
 

 
Abstract 

 
Human actions are spatio-temporal patterns. A popular 

representation is to describe the action by features at 
interest points. Because the interest point detection and 
feature description are generic processes, they are not 
tuned to discriminate one particular action from the other. 
In this paper we propose a saliency measure for each 
individual feature to improve its distinctiveness for a 
particular action. We propose a spatio-temporal saliency 
map, for a bag of features, that is specific to the current 
video and to the action of interest. The novelty is that the 
saliency map is derived directly from the SVM's support 
vectors. For the retrieval of 48 human actions from the 
visint.org database of 3,480 videos, we demonstrate a 
systematic improvement across the board of 35.3% on 
average and significant improvements for 25 actions. We 
learn that the improvements are achieved in particular for 
complex human actions such as giving, receiving, burying 
and replacing an item. 

1. Introduction 
To find corresponding human actions in realistic videos 

a system needs the following key elements: robustness / 
invariance of the features to changing recording 
conditions, sensitivity to the motion patterns and 
appearance, selectivity of the feature representation for the 
current action, and good discrimination between the 
positives and negatives by a robust classifier [1-4]. Simple 
bag-of-features action detectors e.g. [5,6], and more 
advanced extensions that exploit spatio-temporal layout 
[7], feature fusion [8], world-knowledge [9] and dealing 
with uncertainty [10] have demonstrated to be very 
effective for the task of action detection, including quite 
complex actions such as digging in the ground, falling 
onto the ground, and chasing somebody. Yet, for the 
detection of more complex actions, such as the exchange 
of an item, or burying or hauling something, the standard 
bag-of-features action detectors did not suffice.   

In this paper, we consider a saliency extension to the 
standard bag-of-features action detector. One of the 
reasons that the detection of exchange, bury or haul is 

hard, is that these actions involve detailed motion patterns 
and their duration is short. The large part of the total set of 
features is triggered by irrelevant actions that preceed or 
follow the detailed action (e.g. walking) or by background 
clutter (e.g. a person moving in the background). The 
relevant subset of features is likely to be a small fraction 
of the total set. To solve this issue, we propose a spatio-
temporal saliency map. Its purpose is to improve the 
selectivity of the feature representation by weighting each 
feature by its relevance for the action of interest. The 
spatio-temporal saliency map that we propose, depends on 
the current video as well as the current action of interest. 
We provide a simple weighting scheme that is easy to 
implement, computationally efficient, and deployable for 
the retrieval/detection of a wide range of actions. We 
demonstrate that in a bag-of-words setup, the retrieval 
accuracy can be drastically improved by the proposed 
spatio-temporal saliency map. 

This paper is organized as follows. In Section 2, we 
summarize related work and indicate which elements we 
re-use from the action detection literature and where we 
extend beyond current literature with respect to visual 
saliency. Section 3 describes our spatio-temporal saliency 
map and we describe how it can be implemented by the 
reader in a few simple steps. Section 4 contains the 
experimental results and we highlight the key 
improvements with respect to the standard bag-of-features 
detector. In Section 5 we conclude and summarize our 
main findings. 

2. Related Work 

2.1. Bag-of-Features Action Detectors 
The contribution of this paper is a spatio-temporal saliency 
map for bag-of-features action detectors. Therefore, we 
summarize the key elements of this class of action 
detectors here. The bag-of-features model [11] defines a 
pipeline from features to histograms which are assigned a 
class label by some classifier. For action detection, the 
classifier serves simply as a detector that discriminates 
between the target action vs. the background of negatives. 
To capture the motion patterns of human actions, STIP 
features [12] proved to be very effective. For quantization, 
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we use a random forest [13]. The final step is the classifier 
which serves as the action detector. We select the SVM 
for this purpose, due to its robustness to large feature 
representations and sparse labels, and the intersection 
kernel due to its efficiency.  

2.2. Visual Saliency 
Explicit maps of computational saliency have been used to 
search for the relevant parts in the image to perform visual 
classification [14,15]. A disadvantage of both methods is 
that the learned map for a particular class yields the same 
saliency values for each image. Saliency maps that are 
both class and image specific were proposed in [16]. Here, 
the saliency map serves as a weighting function to 
determine for each image specifically the contribution of 
features. The rationale in [17] is that both spatial and 
visual saliency are important and we share that view. Our 
approach differs in two ways, however. The first 
difference is that we do not couple the learning of saliency 
and the learning of the class, because it makes the learning 
phase and the implementation of the saliency algorithm 
more complex. We will propose a simple way to learn and 
compute the saliency. The second difference is that we 
extend the spatial saliency map to the spatio-temporal 
domain.  

Spatio-temporal regions-of-interest have been addressed 
in [17]. A foreground region in the space-time volume was 
identified for each action by applying PageRank on local 
features in the videos. The rationale was that the 
background can vary significantly even for the same type 
of actions in unconstrained videos and that it should be 
removed. Likewise, in [18], STIP features in the 
background were removed by an advanced scheme. First 
in each frame spatial interest points were detected, then 
background suppression was performed by a center-
surround suppression mask. As a final step, local and 
temporal constraints were imposed to remove the STIP 
features in the background.  

In this paper, we take a different standpoint. We give 
high weights to relevant features both in the foreground 
and in the background. Hereby we explicitly exploit the 
property that some features aid in deciding that this video 
contains the action of interest, and that other features aid 
in deciding that it does not contain the action of interest. 
We directly exploit the distinctiveness of each of the 
features in the video, without making assumptions on 
foreground and background. 

3. Spatio-Temporal Saliency Map 

3.1. Individual Feature Relevance for the Action 
Our notion of a feature’s relevance for the action of 
interest, is based on three observations. In the explanation 

and derivation of the equations, we will introduce 
variables which will keep their meaning throughout this 
section. 
The first observation is our starting point: an SVM 
classifier can be trained to distinguish an action based on 
histograms of features from videos. In this paper, the 
training of a SVM is based on histograms obtained from 
quantization of STIP features via a random forest. The 
distances between these histograms are defined by the 
histogram intersection kernel (see Section 2.1 for 
motivation): 
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with k the kernel, p and q histograms, i the histogram bin, 
m the number of bins, and pi and qi the contents of the ith 
histogram bin. Our SVM is clearly a model with an 
additive kernel.  

The second observation is that this SVM model can be 
rewritten as a combination of support vectors, their 
coefficients, the histogram of features, and the kernel 
[19,20]. The decision function of the SVM is: 
 

���� � � � 	�� � ���� ���
�

���
 (2) 

 
where f is the SVM’s decision function; with p is the 
current histogram to be classified, b the bias of the decisio 
function, n the number of support vectors, �j the 
coefficient of the jth support vector, k the kernel function 
and zj is support vector j. In the case of an intersection 
kernel, Equation 2 can be rewritten as [19]: 
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where zji is the ith bin of the jth support vector. Indeed the 
SVM’s decision function is a combination of a bias term, 
support vectors, their coefficients and the current 
histogram. 

The third observation is that the support for the SVM’s 
decision can be attributed to the bins of the histogram, 
because the other elements of the linear combination in 
Equation 2 (i.e. support vectors, coefficients, and kernel) 
are known after the learning phase [21]. In [21], the 
support of the histogram bins was defined in a relative 
manner for visualization purposes only. There, the bias b 
of the SVM’s decision function was not accounted for. In 
this paper, we need an absolute value for the support of 
each histogram bin, because we will combine them into a 
single saliency map. For that purpose, we need to account 

258258258258



 

for the bias, in such a way that we achieve the following. 
Our notion of the support is that it is larger than zero if the 
contribution of the feature is positive (i.e. the action is 
present) and smaller than zero if negative (absent). Larger 
support values, positive and negative, indicate more 
contribution to the respective decision. The support s(xi) of 
each histogram bin i for the SVM’s decision is defined by: 
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with zji the value of the ith bin of the jth support vector, and 
s(pi) a part of the bias b from Equation 2, under the 
constraint: 
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Note that indeed the sum over all bins i of Equation 4 
equals the SVM’s decision function of Equation 3. 
 
There are three regimes to divide the bias b into the s(xi):  
 
1. uniform across the bins: 

 ���� � �!" (6) 
 

2. by prevalence of each bin across the train set: 

 ���� � � � #���� (7) 
 
with μ(pi) the average of the ith bin’s values. Because 
the histograms are normalized to one, the μ(pi) across 
all bins sum to one by construction. 

 
3. by the contents of the histogram bin: 

 ���� � � � ��  (8) 
 
       where again the pi sum to one by construction. 
 
Our spatio-temporal saliency map is constructed by 
assigning to each individual feature in the current video its 
contribution to the SVM’s decision. We call this the 
support of the individual feature. We can do this because 
we know which individual feature was quantized into 
which bin. The support v of a feature fil, i.e. the lth feature 
that was quantized into bin i  is: 
 

$���%� � �����&  (9) 

 
with r the total number of features that have been 
quantized into bin i. 

With the proposed computation of an individual 
feature’s support, we take advantage of two properties. 
The first is that we incorporate the SVM’s discrimination 
function, where we take directly advantage of the 
separating hyperplane between the action and non-action, 
rather than a derived measure of saliency. Secondly, we 
extend beyond a single-feature measure of saliency. We 
take advantage of the full set of features in the current 
video and the dataset, because we determine the support 
for the histogram bin first, before assigning the support of 
individual features. rather than a single-feature based 
saliency. 

3.2. Computation of the Saliency Map 
The support values v(fil) are considered in a scale-space 
framework [22], to enable reinforcement of salient 
features that are together in a region. Our expectation is 
that there may be a foreground (i.e. the action itself) and 
the background (other activity). If there is such a 
foreground vs. background distinction, then these become 
regions-of-interest in the space-time volume. In our 
saliency map, regions-of-interest are addressed by a 
gaussian window around the feature points in the space-
time volume. This window sums the support of individual 
features and reinforces salient features that are close 
together together. The summation is done per feature 
histogram bin, as we want to avoid regional cancellation 
that is caused by mixing positive and negative support of 
different bins. For one individual feature, the summation 
in the gaussian window is defined by the following 
equation, where we call the resulting value the weight 
w(fil): 
 '���%�
� $���%� � 	 ()*+,-./,-012, 31456-./6-0126 71458-./8-0128 719:
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 (10) 

 
with the gaussian envelope over the spatial and temporal 
differences with respect to the point in the space-time 
volume of the current feature fil, where x is the horizontal 
position, y the vertical position (both in pixels) and t the 
time (in frames), and �x, �y and �t the respective scales. 
This window accumulates envelope values over all r 
features (indexed by u) that have been quantized into bin i. 

The spatio-temporal saliency map is a weighting 
scheme that boosts the relevant features in the feature 
histogram. As a first step, the weights of the individual 
features are combined into a single weight w(pi) for each 
bin i for each histogram p: 
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In the final step, each histogram bin pi is multiplied by its 
positive weight w, by taking the absolute value: 
 ��< � �� � ='����= (12) 
 
where pi’ is the new histogram value at bin i. 

The salient features will boost particular bins in the 
histogram. For the computation of this spatio-temporal 
saliency map, there are two parameters: the regime for 
dividing the bias across the features (Equations 6-8), and 
the spatio-temporal extent of the map by the size of the 
gaussian window (Equation 10). With the boosted 
histograms, a second SVM is trained. For a new test video, 
a histogram is created by the random forest, then it is 
boosted using the saliency map, and fed to the second 
SVM for final classification. 

4. Evaluation: 48 Actions in 3,480 Movies 

4.1. Experimental Setup 
As a large video database of many diverse and complex 
human actions, we consider the visint.org database [23]. It 
contains 3,480 movies of 48 human actions in highly 
varying settings. The variations are: scenes, recording 
conditions, viewpoints, persons, and clothing. Each video 
has been annotated for all 48 actions, where the annotator 
indicated presence or absence of the action. On average, 7 
actions have been indicated to be present in a video. We 
perform experiments for retrieval of each of the 48 
actions.  

For each action, we repeat the experiment 5 times, 
where each repetition uses a randomized train set (50%) 
and test set (50%). We report the performance on the test 
set, where we indicate the average and the standard 
deviation of our performance measure. Our performance 
measure is Matthews Correlation Coefficient (MCC), 
because it is independent of the prevalence of an action. 
The prevalence of the actions varies highly: ‘move’ occurs 
in 75.4% of the movies, where ‘bury’ occurs only in 1.8% 
of the movies, see column 2 in Table 1. The meaning of 
the MCC is as follows: a score of 1 (-1) indicates perfect 
positive (negative) correlation between the action detector 
and the annotations, where a score of 0 indicates no 
correlation with the annotations.  

The retrieval performance of the standard bag-of-
features action detectors is compared against the extended 
detectors where the saliency map has been added. For both 
methods, we consider the exact same randomization for 
each of the 5 repetitions of the retrieval experiment. The 
parameters of our spatio-temporal saliency map are the 
bias regime (uniform, prevalence, histogram; see 
Equations 6-8) and the spatial and temporal scale of the 
map (Equation 10). The spatial scales are isotropic: 
�xy=�x=�y, because different scales in x- and y-direction 

not significantly impact the results. The scales are varied: 
�xy = [1, 5, 10] pixels, and �t = [1, 5, 10] frames.  

4.2. Organization of the Results 
The retrieval results for the human actions from 

visint.org are summarized in Table 1. The first column 
lists the actions. The prevalence of the action in the 
database is indicated in the second column; it is clear that 
the prevalence of actions varies severely, from as few as 
1.8% (‘bury’). The third column indicates the median 
number of STIP features found in the movies where the 
action occurs; clearly some actions contain few features 
(‘give’) due to their short duration and subtle motion, 
where others trigger many features (‘haul’). The 
performance of the standard bag-of-features action 
detectors is listed in column 4. The performance of the 
extended detectors tat include the spatio-temporal saliency 
map, is listed in column 5. Columns 6 and 7 indicate the 
spatial and temporal scale of the saliency map (see Section 
3.2), and column 8 indicates how the bias has been spread 
over the features (see Section 3.1). We have varied the 
scale and bias parameters and report the best result here. 
Column 8 contains the merit that is gained by extending 
the action detectors by the spatio-temporal saliency map. 

4.3. Findings 
The first finding from Table 1 is that many actions could 
not be retrieved at all by the standard bag-of-features 
action detectors – yet these can be retrieved with 
reasonable precision when the saliency map is added. 
These actions are: attach (0.09, was 0.00), catch (0.11, was 
0.01), exchange (0.13, was 0.00), get (0.10, was 0.01), 
hand (0.14, was 0.01), haul (0.18, was 0.00), hit (0.14, was 
0.00), kick (0.21, was 0.03), push (0.09, was 0.02), 
putdown (0.13, was 0.00), replace (0.17, was 0.03), snatch 
(0.12, was 0.00). This result is important, as these are 
exactly the interesting yet complex actions that involve 
interactions with items in the environment.   

The second finding is that 40 out of the 48 actions are 
improved, and that 25 are improved significantly (MCC 
increase > 0.05), whereas the degradations for 8 out of 48 
actions are not significant (MCC decrease < 0.05). The 
degradations occur systematically for the actions that 
already had a good performance without saliency map. We 
conclude that the saliency maps achieve a systematic 
improvement across the board and significant 
improvements for 25 actions. 
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The third finding is that by adding the saliency map 13 
actions now achieve a reasonable retrieval performance. 
To that end, we consider actions that are improved 
significantly (MCC increase > 0.05) and that now get a 
score of MCC > 0.20. These actions are: bury, enter, exit, 
flee, kick. Actions that have improved significantly and 
now get a score of MCC > 0.15 are: bounce, close, collide, 
give, haul, receive, replace, take. These actions have in 
common that they are hard to recognize because they 
involve subtle motion and have a short duration. 
Moreover, they typically have low prevalence in the 
dataset so there are relatively few examples to learn from. 

Finally, they involve interactions with usually small items 
which are hard to detect.  

The fourth finding is that the spatio-temporal extent of 
the map, by means of the gaussian windows, matters. For 
17 out of 48 actions, the scale in either the spatial and/or 
temporal dimension is � 5 pixels or frames. 

The fifth finding is that the average improvement across 
the board is  35.3%, from an average MCC = 0.16 for the 
standard bag-of-features action detectors, to MCC = 0.22 
with inclusion of the proposed saliency map. 

TABLE 1
MERIT OF SPATIO-TEMPORAL SALIENCY FOR DISCRIMINATION OF HUMAN ACTIONS 

Human 
Action Prev.  Feat. Standard Saliency �xy �t Bias Merit 

Attach 7.5% 232 0.00±0.02 0.09±0.03 1 1 uniform +0.09 

Bounce 8.8% 282 0.09±0.02 0.15±0.09 1 1 histogram +0.06 

Bury 1.8% 242 0.14±0.12 0.22±0.09 1 1 prevalence +0.08 

Catch 5.0% 260 0.01±0.02 0.11±0.07 1 1 uniform +0.10 

Close 6.4% 200 0.06±0.10 0.16±0.03 1 1 uniform +0.10 

Collide 11.5% 256 0.08±0.09 0.17±0.01 1 1 uniform +0.09 

Enter 16.3% 392 0.06±0.02 0.20±0.02 1 1 uniform +0.14 

Exchange 4.3% 223 0.00±0.02 0.13±0.02 1 1 uniform +0.13 

Exit 12.8% 461 0.17±0.03 0.27±0.03 1 1 uniform +0.10 

Flee 5.2% 418 0.19±0.03 0.28±0.02 5 5 uniform +0.09 

Get 13.0% 261 0.01±0.04 0.10±0.03 10 5 histogram +0.09 

Give 7.4% 150 0.08±0.01 0.16±0.04 1 1 prevalence +0.08 

Hand 7.0% 139 0.01±0.02 0.14±0.05 1 1 histogram +0.13 

Haul 5.1% 488 0.00±0.02 0.18±0.05 1 1 histogram +0.18 

Hit 11.1% 256 0.00±0.03 0.14±0.05 1 10 histogram +0.14 

Kick 3.7% 261 0.03±0.05 0.21±0.07 1 1 uniform +0.18 

Push 14.5% 306 0.02±0.03 0.09±0.01 1 1 uniform +0.07 

Putdown 11.6% 237 0.00±0.03 0.13±0.01 5 1 uniform +0.13 

Receive 11.5% 164 0.08±0.07 0.15±0.02 1 1 histogram +0.07 

Replace 5.0% 413 0.03±0.06 0.17±0.05 5 1 prevalence +0.14 

Snatch 9.2% 189 0.00±0.03 0.12±0.03 1 1 uniform +0.12 

Take 19.9% 190 0.04±0.01 0.15±0.02 1 1 uniform +0.11 

Throw 6.1% 231 0.05±0.04 0.11±0.03 5 5 uniform +0.06 
Section 4.2 explains the columns. Section 4.3 highlights the most prominent findings. 
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4.4. Qualitative Examples 
Equation 9 quantifies the contribution of an individual 

feature for the current action of interest. An example is 
shown in Figure 1. Horizontal upward motion is an 
important cue (red) for ‘jump’, where it is a negative cue 
(blue) for ‘move’. For examples of saliency of motion 
features for the IXMAS dataset of 12 human actions, see: 

http://www.youtube.com/intelligentImaging 
 

                
 

Figure 1: Saliency of STIP features for the same movie of a 
jumping person, for actions ‘jump’ (left) and ‘move’ (right). 

5. Conclusions 
This paper has addressed the recognition of videos that 

contain a particular human action. Recognizing complex 
actions, e.g. a person who is replacing an item, is hard due 
to short duration and subtle motion. Additionally, such 
complex actions do not occur often, which leads to a small 
set of positive samples, further complicating the learning 
and retrieval. These challenges imply a need to find the 
relevant features in the midst of all features in a video 
fragment. As a solution, we have proposed a spatio-
temporal saliency map to increase the selectivity of the 
feature representation. In our experiments, we have shown 
the merit of this map for the retrieval of 48 human actions 
in 3,480 movies, demonstrating a systematic improvement 
across the board of 35.3% on average and significant 
improvements for 25 out of 48 actions.   
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