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Abstract

Automatically generating meaningful descriptions for
images has recently emerged as an important area of re-
search. In this direction, a nearest-neighbour based gener-
ative phrase prediction model (PPM) proposed by (Gupta
et al. 2012) was shown to achieve state-of-the-art results on
PASCAL sentence dataset, thanks to the simultaneous use
of three different sources of information (i.e. visual clues,
corpus statistics and available descriptions). However, they
do not utilize semantic similarities among the phrases that
might be helpful in relating semantically similar phrases
during phrase relevance prediction. In this paper, we ex-
tend their model by considering inter-phrase semantic sim-
ilarities. To compute similarity between two phrases, we
consider similarities among their constituent words deter-
mined using WordNet. We also re-formulate their objective
function for parameter learning by penalizing each pair of
phrases unevenly, in a manner similar to that in structured
predictions. Various automatic and human evaluations are
performed to demonstrate the advantage of our “semantic
phrase prediction model” (SPPM) over PPM.

1. Introduction

Along with the outburst of digital photographs on the In-

ternet as well as in personal collections, there has been a

parallel growth in the amount of images with relevant and

more or less structured captions. This has opened-up new

dimensions to deploy machine learning techniques to study

available descriptions, and build systems to describe new

images automatically. Analysis of available image descrip-

tions would help to figure out possible relationships that

exist among different entities within a sentence (e.g. ob-
ject, action, preposition, etc.). However, even for simple

images, automatically generating such descriptions may be

quite complex, thus suggesting the hardness of the problem.

Recently, there have been few attempts in this direc-

tion [2, 6, 8, 9, 12, 15, 17, 24]. Most of these approaches

rely on visual clues (global image features and/or trained

detectors and classifiers) and generate descriptions in an in-

dependent manner. This makes such methods susceptible

to linguistic errors during the generation step. An attempt

towards addressing this was made in [6] using a nearest-

neighbour based model. This model utilizes image descrip-

tions at hand to learn different language constructs and con-

straints practiced by humans, and associates this informa-

tion with visual properties of an image. It extracts linguis-

tic phrases of different types (e.g. “white aeroplane”, “aero-

plane at airport”, etc.) from available sentences, and uses

them to describe new images. The underlying hypothesis

of this model is that an image inherits the phrases that are

present in the ground-truth of its visually similar images.

This simple but conceptually coherent hypothesis resulted

in state-of-the-art results on PASCAL-sentence dataset [19]1.

However, this hypothesis has its limitations as well. One

such limitation is the ignorance of semantic relationships

among the phrases; i.e., presence of one phrase should trig-

ger presence of other phrases that are semantically similar
to it. E.g., consider a set of three phrases {“kid”, “child”,

“building”}, an image J and its neighbouring image I . If

the image I has the phrase “kid” in its ground-truth, then

according to the model of [6], it will get associated with J
with some probability, while (almost) ignoring the remain-

ing phrases. However, if we look at these phrases, then it

can be easily noticed that the phrases “kid” and “child” are

semantically very similar, whereas the phrases “child” and

“building” are semantically very different. Thus, it would

not be justifiable to treat the phrases “child” and “building”

as equally absent. That is to say, presence of “kid” should

also indicate the presence of the phrase “child”. From the

machine learning perspective, this relates with the notion of

predicting structured outputs [21]. Intuitively, it asserts that

given a true (or positive) label and a set of false (or negative)

labels, each negative label should be penalized unevenly de-

pending on its (dis)similarity with the true label.

In this paper, we try to address this limitation of the

phrase prediction model (PPM) of [6]. For this, we propose

two extensions to PPM. First, we modify their model for

predicting a phrase given an image. This is performed by

considering semantic similarities among the phrases. And

second, we propose a parameter learning formulation in the

nearest-neighbour set-up that takes into account the relation

1http://vision.cs.uiuc.edu/pascal-sentences/
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(structure) present in the output space. This is a generic

formulation and can be used/extended to other scenarios

(such as metric learning in nearest-neighbour based meth-

ods [23]) where structured prediction needs to be performed

using some nearest-neighbour based model. Both of our ex-

tensions utilize semantic similarities among phrases deter-

mined using WordNet [3]. Since our model relies on con-

sideration of semantics among phrases during prediction,

we call it “semantic phrase prediction model” (or SPPM).

We perform several automatic and human evaluations to

demonstrate the advantage of SPPM over PPM.

2. Related Works
Here we discuss some of the notable contributions in

this domain. In [25], a semi-automatic method is proposed

where first an image is parsed and converted into a semantic

representation, which is then used by a text parse engine to

generate image description. The visual knowledge is rep-

resented using a parse graph which associates objects with

WordNet synsets to acquire categorical relationships. Us-

ing this, they are able to compose new rule-based grounded

symbols (e.g., “zebra” = “horse” + “stripes”). In [8], they

use trained detectors and classifiers to predict the objects

and attributes present in an image, and simple heuristics to

figure out the preposition between any two objects. These

predictions are then combined with corpus statistics (fre-

quency of a term in a large text corpus, e.g. Google) and

given as an input to a CRF model. The final output is a set

of objects, their attributes and a preposition for each pair of

objects, which are then mapped to a sentence using a sim-

ple template-based approach. Similar to this, [24] relies on

detectors and classifiers to predict upto two objects and the

overall scene of an image. Along with preposition, they

also predict the action performed by subject; and combine

the predictions using an HMM model. In [12], the outputs of

object detectors are combined with frequency counts of dif-

ferent n-grams (n ≤ 5) obtained using the Google-1T data.

Their phrase fusion technique specifically infuses some cre-

ativity into the output descriptions. Another closely related

work with similar motivation is [15].

One of the limitations of most of these methods is that

they don’t make use of available descriptions. This may

help in avoiding generation of noisy/absurd descriptions

(e.g. “person under road”). Two recent methods [6, 9] try to

address this issue by making use of higher-level language

constructs, called phrases. A phrase is a collection of syn-

tactically ordered words that is semantically meaningful and

complete on its own (e.g., “person pose”, “cow in field”,

etc.) 2. In [9], phrases are extracted from the dataset pro-

posed in [17]. Then, an integer-programming based formu-

lation is used that fuses visual clues with words and phrases

2The term ‘phrase’ is used in a more general sense, and is different

from the linguistic sense of phrase.

to generate sentences. In [6], a nearest-neighbour based

model is proposed that simultaneously integrates three dif-

ferent sources of information, i.e. visual clues, corpus

statistics and available descriptions. They use linguistic

phrases extracted from available sentences to construct de-

scriptions for new images. These two models are closely re-

lated with the notion of visual phrases [20], which says that

it is more meaningful to detect visual phrases (e.g. “person

next to car”) than individual objects in an image.

Apart from these, there are few other methods that di-

rectly transfer one or more complete sentences from a col-

lection of sentences. E.g., the method proposed in [17]

transfers multiple descriptions from some other images to

a given image. They discuss two ways to perform this:

(i) using global image features to find similar images, and

(ii) using detectors to re-rank the descriptions obtained af-

ter the first step. Their approach mainly relies on a very

large collection of one million captioned images. Similar

to [17], in [2] also a complete sentence from the training

image descriptions is transferred by mapping a given (test)

image and available descriptions into a “meaning space” of

the form (object, action, scene). This is done using a re-

trieval based approach combined with an MRF model.

3. Phrase Prediction Model
In this section, we briefly discuss PPM [6]. Given im-

ages and corresponding descriptions, a set of phrases Y is

extracted using all the descriptions. These phrases are re-

stricted to five different types (considering “subject” and

“object” as equivalent for practical purposes): (object),
(attribute, object), (object, verb), (verb, prep, object),
and (object, prep, object). The dataset takes the form

T = {(Ii, Yi)}, where Ii is an image and Yi ⊆ Y is its

set of phrases. Each image I is represented using a set of

n features {f1,I
, . . . , f

n,I
}. Given two images I and J , dis-

tance between them is computed using a weighted sum of

distances corresponding to each feature as:

D
I,J

= w1d1I,J + . . . + wndnI,J = w · dI,J , (1)

where wi ≥ 0 denotes the weight corresponding to ith fea-

ture distance. Using this, for a new image I , its K most

similar images T K
I ⊆ T are picked. Then, the joint proba-

bility of associating a phrase yi ∈ Y with I is given by:

P (yi, I) =
∑

J∈T K
I

PT (J)PF (I|J)PY(yi|J). (2)

Here, PT (J) = 1/K denotes the uniform probability of

picking some image J from T K
I . PF (I|J) denotes the like-

lihood of image I given J , defined as:

PF (I|J) =
exp(−D

I,J
)∑

J′∈T K
I

exp(−D
I,J′ )

. (3)
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Finally, PY(yi|J) denotes the probability of seeing the

phrase yi given image J , and is defined according to [4]:

PY(yi|J) =
μiδyi,J + Ni

μi + N
. (4)

Here, if yi ∈ YJ , then δyi,J = 1 and 0 otherwise. Ni is the

(approximate) Google count of the phrase yi, N denotes

the sum of Google counts of all phrases in Y that are of

the same type as that of yi, and μi ≥ 0 is the smoothing

parameter. The motivation behind using Google counts of

phrases is to smooth their relative frequencies.

In order to learn the two sets of parameters (i.e., the

weights wi’s and smoothing parameters μi’s), an objective

function analogus to [23] is used. Given an image J along

with its true prhases YJ , the goal is to learn the parame-

ters such that (i) the probability of predicting the phrases

in Y \ YJ should be minimized, and (ii) the probability of

predicting each phrase in YJ should be more than any other

phrase. Precisely, we minimize the following function:

e =
∑
J,yk

P (yk, J) + λ
∑

(J,yk,yj)∈M
(P (yk, J)− P (yj , J)).

(5)

Here, yj ∈ YJ , yk ∈ Y \YJ ,M is the set of triples that vio-

late the second constraint stated above, and λ > 0 is used to

manage the trade-off betweent the two terms. The objective

function is optimized using a gradient descent method, by

learning wi’s and μi’s in an alternate manner.

Using equation 2, a ranked list of phrases is obtained,

which are then integrated to produce triples of the form

{((attribute1, object1), verb), (verb, prep, (attribute2,
object2)), (object1, prep, object2)}. These are then

mapped to simple sentences using SimpleNLG [5].

4. Semantic Phrase Prediction Model
As discussed before, one of the limitations of PPM is that

it treats phrases in a binary manner; i.e., in equation 4, either

δyi,J is 1 or 0 depending on presence or absence of yi in

YJ . This results in penalizing semantically similar phrases

(e.g. “person” vs. “man”). Here we extend this model by

considering semantic similarities among phrases. To begin

with, first we discuss how to compute semantic similarities.

4.1. Computing Semantic Similarities

Let a1 and a2 be two words (e.g. “boy” and “man”). We

use WordNet based JCN simiarity measure [7] to compute

semantic simiarity between the words a1 and a2
3. WordNet

is a large lexical database of English where words are inter-

linked in a hierarchy based on their semantic and lexical re-

lationships. Given a pair of words (a1, a2), the JCN similar-

ity measure returns a score sa1a2 in the range [0, inf), with

3Using the code available at http://search.cpan.org/CPAN/authors/id/T/

TP/TPEDERSE/WordNet-Similarity-2.05.tar.gz

higher score corresponding to larger similarity and vice-

versa. This similarity score is then mapped into the range

[0, 1] using the following non-linear transformation as de-

scribed in [11] (denoting sa1a2 by s in short):

γ(s) =

⎧⎨
⎩

1 s ≥ 0.1
0.6− 0.4 sin(25π

2 s + 3
4π) s ∈ (0.06, 0.1)

0.6− 0.6 sin(π
2 (1− 1

3.471s+0.653 )) s ≤ 0.06

Using this, we define a similarity function that takes two

words as input and returns the semantic similarity score be-

tween them computed using the above equation as:

Wsim(a1, a2) = γ(sa1a2) (6)

From this, we compute semantic dissimilarity score as:

W sim(a1, a2) = 1−Wsim(a1, a2) (7)

Based on equation 6, we define sematic similarity be-

tween two phrases (of the same type) as Vsim, which is an

average of the semantic similarity between each of their cor-

responding constituting terms. E.g., if we have two phrases

v1=(“person”, “walk”) and v2=(“boy”, “run”) of the type

(object, verb), then their semantic similarity score will be

given by Vsim(v1, v2) = 0.5 ∗ (Wsim(“person”,“boy”) +
Wsim(“walk”,“run”)). It should be noted that we cannot

compute semantic similarity between two prepositions us-

ing WordNet. So, while computing semantic simiarity be-

tween two phrases that contain prepositions in them (i.e.,

of type (verb, prep, object) or (object, prep, object)), we

do not consider the prepositions. Analogous to equation 7,

we can compute semantic dissimilarity score between two

phrases as V sim(v1, v2) = 1− Vsim(v1, v2). Finally, given

a phrase yi and a set of phrases Y of the same type as that

of yi, we define semantic similarity between them as

Usim(yi, Y ) = max
yj∈Y

Vsim(yi, yj). (8)

In practice, if |Y | = 0 then we set Usim(yi, Y ) = 0.

Also, in order to emphasize more on an exact match, we

set Usim(yi, Y ) to exp(1) if yi ∈ Y in the above equation.

4.2. SPPM

In order to benefit from semantic similarity between two

phrases while predicting relevance of some given phrase yi

with YJ of image J , we need to modify equation 4 accord-

ingly. Let yi be of type t, and the set of phrases of type t in

YJ be Y t
J
⊆ YJ . Then, we re-define PY(yi|J) as:

PY(yi|J) =
μiδ

′
yi,J + Ni

μi + N
, (9)

where δ′yi,J = Usim(yi, Y
t

J
). This means that when

yi /∈ Y t
J , we look for that phrase in Y t

J that is seman-

tically most similar to yi and use their similarity score,

290290290290



PPM [6] SPPM (this work)

Figure 1. Difference between the two models. In PPM, the conditional probability of a phrase yi given an image J depends on whether

that phrase is present in the ground-truth phrases of J (i.e. YJ ) or not. When the phrase is not present, corresponding δyi,J (equation 4)

becomes zero without considering the semantic similarity of yi with other phrases in YJ . This limitation of PPM is addressed in SPPM by

finding the phrase in YJ that is semantically most similar to yi and using their similarity score instead of zero. In the above example, we

have YJ = {“bus”, “road”, ”street”}. Given a phrase yi = “highway”, δyi,J = 0 according to PPM. Whereas δ′yi,J = 0.8582 according

to SPPM (equation 9) by considering the similarity of “highway” with “road” (i.e., Vsim(“highway”, “road” ) = 0.8582).

rather than putting a zero. Such a definition allows us to

take into account the structure/semantic inter-dependence

among phrases while predicting the relevance of a phrase.

Since we have modified the conditional probablity model

for predicting a phrase given an image, we also need to up-

date the objective function of equation 5 accordingly. Given

an image J along with its true prhases yj’s in YJ , now we

additionally need to ensure that the penalty imposed for a

higher relevance score of some phrase yk ∈ Y \ YJ than

any phrase yj ∈ YJ should also depend on the semantic

similarity between yj and yk. This is similar to the notion

of predicting structured outputs as discussed in [21]. Pre-

cisely, we re-define the objective function as:

e =
∑
J,yk

P (yk, J) + λ
∑

(J,yk,yj)∈M
Δ(J, yk, yj), (10)

Δ(J, yk, yj) = V sim(yk, yj)(P (yk, J)− P (yj , J)). (11)

The implication of Δ(·) is that if two phrases are semanti-

cally similar (e.g. “kid” and “child”), then penalty should be

small and vice-versa. This objective function looks similar

to that used in [22] for metric learning in nearest neighbour

scenario. The major difference being that there the objec-

tive function is defined over samples, and penalty is based

on semantic similarity between two samples (proportional

to number of labels they share). Whereas, here the objec-

tive function is defined over phrases, and penalty is based

on semantic similarity between two phrases.

5. Experiments
5.1. Experimental Details

We follow the same experimental set-up as in [6], and

use UIUC PASCAL sentence dataset [19] for evaluation. It

has 1, 000 images and each image is described using 5 in-

dependent sentences. These sentences are used to extract

different types of phrases using “collapsed-ccprocessed-

dependencies” in the Stanford CoreNLP toolkit [1]4, giv-

ing 12, 865 distinct phrases. In order to consider synonyms,

WordNet synsets are used to expand each noun upto 3 hy-

ponym levels resulting in a reduced set of 10, 429 phrases.

Similar to [6], we partition the dataset into 90% training

and 10% testing for learning the parameters, and repeat this

over 10 partitions in order to generate descriptions for all the

images. During relevance prediction, we consider K = 15
nearest-neighbours from the training data.

For image representation, we use a set of colour (RGB

and HSV), texture (Gabor and Haar), scene (GIST [16]) and

shape (SIFT [14]) descriptors computed globally. All fea-

tures other than GIST are also computed over three equal

horizontal and vertical partitions [10]. This gives a set of 16
features per image. While computing distance between two

images (equation 1), L1 distance is used for colour, L2 for

scene and texture, and χ2 for shape features.

5.2. Evaluation Measures

In our experiments, we perform both automatic as well

as human evaluations for performance analysis.

5.2.1 Automatic Evaluation

For this we use the BLEU [18] and Rouge [13] metrics.

These are frequently used for evaluations in the areas of ma-

chine translation and automatic summarization respectively.

5.2.2 Human Evaluation

Automatically describing an image is significantly different

from machine translation or summary generation. Since an

image can be described in several ways, it is not justifiable

4http://nlp.stanford.edu/software/corenlp.shtml
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Approach BLEU-1 Score Rouge-1 Score

BabyTalk [8] 0.30 -

CorpusGuided [24] - 0.44

PPM [6] w/ syn. 0.41 0.28

PPM [6] w/o syn. 0.36 0.21

SPPM w/ syn. 0.43 0.29

SPPM w/o syn. 0.36 0.20

Table 1. Automatic evaluation results for sentence generation.

(Higher score means better performance.)

Approach Readability Relevance

PPM [6] w/ syn. 2.84 1.49

PPM [6] w/o syn. 2.75 1.32

SPPM w/ syn. 2.93 1.61

SPPM w/o syn. 2.91 1.39

Table 2. Human evaluation results for “Relevance” and “Readabil-

ity”. (Higher score means better performance.)

to rely just on automatic evaluation, and hence the need for

human evaluation arises. We gather judgements from two

human evaluators on 100 images randomly picked from the

dataset and take their average. The evaluators are asked to

verify three aspects on a likert scale of {1, 2, 3} [6, 12]:

Readability: To measure grammatical correctness of gen-

erated description by giving the following ratings: (1) Ter-

rible, (2) Mostly comprehensible with some errors, (3)

Mostly perfect English sentence.

Relevance: To measure the semantic relevance of the gen-

erated sentence by giving the following ratings: (1) Totally

off, (2) Reasonably relevant, (3) Very relevant.

Relative Relevance: We also try to analyze the relative

relevance of descriptions generated using PPM and SPPM.

Corresponding to each image, we present the descriptions

generated using these two models to the human evaluators

(without telling them that they are generated using two dif-

ferent models) and collect judgements based on the follow-

ing ratings: (1) Description generated by PPM is more rel-

evant, (2) Description generated by SPPM is more relevant,

(3) Both descriptions are equally relevant/irrelevant.

5.3. Results and Discussion

5.3.1 Quantitative Results

Table 1 shows the results corresponding to automatic eval-

uations. It can be noticed that SPPM shows comparable or

superior performance than PPM. One important thing that

we would like to point out is that it is not fully justifiable to

directly compare our results with those of [8] and [24]. This

is because the data (i.e., the fixed sets of objects, preposi-

tions, verbs) that they use for composing new sentences is

very much different from that of ours. However, in [6], it

PPM [6] count SPPM count Both/None count

w/ syn. 16 28 56

w/o syn. 21 25 54

Table 3. Human evaluation results for “Relative Relevance”. Last

column denotes the number of times descriptions generated using

the two methods were judged as equally relevant or irrelevant with

given image. (Larger count means better performance.)

PPM:
(1) flap (2) csa (3) symbol (4) air-

craft (5) slope (6) crag (7) villa (8) biplane

(9) distance (10) sky

SPPM:
(1) aeroplane (2) airplane (3) plane

(4) sky (5) boat (6) water (7) air (8) aircraft

(9) jet (10) gear

Figure 3. Example image from the PASCAL sentence dataset along

with the top ten “objects” predicted using the two models.

was shown that when same data is used, PPM performs bet-

ter than both of these. Since the data that we use in our

experiments is exactly the same as that of PPM, and SPPM

performs comparable or better than PPM, we believe that un-

der the same experimental set-up, our model would perform

better than both [8] and [24]. Also, we are not comparing

with other works because since this is an emerging domain,

different works have used either different evaluation mea-

sures (such as [2]), or experimental set-up (such as [15]), or

even datasets (such as [9, 17]). In conclusion, our results

are directly comparable only with PPM [6].

5.3.2 Qualitative Results

Human evaluation results corresponding to “Readability”

and “Relevance” are shown in Table 2. Here, we can no-

tice that SPPM consistently performs better than PPM on

all the evaluation metrics. This is because SPPM takes into

account semantic similarities among the phrases, which in

turn results in generating more coherent descriptions than

PPM. This is also highlighted in Figure 2 that shows ex-

ample descriptions generated using PPM and SPPM. It can

be noticed that the words in descriptions generated using

SPPM usually show semantic connectedness; which is not

always the case with PPM. E.g., compare the descriptions

obtained using PPM (in the second row) with those obtained

using SPPM (in the fourth row) for the last three images.

In Table 3, results corresponding to “Relative Relevance”

are shown. In this case also, SPPM always performs better

than PPM. This means that the descriptions generated using

SPPM are semantically more relevant than those using PPM.

In Figure 3, we try to get some insight about how the

internal functioning of SPPM is different from that of PPM.

For this, we show the top ten phrases of the type “object”

292292292292



A groom is posing with a scraggly per-
son.

A sandy field is parked beside a small
outpost.

A teal car is sitting atop a white semus. A decorate room is filling with a snack.

A blond woman is posing in a library. A sandy field is parked beside a small
outpost.

A black ferrari is parked in front of a
green tree.

A clothed table is filling with a snack.

A young person is posing with a young
person.

A small boat is traveling in a blue water. A yellow bus is parking on a busy road. A several person is sitting with a several
person.

A gray man is posing with a gray man. A small boat is floating on a blue water. A yellow bus is parking on a city street. A gray man is sitting at a restaurant table.

Figure 2. Example images from PASCAL sentence dataset along with their generated descriptions. The descriptions in second and third

rows are generated using PPM [6] with and without considering synonyms respectively.. The descriptions in fourth and fifth rows are

generated using SPPM with and without considering synonyms respectively.

predicted using the two models for an example image. From

these phrases, it can be noticed that the top phrases obtained

using SPPM are all semantically very much related with each

other. Whereas, in case of PPM, the phrases are quite diver-

sified. This is because in SPPM, the relevance (or presence)

of a phrase also depends on the presence of other phrases

that are semantically similar to it. This results in an indirect

propagation of relevance among the phrases, thus collec-

tively pushing semantically related phrases towards the top.

6. Conclusion
We have presented an extension to PPM [6] by incorpo-

rating semantic similarities among phrases during phrase

prediction and parameter learning steps. As the number

of phrases increases, inter-phrase relationships start getting

prominent. However, due to the phenomenon of “long-
tail”, available data alone might not be sufficient to learn

such complex relationships, and thus arises the need of

bringing-in knowledge from other sources. In this work,

we have tried to perform this using WordNet. To the best of

our knowledge, this is the attempt of its kind in this domain,

and can be integrated with other similar models as well.
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