuine score
rejection). These results indicate that symmetric rejection
is promising because percentage reduction in EER is very
high where the corresponding percentage genuine score re-
jection is very low.

3.2. Results of Face Dataset

Fig. 6 and Fig. 7 show the distributions of genuine
and impostor scores obtained by face matcher C and face
matcher G. Distributions in Fig. 6a and Fig. 7a represent

training sets and distributions in Fig. 6b and Fig. 7b rep-
resent testing sets. We observe that 1) for both matchers C
and G, distributions of training and testing sets are almost
same, which indicates that the training sets are good repre-
sentatives of the testing sets, 2) proportion of genuine and
impostor scores in the confusion regions for matcher C is
less than that for matcher G, and 3) both genuine and im-
postor score distributions for matcher G are multi-modal.

Fig. 8 shows the EER-GRR trade-off curves, when sym-
metric rejection was applied on NIST-Face dataset. Fig. 8a
shows the results for matcher C and Fig. 8b shows the re-
sults for matcher G. In each figure we plotted two curves:
one curve is generated from testing score distribution and
the other curve is generated from training score distribution.
Our observations from Fig. 8 are listed below.
∙ Observation 1: EER-GRR trade-off curves obtained

from training data and testing data are almost same for
both matchers C and G. These results reflect that the
training data are representatives of the testing data.

∙ Observation 2: EER decreases monotonically with
the increase of GRR (except for GRR value 0.16 in
matcher G dataset). For testing data obtained by
matcher C, EER decreases from 0.055 to 0.007, when
GRR increases from 0 to 0.144. For testing data ob-
tained by matcher G, EER decreases from 0.067 to
0.018, when GRR increases from 0 to 0.127.

∙ Observation 3: The last stepsize of GRR is very high.
The reason is same as in fingerprint.

Performance improvement: Fig. 9 shows that the per-
centage reduction in EER achieved with symmetric rejec-
tion in comparison to the EER without reject option. For
matcher C, symmetric rejection achieved from 3.27 percent
to 85.83 percent reduction in EER, when GRR varies from
0.003 to 0.144 (i.e., with 0.3 percent to 14.4 percent gen-
uine score rejection). For matcher G, symmetric rejection
achieved from 2.52 percent to 73.04 percent reduction in
EER, when GRR varies from 0.002 to 0.127 (i.e., with 0.2
percent to 12.7 percent genuine score rejection). Similar to
fingerprint, these results indicate that symmetric rejection is
promising in face biometric modality.

4. Conclusion

In this paper, we developed a rejection method, called
symmetric rejection method, which rejects equal proportion
of genuine scores and impostor scores. Assuming dissim-
ilarity scores, symmetric rejection method takes the EER-
threshold (the threshold where equal error rate occurs be-
fore exercising reject option) as the center, and rejects a
certain proportion of genuine scores from the right side of
the EER-threshold, and at the same time, rejects the same
proportion of impostor scores from the left side of the EER-
threshold (and vice versa for similarity scores).
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The symmetric rejection method advances the state-of-
art as follows: 1) it enables to control the proportion of gen-
uine scores to be rejected and 2) it enables to calculate the
reject region directly from scores (see Algorithm 1, steps
14-15), without estimation of score distributions. More-
over, because symmetric rejection method does not use any
assumption on the score distributions, it is applicable to all
kinds of biometric modalities. As a consequence, in case
of multi-modal multi-stage biometric verification systems,
where different stages use different biometric modalities,
symmetric rejection method appears to be more appropri-
ate than conventional rejection methods, which depend on
particular data-distributions.

We evaluated the performance of symmetric rejection
method by experimenting on two biometric modalities: fin-
gerprint and face, where fingerprint dataset contains scores
from two different fingers: left index finger and right in-
dex finger and face dataset contains scores generated by
two different matchers: C and G. We used a public-domain
database, namely, NIST-BSSR1 [1] to create the training
and testing sets. Experimental results show that for all test-
ing sets, the symmetric rejection method performs very well
in terms of EER-GRR trade-off curves. For fingerprint data,
we achieved 18.96 percent to 70.89 percent reduction in
EER by rejecting only 1.5 percent to 9.4 percent genuine
scores. For face data, we achieved 3.27 percent to 85.83
percent reduction in EER by rejecting only 0.3 percent to
14.4 percent genuine scores.

As future work, we will study how symmetric rejection
method works in other biometric modalities. Further, we
will study its usability in non-biometric data, for example,
how it performs in anomaly detection problem. We are also
interested, in our future work, to study the optimality of
symmetric rejection method.
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