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Abstract

Symmetry is a crucial dimension which aids the visual
system, human as well as artificial, to organize its envi-
ronment and to recognize forms and objects. In humans,
detection of symmetry, especially bilateral and rotational,
is considered to be a primary factor for discovering and
interacting with the surrounding environment. We report
an enhanced version of the Kondra and Petrosino symme-
try detection algorithm, already reported at the ”Symmetry
Detection from Real World Images” competition at IEEE
CVPR2011[1]. The paper includes experimental results
achieved by the reflection and rotation symmetry detection
algorithm on the datasets made available for the 2013 Sym-
metry Detection from Real World Images competition.

1. Introduction

From a Gestalt point of view, the law of symmetry

stresses that we tend to perceive objects as symmetrical

structures around a center, and it assigns a relevant role in

the attentive mechanism, both in visual and auditory sys-

tems. In particular, by facilitating perceptual grouping,

as well as figure/ground organization, symmetry is one of

the most important factors allowing perceptual structures

to emerge. Indeed, when we perceive disconnected but

alike elements, that are symmetrical to each other, we tend

to integrate them in a coherent percept. Moreover, in fig-

ure/ground segregation process, symmetrical images gener-

ally emerge as ”figure”, rather than as ”ground”.

Symmetry detection is also highly relevant in shape

recognition. Indeed, the description of a shape may be dif-

ferent when it is embedded in a context with horizontal or

vertical symmetry [2]. Besides, in tasks requiring the com-

pletion of partially occluded visual stimuli, subjects system-

atically tend to produce symmetrical figures [3]. The con-

cept of symmetry is not univocal: various kinds of proper-

ties of an image are defined as symmetry [4, 5].

There are two different approaches in literature to de-

tect symmetries: global region-based methods [6] and local

feature-based algorithms [7]. Global region-based meth-

ods can characterize all potential symmetries in the image,

whilst local feature-based algorithms have the advantage of

being more efficient, but less robust. The algorithm we are

presenting is a global region-based method because it uses

the information deriving from all the pixels in the image.

In Section 2.1 we describe the rationale behind our sym-

metry detection algorithm, as reported in [1], while in Sec-

tions 3 and 4 we provide a hands-on analysis of experi-

mental results about the reflection and rotational symme-

tries over the Symmetry Detection from Real World Images

competition datasets respectively. Conclusions are drawn in

Section 5.

2. Multi-scale Symmetry Detection

The property of being symmetrical finds correspondence

in size, shape, and relative position of parts on opposite

sides of a dividing line or median plane or about a center

or axis. In particular, we deal with bilateral symmetry. We

specifically take advantage of a measure obtained by us-

ing correlation with the image flipped around a particular

axis. As demonstrated in [8], in any direction, the optimal

symmetry axis corresponds to the maximal correlation of a

pattern with its symmetric version.

The symmetry detection algorithm operates in two steps.

Firstly, correlation measures along all discrete directions are

computed and then symmetrical regions are identified look-

ing for matches in the directions characterized by maximun

correlations. The algorithm can detect both reflection and

rotation symmetries.

We extended the Kondra and Petrosino algorithm re-

ported at the First Symmetry Detection Competition (CVPR

2011) to cope with symmetries at different scale values.

2.1. Estimation of Correlation Measurements

This step is common to both reflection and rotation algo-

rithms. It requires a whitened (removing its mean) image I
as input, that can either be in grayscale or RGB.
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Measures of correlation are calculated extracting patches

from the image, centered at locations sampled at regularly

spaced SIFT locations. Let P be the set of np extracted

patches. We set the grid step s = 10, while the patch side S
assumes different values in the range [a, b]. At each scale in

the range [a, b], plane rotations of the image are computed

with directions in the set D = {di : i = 1, . . . , nd}.
A correlation measure cj

i for each patch pj
i , correspond-

ing to a single direction di, is computed between the origi-

nal patch pj
i and its reflected version rj

i , as follows:

cj
i =

∑
x,y

((
pj

i (x, y) · rj
i (x, y)

)
/
∑
x,y

pj
i (x, y)2

)
(1)

For color images, the patch is reflected with respect to its

three bands before computing the correlation. Only the di-

rection corresponding to the maximum correlation value is

kept out for each patch and only the patches with correla-

tion measures greater than a threshold T are considered to

be symmetric.

For an optimal threshold value T , we experimentally de-

rived an approximate formula by providing a scale value σ:

T = 0.7− (0.005 ∗ σ) (2)

For instance, T is in the set {0.6, 0.5} for scale values σ in

{20, 40}, respectively.

Finally, we obtain a set of symmetric patches PS ={
pj

i : i = 1, . . . , nd, j = 1, . . . , nps

}
characterized by the

parameters:

• position
(
xj

i , y
j
i

)
of its center,

• maximum correlation value cj
i ,

• direction corresponding to the maximum value of cor-

relation di, and

• scale σj at which the maximum correlation is catched.

Fig. 1 shows the flow chart representing the process de-

scribed in this section, repeated for each value of σ in the

scale range R = [a, b].

2.2. Reflection Symmetry Detection

Reflection Symmetries (RfS) are detected for patches

with maximum correlation in the same direction d. For

each discrete direction in D = {di : i = 1, . . . , nd}, we se-

lected the number of patches ndi
such that ndi

≤ nps and

each patch gets the maximum correlation in the direction di.

Then, for each direction, we built a binary matrix B having

the same size of image I . If there is a patch pj ∈ PS cen-

tered at (x, y) then B (x, y) = 1. The connected regions

CR = {CRi : i = 1, . . . , nCR}, extracted from the binary

matrix B, represent the reflection symmetric areas of the

image at a specific direction. Finally, for each reflection

symmetric area, we compute:

Figure 1. Flow Chart of Estimation of Correlation Measurements

• centroid,

• cirection, and

• endpoints of symmetry axis.

2.3. Rotation Symmetry Detection

In the case of Rotation Symmetries (RtS), the binary ma-

trix B is not built for each discrete direction. Rather, we de-

rive only one binary matrix B for all the discrete directions.

So, if there is a patch pj ∈ PS centered in (x, y), indepen-

dently from their associated direction then B (x, y) = 1.

Applying to B the procedure explained in Section 2.2, rota-

tion symmetric areas are detected. For each rotational sym-

metric area, we extract some parameters that characterize

rotational symmetry:

• center,

• major axis,

• minor axis, and

• orientation.

Specifically, the center of rotational symmetry is the cen-

troid of the rotational symmetic area.

2.4. Symmetry in Textures

The algorithm turns out to be efficient even in detect-

ing symmetries in textures [9]. In order to use symmetry to

represent texture, it is necessary to validate that the symme-

try distribution for an image is rotation invariant. To show

this property, the symmetry distribution of some images is

compared with their rotated versions, i.e., the symmetry is

obtained as the maximum over eight different patch rota-

tions. Figure 2 shows the distribution of symmetry and the

corresponding angle at which maximum symmetry was de-
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Figure 2. Single scale symmetry distributions for some textures

tected. The angle distribution is further sorted to make it

rotation invariant.

First the image was normalized in the range [0, 1] and

whitened. Each image pixel can be characterized with var-

ious parameters extracted from different patch sizes (e.g.,

12× 12, 24× 24, 36× 36):

1. multiscale symmetry for the patch at three scales;

2. maximum direction for the symmetry along each of the

three scales;

3. mean intensity of the patch for each scale;

4. entropy of the patch for each scale.

The above features are shown to be effective in classi-

fying a uniform texture versus a non-uniform texture [9],

mainly if used in conjunction with a texton-based feature

[10].

3. Experimental Results - Reflection Symmetry
The algorithm requires as input a range of the scale val-

ues R and a rank k. It returns n axes of symmetry. We

consider, as positive predictions, the k axis with maximum

correlation value, while as negative predictions, the n − k
axes with minimum correlation values. In this section, we

experimentally show that the precision and true positive re-

sults are related to the value of k and scale range R. Firstly,

we tested our algorithm on the training datasets, in order to

detect the best scale range R and value of rank k. Lastly,

these parameters were used as input to detect the symmetry

axes on testing datasets.

Fig. 5 shows execution times of our algorithm in differ-

ent cases achieved on 2 GHz Intel Core i7. The times are

Figure 5. Symmetry Detection Execution Times

Figure 6. Comparison of Precision for different values of h on

single training dataset.

Figure 7. Comparison of Precision for different values of h on

mutiple training datasets.

True Positive 27

False Positive 35

Table 1. Results on the Single Training Dataset for h = 4 and

k = 3.

high because we did not work to reduce the number of clock

cycles.
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Figure 3. Results on Single Training Dataset.

Figure 4. Results on Multiple Training Dataset.

True Positive 25

False Positive 22

True Negative 14

False Negative 2

Table 2. Results on Multiple Training Datasets for h = 6 and

k = 4.

3.1. Single Training Dataset

After choosing R as the range [a, b], the algorithm con-

siders the scale values in the subranges Rh [a : h : b] : h ∈
[c, d]. We can select h > 1 to reduce the execution time

and improve the accuracy of the results. The subrange Rh

includes the values in range R with offset h. For instance, if

a = 10, b = 20, c = 1, d = 10 and h = 2, the subrange R2

includes the set of values {10, 12, . . . , 18, 20}. We achieved

greater precision increasing h for all values of rank k, as

depicted in the Precision Curve shown in Figure 12. Fi-

nally, we have chosen those values of rank k for which the

true positives are maximal and the precision is greater than

a certain threshold s1. We achieved the results in Table 1

with k = 3 and h = 4. The algorithm detected 27 over 35
groundtruth reflection axes on this dataset. Similar results

are shown in Figure 11.

3.2. Multiple Training Dataset

When there are more symmetries in each image, the

problem becomes more difficult. In this case, it is impor-

Figure 8. Comparisons of True-Positive with different values of h
on the Single Training Dataset.

tant to establish the value of rank k and the subrange Rh,

in order to decrease the algorithm execution time and to

identify a larger number of groundtruth reflection axes. We

choose them following the procedure explained in the pre-

vious section. Looking at the graphs in Figures 13 and 9,

it turns out that the best value of h is 6 and that of k is 4.

We achieved the results shown in Table 2 for the Multiple

Training dataset with k = 4 and h = 6. The algorithm de-

tected 25 over 39 groundtruth reflection axis. Table 2 shows

the results with k = 3 and h = 4. The results are shown in

figure 4.
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Figure 10. Results on the Single Training Dataset.

Figure 11. Results on Multiple Training Datasets.

Figure 9. Comparisons of True-Positive with different values of h
on the Multiple Training Datasets.

4. Experimental Results - Rotational Symme-
try

The algorithm requires in input a range R of scale values

and detects n rotational symmetries. It was found that:

1. Small-scale symmetries are characterized by high cor-

relation values, while large-scale symmetries are char-

acterized by low values.

2. True-Negative results, corresponding to uniform back-

ground areas, get higher correlation values.

If we consider as true positives the k rotational symmetries

having maximum correlation values, the largescale symme-

tries would be discarded. So, we divided the interval R
into m equal parts Ri, i = 1, . . . , m, and we selected, for

each subinterval Ri, the ki rotational symmetries having

maximum correlation value. True-Negative results, corre-

sponding to uniform areas of background, can be discarded

through a preliminary training phase. The aim is to search

in each subinterval Ri a threshold for correlation ti. The ro-

tational symmetries detected on subinterval ki having a cor-

relation value exceeding the threshold ti are discarded. We

have chosen for each subinterval ki the value of ti that max-

imizes the number of rotational symmetries that we con-

sidered correct. From examining the experiments done on

the datasets made available for the competition at the IEEE

CVPR2013, we found that the algorithm not only works for

exact circle but can also work for finding skewed symmet-

ric objects in real word images. We reported the results on

single and multiple training dataset in Tables 4 and 3, re-

spectively. Specifically, in the case of multiple centers, we
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True Positive 8

False Positive 30

Table 3. Rotation Symmetries Results on Single Training Dataset.

True Positive 18

False Positive 25

Table 4. Rotation Symmetries Results on Multiple Training

Datasets.

Figure 12. Comparison of Precision for different values of h on

Single Training Dataset.

Figure 13. Comparison of Precision for different values of h on

Mutiple Training Datasets.

obtained a considerable number of groundtruth rotational

symmetries 18 over 43, whilst in the case of single-center,

the number of true-positive results decreases 8 over 38.

Figures 12 and 13 show respectively the comparisons in

terms of Precision for different values of h on single and

multiple training datasets, indicating the robustness against

scale values.

5. Conclusions
We have reported the validation of our multiscale algo-

rithm to detect reflection and rotation symmetry axes on the

datasets made available for the Symmetry Detection from
Real World Images competition at the IEEE CVPR2013. As

shown, the algorithm is able to efficiently detect reflection

symmetries in natural and artificial images; as experimen-

tally tested, the algorithm accuracy is related to the value

k of the rank and the range R of scale values. Mainly,

we showed the accuracy of the improved results, appropri-

ately selecting the range R and rank k through a preliminary

training phase.

References
[1] S. Kashyap J. Liu I. Rauschert, K. Brocklehurst and Y. Liu,

“First symmetry detection competition: Summary and re-

sults”, CSE Dept Technical Report No. CSE11-012.

[2] S.R. Palmer, “The role of symmetry in shape perception”,

Acta Psychologica, vol. 59, pp. 67–90, 1985.

[3] R. van Lier and J. S. Wagemans, “From images to objects:

Global and local completion of self-occluded parts”, Journal
of Experimental Psychology: Human Perception and Perfor-
mance, vol. 25, pp. 1721–1741, 1999.

[4] H. Zabrodsky, “Simmetry - a review”, Tech. Rep. 90–16, CS
Dept., The Hebrew University of Jerusalem, vol. 25, 1990.

[5] P. Wenderoth, “The salience of vertical symmetry”, Percep-
tion, vol. 23, pp. 221–236, 1994.

[6] R. T. Collins S. Lee and Y. Liu, “Rotation symmetry group

detection via frequency analysis of frieze-expansions”, Com-
puter Vision and Pattern Recognition, pp. 1–8, 2008.

[7] L. Cornelius, “Detecting rotational symmetry under affine

projection”, International Conference on Pattern Recogni-
tion., pp. 292–295, 2006.
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