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Abstract

Action recognition is one of the major challenges of com-
puter vision. Several approaches have been proposed using
different descriptors and multi-class models. In this paper,
we focus on binary ranking models for the action recogni-
tion problem and address the action recognition as a rank-
ing problem. A binary ranking model is trained for each
action and used to recognize the test videos for that ac-
tion. Binary ranking models are constructed using dense
SIFT (DSIFT) descriptors and histogram of oriented gradi-
ents / histogram of optical flows (HOG/HOF) descriptors.
We show that using ranking models, it is possible to obtain
higher recognition accuracies from a baseline that is based
on multi-class models on the very recent and challenging
benchmark datasets; Human Motion Database (HMDB)
and The Action Similarity Labeling (ASLAN).

1. Introduction

Action recognition is the problem of classifying unla-
beled videos into a predefined set of actions. For each ac-
tion a set of training videos is provided to train a classi-
fier. Recent work has focused on datasets containing un-
constrained videos such as You-tube videos available on-
line since they are much closer to real-word cases. One
such dataset is the HMDB [10] which is considered to be
more varied and complicated. Recently another benchmark
dataset, ASLAN, for action similarity was released [8, 9].

Here we focus on binary ranking models rather than
multi-class models, and perform recognition depending
upon the outputs of such ranking models. We also provide
two decision functions; 1) rank-pooling where we focus on
the ranks of the test videos for recognition, and 2) score-
pooling where we focus on the responses of the ranking
models for recognition. Although multi-class models have
shown to be highly promising, we show that binary ranking
models with our decision functions provide better discrimi-
native functions than multi-class models. The reason is that
ranking models are more robust for handling an unbalanced

number of positive examples (in the one-against-all case).
The decision functions used in this study are better in terms
of accuracy than the decision function of the one-against-
one multi-class model that is based on a majority voting
approach. Our binary ranking models can also be consid-
ered as weak-learners since we create a number of rank-
ing models -one ranking model for each action class- and
use the outputs and ranks of the models for recognition pur-
poses. Experimental results show that ranking models with
our decision functions for the action recognition problem
outperform existing multi-class models in terms of recogni-
tion accuracy on the HMDB and the ASLAN datasets using
the same descriptors: dense SIFT (DSIFT) and HOG/HOF
using spatial pyramid representations.

ASLAN is a large dataset of actions where the task is
to judge whether two videos have similar actions. Much
more common is the action recognition task which involves
determining whether a particular video is part of an action
class X. We format the ASLAN dataset into 3 splits to make
it useful for action recognition. Since we do 3-fold cross
validation, all action classes with less than 3 videos are re-
moved. Such a dataset is useful for many reasons: 1) The re-
maining dataset still has more actions (264) than any exist-
ing action recognition dataset. 2) Unlike previous datasets
such as HMDB many of the classes are unbalanced (fewer
positive samples for each action) therefore this provides a
challenging dataset for our algorithms to be tested on 3)
The action classes are very close to each other. Keeping
these motivations in mind, we provide recognition results
of the ASLAN dataset so that it might serve as a baseline
for future work on action recognition.

The main contributions of this paper are as follows.
First, we formulate action recognition as a ranking prob-
lem and focus on binary ranking models rather than multi-
class models. We provide two decision functions; rank-
pooling and score-pooling, for our ranking models. We
show that our ranking models with these decision func-
tions outperform a baseline which is based on multi-class
models. Second, we provide an extensive comparison of
different models with different settings and analyze them
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on the recent benchmark datasets; HMDB and ASLAN.
We obtain a recognition accuracy for the HMDB dataset
that is higher than most of the previously reported num-
bers [12, 15, 17, 9]. Last but not least, we provide the base-
line results for the ASLAN dataset when used as a recogni-
tion benchmark dataset.

2. Related Work

Action recognition has been studied for several years.
Temporal information based features are commonly used
for this problem in different forms. The combination of
histogram of oriented gradients (HOG) and histogram of
optical flow (HOF) has been successfully used for action
recognition [12]. Wang et al. [19] showed that HOG/HOF
provides better performance than a number of different fea-
tures such as HOG3D and HOF. The recent survey pa-
pers [14, 20] provide an extensive discussion of methods
used for action recognition.

Sadanand and Corso [15], inspired by Objectbank, con-
structed action templates and used these templates to clas-
sify actions (know as Actionbank). Kilper-Gross et al. [9]
focused on capturing local changes in motion orientations.
Every pixel in every video frame was encoded by eight
strings of eight trinary digits each. Using these encodings
they detected the motion changes on consecutive frames.
Sun et al. [18] focused on 2D and 3D SIFT descriptors com-
puted on 2D SIFT interest points. However, they did not use
a dense SIFT descriptor which has been shown to perform
better in object recognition. Scovanner et al. [16] intro-
duced a 3-dimensional SIFT descriptor and evaluated it for
action recognition. Solmaz et al. [17] computed GIST3D
descriptors based on GIST using 3D Gabor filters. To the
best of our knowledge spatial pyramid versions of DSIFT
and HOG/HOF have not been used together in action recog-
nition studies.

There has been some attempt at combining rankings for
classification [3]. Bucak et al. [1] focused on multi-label
ranking applied to object recognition. Almost all of the re-
cent previous work in action recognition used multi-class
models -either one-against-one or one-against-all but par-
ticularly SVM for training and testing.

3. Problem Formulation

Previous work on action recognition [15, 17] has for the
most part focused on a classification approach. Usually a
multi-class SVM model is created from the training exam-
ples and the test data is classified using this model. Here,
we formulate action recognition as a ranking problem us-
ing binary ranking models with two different decision func-
tions. The motivation for using this approach is that, we
claim that ranking models are more robust to the problem
of unbalanced number of positive examples for the classes;

moreover, using the responses and ranks of such models is
better than using the majority voting technique. Experimen-
tal results prove our claim on these issues as presented in the
results and discussion section ( Section 6.).

For each action we create a ranking model. The videos
belonging to an action are counted as relevant while creating
the ranking model for that particular action and non-relevant
otherwise. Then we use the responses and ranks from the
models for recognition. We compare our models with dif-
ferent types of multi-class SVM such as one-against-one
and one-against-all.

3.1. Multi-class Models

In this work, multi-class models (one-against-one and
one-against-all) are used for comparison. In this section,
we briefly describe the procedure used in those models.

One-against-all Approach: In the one-against-all
multi-class SVM, k binary models are created, one for each
class in the training set. The objective function for a training
set of n examples and k classes is as follows:

min {
1

2

∑

i=1...k

wiwi +
C

n

∑

i=1...n

ξi} (1)

where C is the regularization parameter. Here the ob-
jective function considers all of the classes together in the
training set.

One-against-one Approach: In the one-against-one
multi-class SVM there are k(k−1)

2 two-class models i.e. one
model for each pair of actions. Here the objective func-
tion for each two-class model is treated independently as
opposed to the one-against-all approach. The decision func-
tion is based on a majority voting technique. An unlabeled
video is tested against all the two-class models. Then, for
each response, the unlabeled video gets a vote regarding the
response of the model. For example, say model M is cre-
ated for class A and B and for a given test video, if the
output is positive then class A gets the vote, and class B
otherwise. The final decision is made by considering the
class having the highest number of votes (majority vote).

3.2. Ranking Models

In our work we focus on two different types of ranking
models. The first one is a binary ranking model (Br) that
is SVM-rank and the other one involves a modification of
SVM binary classification for ranking (Bm). Even though
a binary SVM classifier is designed for recognition rather
than ranking, we can use it as a ranking model as well if we
consider the prediction score, wx + b, rather than the sign
of it, sgn(wx + b). Therefore, the examples can be ranked
according to their wx+ b scores.

The one-against-all multi-class model we focus on
in this work considers each class together while op-
timizing the objective function that is defined to be
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min 1
2

∑
i=1...k wiwi +

C
n

∑
i=1...n ξi where k is the num-

ber of classes and n is the number of samples in the training
set (see Equation 1).

However, in Bm, a model is created for each class in-
dependent of other classes in the training set. In the con-
trary, the objective function of the one-against-all multi-
class model depends on all the models together which is
defined to be min 1

2ww + C
∑

i=1...n ξi. Bm is different
than an one-against-one multi-class model becauseBm uses
score-pool and rank-pool decision functions; whereas one-
against-one multi-class model uses a majority voting based
decision function.

For the binary ranking model Br the aim is to ensure
that videos belonging to the target class (relevant videos)
are more likely to be ranked higher than videos belonging
to other classes (non-relevant videos). SVM-rank creates a
model based on pair-wise comparisons of the training ex-
amples. Joachims [7] showed that this ranking problem can
be formulated by maximizing the number of the following
inequalities satisfied;

∀(vi, vj) : wxi > wxj (2)

where x is the feature vector, w is the weight vector, vi
is a relevant and vj is a non-relevant example video. Non-
negative slack variables (ξ) are employed to solve the opti-
mization problem by transforming inequalities to equalities
in a similar way to SVM classification. SVM-rank produces
prediction scores which are used to rank the videos. It re-
quires pairwise preferences for training. In our case we as-
sume that any video (in the training set) which is relevant
to a particular action is ranked higher than a video which is
not relevant to the action (one model is created for each ac-
tion class). We do not impose a ranking between two videos
which are both relevant to the action class or are both non-
relevant to the query since there is no way of imposing an
order in such situations.

In order to formulate the action recognition problem us-
ing ranking models, we first create individual models for
each action class. For an action class i, an example video
is counted as relevant if that video is labeled as action i.
Example videos that are labeled with other actions j where
i �= j are counted as non-relevant for that particular action
class i. If there are n action classes 1, ..., n, then we have
n binary ranking models m1, ...,mn; one model for each
action class. Consider an example video in training set v
labeled as “walking”, then video v is relevant to the rank-
ing model for action class k assuming “walking” is the kth

action class and is non-relevant to every other action class.

3.3. Decision Functions

So far we described the training phase of the ranking
models, here we explain the testing part. We formulate

action recognition as a ranking problem. We perform the
recognition based on multiple ranking models.

The recognition using ranking models in our work is per-
formed using two decision functions; rank-pool and score-
pool. For both models, Bm or Br, we make use of these
two decision functions and explain them below.

3.3.1 Score-Pooling

In the testing phase, we make use of ranking models to rec-
ognize the action of an unlabeled test video. Each test video
is run against all action models. The score-pool decision
function is as follows;

y = i where

wix+ bi = max
j=1,...,n

wjx+ bj (3)

where y is the label, i is the class id, x is the feature
vector of video v, and wi is the weight vector for class i.

We recognize the action of a test example by compar-
ing the outputs of the ranking models and assume that the
test video belongs to the class that provides the maximum
response among the ranking models.

3.3.2 Rank-Pooling

This decision function requires ranking the test videos ac-
cording to their score. A higher rank means that a video is
more relevant to the class whose model is considered. The
rank-pool decision function can be summarized as follows;

y = i where

ri(v) = max
j=1,...,n

rj(v) (4)

where rj is the rank of video v for the ranking model
of the class j. Note that this decision function requires a
number of videos available in the test bed. If there is only
one video available in the test bed, a single test video gets
always the first position in the ranked list. However, this
case can be handled by sub-sampling a number of videos
from the training set to construct a test bed consisting of
more than one test example.

4. Descriptors

In this section, we explain the descriptors used for both
multi-class and ranking models. We focus on two types
of descriptors; densely sampled SIFT (DSIFT) histogram
of oriented gradients / optical flow (PHOG/HOF). While
PHOG/HOF exploits temporal information since it is com-
puted on the space-time interest points, DSIFT exploits the
information from densely sampled points. Raw DSIFT and
PHOG/HOF descriptors are quantized into visual words.
These visual words are then used for representation. Both
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descriptors are based on the spatial pyramid histogram of
words representation. Spatial pyramid representations have
proven to be successful on a wide range of problems includ-
ing object recognition in computer vision. In our work we
employ three levels of a spatial pyramid (0, 1, and 2). There
are 1, 4, and 16 regions for each level respectively. The final
spatial pyramid representation is formed by concatenating
the histograms for each region.

DSIFT Descriptors: We first subsample the video clips
into video frames. For each video frame we densely sample
SIFT descriptors. The step size for the extraction is set to 5
pixels. We use three scales (actual size, 50% of the actual
size, and 25% of the actual size) in the process. We make
use of hierarchical k-means to quantize the raw descriptors
into visual words. We set k to 1,000 in the quantization
process.

PHOG/HOF Descriptors: Even though we compute
histogram of oriented gradients / histogram of optical flow
(HOG/HOF) descriptors, we call them PHOG/HOF since
we focus on a spatial pyramid representation unlike early
attempts with the same descriptor [12]. In order to com-
pute the PHOG/HOF descriptors, we first compute the
Space-Time Interest Points (STIPs), then corresponding lo-
cal space-time descriptors. HOG/HOF descriptors are com-
puted on a 3D video patch in the neighborhood of each de-
tected STIP [12, 11]. The grid setting for spatio-temporal
blocks is 3x3x2. For oriented gradients there are 4-bins
and for optical flow there are 5-bins. In total we have a
HOG descriptor of size 72 and a HOF descriptor of size 90.
HOG/HOF is a concatenation of HOG and HOF; therefore,
the final size is 162. Clustering and quantization steps are
exactly the same as for DSIFT. We again set the vocabulary
size k to 1,000.

Normalization: Video clips in the dataset have different
numbers of video frames and hence some kind of normal-
ization is needed. We compute the histogram for a video
clip by pooling the histogram values over the frames. This
pooling is done by summing up the individual values of the
histograms. The use of logarithm compresses the range of
values reducing the length difference between videos. Then
we apply the L∞ normalization to each level in the spatial
pyramid histogram. L∞ is based on dividing the values in a
histogram by its maximum value.

5. Experimental Settings

Here we first describe the datasets used in this study, then
provide details of the experimental environment.

5.1. Datasets

We focus on two recent and challenging benchmark
datasets -HMDB and ASLAN- to evaluate our system.
HMDB consists of about 6700 unconstrained video clips.

These clips are collected from the web and movies. There
are 51 actions and each action has about 100 videos.

The other benchmark dataset we focus on is ASLAN [8].
Even though the main motivation of the ASLAN dataset is
to evaluate action similarity rather than action recognition,
we reformatted the splits of the dataset as described in In-
troduction to ensure that it can be used for evaluation of the
action recognition problems. The total number of videos is
more than 3000. We believe that the ASLAN dataset is a
much more challenging dataset and a better benchmark for
evaluating models for action recognition.

5.2. Experimental Environment

For ranking models Bm and Br we make use of the im-
plementation in [5] and add the efficient intersection ker-
nel (IK) implementation proposed in [13]. For one-against-
all multi-class SVM we use[6]. For one-against-one multi-
class SVM we use Libsvm package [2]. For model pa-
rameters, we use the default settings; C=0.01 for the bi-
nary models and C=1 for the multi-class models. In the
evaluation stage, for HMDB we use the training-test splits
in [10]. They specify three splits each of which has 70
videos for training and 30 videos for testing for each ac-
tion. For ASLAN we randomly split the data evenly into
3 folds and perform 3-fold cross-validation and will make
the splits publicly available. The accuracies provided in this
paper are averaged over the folds.

6. Experimental Results and Discussion

In this section we provide recognition accuracies for
the action recognition problem on the HMDB and ASLAN
datasets. We also show that multi-class model accuracies
are outperformed by the ranking models.

HMDB: In Table 1 we provide the accuracy scores for
the HMDB dataset. When we consider the individual per-
formance of ranking models; Bm with IK kernel using
score-pool provides the best recognition accuracy when
DSIFT is used as descriptors. For PHOG/HOF descriptors,
Bm with linear kernel using rank-pool provides the best
recognition accuracy. IK does not improve the results sig-
nificantly for PHOG/HOF case and it can be explained with
the fact that PHOG/HOF histograms are much sparser than
DSIFT histograms. When the histograms are very sparse
then IK provides similar results as we obtain with a linear
kernel. It is also important to note that DSIFT with ranking
models using IK with both decision functions provides bet-
ter accuracies than most of the previously reported action
recognition methods (see Table 1 and 2).

When we consider the time to extract DSIFT versus pre-
vious methods, we can claim that DSIFT extraction is much
more efficient than the previous methods. To be more spe-
cific, it takes one or two minutes to process 100 frames for
DSIFT -without using GPU-; whereas, it takes 204 minutes
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on the average to process a video in a dataset where the av-
erage length is 7.5 seconds for Actionbank [15].

Desc. Dec. Func. Model Kernel Accuracy

DSIFT N/A one-vs-all lin. 23.16%
DSIFT N/A one-vs-one lin. 23.94%
DSIFT score-pool Bm lin. 26.27%
DSIFT score-pool Br lin. 17.89 %
DSIFT rank-pool Bm lin. 26.30 %
DSIFT rank-pool Br lin. 26.19 %
PHOG/HOF N/A one-vs-all lin. 9.61%
PHOG/HOF N/A one-vs-one lin. 23.69%
PHOG/HOF score-pool Bm lin. 26.18%
PHOG/HOF score-pool Br lin. 22.86%
PHOG/HOF rank-pool Bm lin. 24.35 %
PHOG/HOF rank-pool Br lin. 23.50 %
DSIFT N/A one-vs-one IK 26.52%
DSIFT score-pool Bm IK 30.24%
DSIFT rank-pool Bm IK 29.67%
PHOG/HOF N/A one-vs-one IK 22.67%
PHOG/HOF score-pool Bm IK 26.20%
PHOG/HOF rank-pool Bm IK 24.63 %

Table 1. Recognition accuracies on the HMDB set.

Note that we do not provide the accuracy scores for one-
vs-all case and Br case with IK kernel. Even though we
tried the efficient implementation of IK, creating models
takes much more time than for the other cases. Later we
discuss the time we spent to create models in detail.

Even though our aim here is to show that the ranking
models with two decision functions provide better accura-
cies than the multi-class models, we also compare our find-
ings with the previous work on the HMDB dataset. On
the recent attempts for action recognition, the most com-
mon approach is to fuse the outputs of different descriptors
and/or classifiers. We also perform a very similar experi-
ment where we fuse the outputs of DSIFT and PHOG/HOF
models by taking the arithmetic mean of the scores.

System Model Kernel Accuracy

HOG/HOF [12] one-vs-all χ2 20.44%
ActionBank [15] one-vs-all lin. 26.90%
GIST3D+STIP[17] one-vs-one IK,lin. 29.20%
MIP [9] one-vs-all lin. 29.17%
TrajMF [4] one-vs-all lin., IK, χ2 40.7 %
PHOG/HOF rank-pool, Bm lin. 26.30%
DSIFT score-pool, Bm IK 30.24%
DSIFT + PHOG/HOF score-pool, Bm IK 39.00%

Table 2. Comparison of the recognition accuracies of our methods
with the previous work on the HMDB set. Last three rows are the
recognition accuracies for our models.

In Table 2 we provide the recognition accuracies of our
methods as well as the previous recognition accuracies for
the HMDB set. We obtain a recognition accuracy of 39%
when we fuse the descriptors. It is important to note that
ranking models constructed using DSIFT and PHOG/HOF
descriptors perform better than many of the previous meth-
ods [12, 15, 17, 9] and they are comparable to the state-of-
the-art accuracy [4].

ASLAN: In Table 3 we provide the accuracies for the

ASLAN dataset using the multi-class models as well as
ranking models with score-pool and rank-pool. Our rank-
ing models provide higher accuracies than the multi-class
models as in the case of the HMDB dataset using the same
set of descriptors. Here the difference is much more signif-
icant than the HMDB case. Perhaps it can be explained
by the fact that, the number of relevant videos for each
action class is uneven and the number of positive exam-
ples are much less than for the HMDB case. This means
that multi-class models cannot create a good discrimina-
tive function over the action classes in this type of scenario.
However our ranking models consider each action individ-
ually. These results highlight the performance difference
of the ranking models in scenarios with fewer positive ex-
amples. These cases are highly likely in real-world appli-
cations; therefore, underlining the importance of using the
ranking models with the score-pool and rank-pool decision
functions.

Desc. Dec. Func. Model Kernel Accuracy

DSIFT N/A one-vs-all lin. 9.63%
DSIFT N/A one-vs-one lin. 5.87%
DSIFT score-pool Bm lin. 20.00%
DSIFT score-pool Br lin. 26.23 %
DSIFT rank-pool Bm lin. 20.06 %
DSIFT rank-pool Br lin. 22.77 %
PHOG/HOF N/A one-vs-all lin. 6.81%
PHOG/HOF N/A one-vs-one lin. 4.11%
PHOG/HOF score-pool Bm lin. 4.36%
PHOG/HOF score-pool Br lin. 18.90%
PHOG/HOF rank-pool Bm lin. 8.25 %
PHOG/HOF rank-pool Br lin. 11.55 %
DSIFT N/A one-vs-one IK 32.79%
DSIFT score-pool Bm IK 38.97%
DSIFT rank-pool Bm IK 28.59 %
PHOG/HOF N/A one-vs-one IK 15.08%
PHOG/HOF score-pool Bm IK 22.76%
PHOG/HOF rank-pool Bm IK 12.42 %

Table 3. Recognition accuracies on ASLAN set.

For ASLAN, Br outperforms Bm. The constraints for
Br are the pairs of examples -one relevant and one non-
relevant- that are used to make sure that the relevant video
is ranked higher than a non-relevant video. Therefore, when
there are a few number of relevant examples Br outper-
forms Bm.

7. Computation Cost Analysis

Here we discuss running time costs for each model. We
use a recent linux box to perform the experiments and we
use the same machine for all experiments. We run each
experiment twice and provide the average of them to elimi-
nate any caching overheads. In Table 4 we provide running
times for different models for DSIFT and PHOG/HOF de-
scriptors.

One-against-one model requires much more time than
one-against-all model since it creates more models. The
running time provided in the table for Bm and Br is for
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creating a model. Therefore, the final running time should
be multiplied by the number of classes. Even though cre-
ating ranking models seems to be costly, this issue can be
handled by parallelizing the processes. Each ranking model
can be trained at the same time on different machines. In
this way the final running time stays the same. DSIFT his-
tograms requires much more time than PHOG/HOF his-
tograms since PHOG/HOF histograms are sparser than
DSIFT histograms. The average number of non-zero val-
ues for DSIFT histogram is about 5100; whereas, it is about
750 for PHOG/HOF histograms.

System Model Kernel Seconds
DSIFT one-vs-all lin. 51.82
DSIFT one-vs-one lin. 819.51
DSIFT one-vs-one IK 681.09
DSIFT Br lin. 39.20
DSIFT Bm lin. 11.01
DSIFT Bm IK 45.71
PHOG/HOF one-vs-all lin. 8.97
PHOG/HOF one-vs-one lin. 57.56
PHOG/HOF one-vs-one IK 65.35
PHOG/HOF Br lin. 1.98
PHOG/HOF Bm lin. 1.35
PHOG/HOF Bm IK. 2.85

Table 4. Computation costs for the ASLAN dataset.

8. Conclusions

In this work we formulate action recognition as a rank-
ing problem and make use of ranking models with two
decision functions; score-pool and rank-pool. We create
ranking models for each action class in a dataset. For a
test video, action recognition is performed using the scores
and ranks of the binary models. We show that our rank-
ing models with two decision functions perform better than
a baseline that uses multi-class models on the benchmark
datasets; HMDB and ASLAN using the same set of descrip-
tors; DSIFT and PHOG/HOF. In this work we also reformat
the ASLAN dataset so that it might serve for evaluation of
the action recognition methods. We believe that the ASLAN
dataset is a very challenging benchmark dataset for the ac-
tion recognition problem because of the uneven number of
positive examples, small number of training examples, the
large number of action classes, and the closeness of the ac-
tion classes.
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