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Abstract

Associating photographs with complete sentences that
describe what is depicted in them is a challenging prob-
lem. This paper examines how an approach that is inspired
by image tagging techniques which can scale to very large
data sets performs on this much harder task, and exam-
ines some of the linguistic difficulties that this bag-of-words
model faces.

1. Introduction
The ambitious task of creating models for annotating

photographs with natural sounding English language de-

scriptions has begun to attract attention in recent work

[19, 13, 14, 18, 9, 11]. However, many of these works

rely on pre-trained classifiers such as object detectors [19,

13, 14, 18]. Relying on out-of-domain data and classi-

fiers may impede performance on more diverse or unique

datasets. In addition, these models often produce and are

evaluated on the quality of novel system-generated sen-

tences [13, 14, 18, 9]. Automated metrics of quality such as

BLEU [20] or ROUGE [16] have been proposed for evalu-

ation of this task, but have been found to correlate poorly

with human judgements of quality [11, 13]. This makes

a direct, large scale comparison between these models on

novel sentences difficult.

Recently in [11], we proposed to frame image descrip-

tion as the task of ranking a large pool of human provided

captions. Unlike generation-based approaches [13, 14, 18,

9], this isolates the primary problem of judging the seman-

tic accuracy of captions associated with an image from the

secondary issues of measuring the linguistic quality of au-

tomatically produced sentences. Given an unseen image,

we propose evaluating models by scoring a pool of unseen

captions, where at least one is a known accurate caption for

the image. This allows to us to provide objective quantita-

tive judgments of quality that do not need to rely on human

judgements.

The models of [11] utilize Kernel Canonical Correlation

Analysis (KCCA) [1, 10] to induce a common space for im-

ages and descriptions of images. However, KCCA requires

explicitly storing multiple kernel matrices corresponding to

the pairwise computation of a kernel function across all

training examples (in addition to learned weights of the

same dimensionality), causing memory requirements and

necessary kernel function computations to grow quadrati-

cally with the size of the training data. As increasingly large

datasets of images and descriptions become available, it is

important to develop models that scale to such; with KCCA,

it may quickly become infeasible. In addition, since KCCA

works in the implicit space defined by the kernels, it can

make qualitative performance analysis difficult. Therefore,

we sought to analyze a model that will scale better and is

similar to what has been used before to associate images

and text. Here, we evaluate the performance of a model

based on Grangier et al.’s PAMIR [7], which has had suc-

cess with retrieving images from tag-based queries, and the

RankSVM of Joachims [12]. This model operates in the pri-

mal space, allowing for the memory requirements to depend

approximately linearly on the number of examples rather

than quadratically. Furthermore, by using a model that has

been used with tags, we can highlight some of the unique

issues when dealing with sentences and therefore the need

to develop specialized models for image description.

2. Dataset
For this task, we have started with the Flickr 8K dataset

of Rashtchian et al. [21], which contains 8,100 images from

Flickr that were each annotated with five English single sen-

tence captions. These images focus on actions being per-

formed by people (or animals). For some of our experi-

ments, we have further augmented this dataset with approx-

imately 15,000 Creative Commons licensed Flickr images.

These images are of a similar domain, as they focused on

collecting depictions of people performing a variety of ac-

tions. Using Amazon Mechanical Turk accessed through

CrowdFlower.com, these images were annotated with five

English language captions following similar guidelines to

the Flickr 8K dataset.

Figure 1 shows an example of an image and its asso-

ciated captions. The associated captions describe literally
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A boy bites hard into a treat 
while he sits outside.

The boy eats his food outside at the table

A child biting into a baked good

A small boy putting something 
in his mouth with both hands

The boy is eating pizza over a tin dish

Figure 1. An example from our dataset

what is being depicted in the image with minimal specu-

lation of related information. It is important to notice that

although all five captions describe the same image, the lan-

guage being used and the information being conveyed dif-

fers. For example, only two of the annotators make refer-

ence to the (highly visual) fact that the image takes place

outside, and what the boy is eating is referred to as “food”,

“pizza”, or just “something”.

3. The Model
As in [11], for every image in the dataset, there is a set

of accurate captions that should be preferred among a larger

set of all possible captions to retrieve. Our approach is

to treat the problem of learning these preferences as solv-

ing the RankSVM optimization problem, as proposed by

Joachims [12]. In order to encode such preferences, we ex-

plicitly train a linear classifier to have a stronger response

to a relevant caption than other captions for a given image.

The set of training examples we train our linear classifier

on, Dtrain , is a set of triples of the form (i, c+, c−), where i
is an image of the dataset, c+ is a caption that is relevant for

the image, and c− is a caption that does not fit the image.

Since we only care that c+ is ranked higher than c− for i,
the loss we want to consider, �((i, c+, c−),w), is the hinge

loss of applying the current model weights, w, to the differ-

ence between the representation of c+ and c− when paired

with image i:

�((i, c+, c−),w) = max(0, 1− 〈w,Φ(i, c+)−Φ(i, c−)〉)

The objective we seek to minimize (based on [22]) is:

min
w

λ

2
||w||2 +

1
|Dtrain |

∑

(i,c+,c−)∈Dtrain

�((i, c+, c−),w)

where the parameter λ balances minimizing the loss on

the training data with regularization. Explicitly modeling

the representation of the entries of Dtrain can become in-

tractable as the size of the dataset grows, and calculating

the loss of all pairs in Dtrain can be quickly become com-

putationally prohibitive. However, by training this SVM

through online updates in the primal space, we can avoid

the potentially intractable memory and computation costs.

Therefore, we use a modified version of the Sofia-ml toolkit

[22]’s Pegasos [23] implementation to minimize the objec-

tive. The modifications allow for storing the image and cap-

tion indices that define Dtrain separately from their respec-

tive feature representations. This significantly cuts down

on redundancy in memory (at the expense of some compu-

tational efficiency). Pegasos is an iterative approach that

involves sampling an image and a caption of each type, and

then taking a local gradient step to minimize the objective

based on the sampled triplet similar to stochastic gradient

decent.1 Furthermore, after each iteration the weight vector

is projected to bound the maximum L2 norm of the weights

during training, with provides theoretical convergence time

guarantees.

Although designed for image search based on tags rather

than English sentences, the framing of the objective is

nearly identical to PAMIR [7], except that PAMIR is trained

as a perceptron which results in a different form of regular-

ization and Grangier et al. explicitly trained on all possible

positive and negative pairs each iteration.

3.1. Feature representation

As a basic model, as with PAMIR [7], we define our fea-

ture representation for an image-caption pair, Φ(i, c), to be

the outer product of the independent image and caption fea-

tures: Φ(i, c)m,n = Φ(i)mΦ(c)n. By decomposing the fea-

ture space into separate image and caption features, storing

the explicit representation of every used pair is not needed,

and instead just the representation of the images and cap-

tions separately, at the expense of some computational time.

3.2. Image Features

In order to scale to large datasets, we wanted to use im-

age features that are efficient to compute and require a small

amount of memory per image, while still being expres-

sive enough to serve as a starting point for image descrip-

tion. Therefore, we use the binary meta-class features of

Bergamo and Torresani [3] which were designed for object

classification. When combined with a linear classifier, the

meta-class features were found to be state of the art on the

the Caltech256 benchmark [8] and were competitive on the

2010 ImageNet Challenge [2]. Each image is represented

as a binary feature vector, in which each bit corresponds

to the output of a pre-trained variant of the LP-β classi-

fier [6]. The original LP-β classifier relies on non-linear

classification through kernels and has shown state-of-the-

art results on multiple image categorization benchmarks.

Bergamo and Torresani approximate the kernels of LP-β
through Vedaldi and Zisserman’s “lifting” method [25], re-

1Typically Pegasos samples k training examples at a time and updates

based on the gradient involving all those examples. However Shalev-

Shwartz et al. [23] found performance to be roughly constant for a fixed

value of kT where T is the number of iterations on their examined tasks
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sulting in speedups of several orders of magnitude during

training. They take images from 8,000 randomly sampled

synsets of ImageNet [4] and train two types of classifiers

for meta-class representation. Then, they train one-vs-all

classifiers on these synsets, and also classifiers that parti-

tion the synsets into a tree-structure. This results in a final

dimensionality of 15,232 bits.

3.3. Text features

As a baseline representation, we simply define a bi-

nary bag-of-words representation of each caption c, where

Φ(c)w = 1 if word w appears in caption c and 0 other-

wise. We started with a binary representation since words

are often not repeated in a caption. Naively, when a word

such as “man” is repeated, it is unclear if the appropriate

representation should be twice as much “man”. The image

could have two separate men that ideally should be modeled

separately or the caption could just be referring to different

aspects of the same man. We also apply IDF weighting to

each of the text features, where if word w occurs in caption

c, Φ(c)w = λw = log( |Ctrain |
|Ctrain(w)| ) where Ctrain is the set

of captions associated with training images and Ctrain(w)
is the set of those captions that contain word w. There-

fore, features corresponding to rarer words that are more

discriminative for the dataset are up-weighted. In order to

account for differences in sentence length, we also consider

normalizing the final feature vector of each caption (with

or without IDF weighting beforehand) to make its L2 norm

equal to 1.

In [11], we found significant performance increases

with incorporating multiple word sequences and similar-

ity between different words into their kernel representation.

However, since the kernelized representation avoids explic-

itly modeling the text representation, the complexity of the

kernels can be increased without directly increasing the di-

mensionality of the representation or model complexity. In

a more explicit setting, there would have to be an active

feature corresponding to every possible word sequence of

a caption, and incorporating the similarity of [11] would

require an active feature for every sequence that has a non-

zero similarity to a sequence of the caption, as well. It re-

mains unclear how to include these features and have the

model remain tractable in computation and memory in a

more explicit setting.

4. Experiments

In order to provide quantitative results, we base our ex-

periments on the experiments of [11]. We take the Flickr

8K dataset [21] and partition the dataset into 6,000 training

images and 1,000 validation and test images. One arbitrary

caption from each test image is chosen to create the pool

of (unseen) candidate sentences for the test set. To evalu-

ate the test set, the model ranks the quality of each caption

for each test image and the model is evaluated based on how

well the model retrieves the original captions for the test im-

ages. Although a caption can potentially describe multiple

images in this dataset, this experiment considers a caption

only “relevant” for an image if it was originally written for

the image. However, in general, a better semantic model for

this task should rank relevant captions higher than irrelevant

captions. Recall-based metrics on the original caption were

found to approximate the rankings based on human judge-

ment of results in [11]. Since multiple captions in the data

could apply to the same image, these metrics only approx-

imate true recall performance, but were found to correlate

well with human judgements of performance in [11].

Because the PAMIR based model can scale to training

data of a size beyond what the KCCA models of [11] can

handle, we consider two different data splits, the original

split of [11] and one where the extra images were added to

the training set, resulting in 21,757 training images.2. In

addition, we vary the use of IDF weighting and L2 nor-

malization on the text representation. The captions were

lemmatized and stop words were removed. We restrict our

vocabulary to words that appear in 20 or more sentences

when using the training set of [11] and 50 or more sen-

tences when we use the additional images. These cutoffs

were chosen based on validation set performance and re-

sult in lexicons of 820 words and 1,320 words respectively.

For every training image, the triplets in Dtrain are com-

posed of all 5 original sentences written for an image of the

training set as relevant captions paired with 2,000 random

sentences from other training images as the irrelevant cap-

tions. The regularization parameter λ was chosen based on

performance on the 1,000 image validation set, where each

setting was trained 3 times and ran for 30 million iterations

(chosen based on early validation performance).

Models for comparison As a baseline, we use a set of in-

dependently trained binary SVM classifiers for each term.

Each SVM was trained using the LIBLINEAR toolkit [5],

where the regularization parameter was chosen to maximize

the area under the precision/recall curve (AUC) for each

word on a validation set. During training, an image is con-

sidered to be a positive example for a word if the word ap-

peared in any of the original captions. Similar to the jointly

trained model, for every image and sentence pair, the fi-

nal score is calculated by adding the real valued response

of each word of the sentence’s classifier. As a comparison

to current state-of-the-art performance on this task, we also

compare ourselves to the final model of [11].

2In addition, we also used additional extra images for validation pur-

poses on held out data (for instance Figure 4) although they are not used

for this quantitative experiment in order to better mirror the setup of [11]
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5. Results

In Table 1, we present the results of the quantitative ex-

periment aggregated over the 3 trained models. Since there

is only one “relevant” caption for every image in the test

set, we follow [11] and report the recall at 1, 5, and 10 and

the median position of the caption (the point where recall is

50%). The independent baseline performs the worst across

all metrics at this task, reinforcing the benefit of not treat-

ing each word as being independently classified. The best

overall jointly trained model uses the extra training exam-

ples and IDF weighting but not L2 normalization. Although

the increased amount of training data yielded some increase

in these metrics, it is important to remember that the test set

is drawn entirely from the domain of the original Flickr 8K

dataset (in order to compare with [11]).

The final KCCA model of [11] outperforms all other

models, but as mentioned above, it is unlikely to scale to

increasingly large datasets and incorporates textual features

beyond what is presented in this paper. It is also impor-

tant to note that in addition to the more advanced linguistic

modeling, the KCCA model of [11] uses different, lower

level image features through a spatial pyramid kernel [15]

incorporating SIFT [17], texture [24], and color features. It

remains an open question what kind of performance may be

achievable by state of the art kernels such as the ones used

for the LP-β classifier [6].

Because the KCCA model of [11] operates in the implicit

kernel space, it does not directly model the visual meaning

of individual words. By contrast, our joint model directly

learns weights for pairs of words and visual features. The

model’s overall response for an image-caption pair can be

thought of as the sum of the responses to the active text

features (in this case, words of the caption). In Figure 2,

we examine the response to individual words of one of the

reported “Joint IDF w/ Extra Training” models. We display

the top responding images to each word from a set of 2,000

held out images.

Its important to remember that in this jointly trained

setup, the model can rely on other commonly co-occurring

words to disambiguate, and therefore the responses do not

necessarily cleanly correspond to “classifications” of the

term, unlike in the independently trained baseline. In the

independently trained baseline, each term has roughly the

same range of possible values in the output independent

of how often it is needed to explain the preference of the

caption in the training data. In Figure 3, we compare the

response of an image and its original caption between a

jointly trained model and the independent baseline. The sin-

gle word “toss” is able to significantly (and incorrectly) hurt

the overall value in the independent case.

5.1. Text representation analysis

An explicit model allows for directly observing the ef-

fects a certain textual representation can have on the results.

This highlights some important characteristics of working

directly with sentence descriptions.

L2 Normalization Although the captions can differ sig-

nificantly in length, we were unable to find clear benefit to

L2 normalizing the captions. The jointly trained model has

stronger responses to words that more strongly influence the

look of an image. Therefore, one would expect L2 normal-

ization to cause the model to prefer shorter sentences that

focus on more visually salient details of the images. How-

ever, a shorter sentence may not mention the background

and other largely visual words and instead just describe the

principal actor and action, and L2 normalization would ef-

fectively down weight the possible impact of that extra in-

formation in a longer sentence. Furthermore without L2

normalization, if a “relevant” caption is short, the largest

possible negative response the model could report is less

than a longer caption. And therefore, only having a few

words can effectively bound the worst case position in the

ranking task for that image query. This potentially has the

effect of artificially inflating the performance metrics. In

addition, by using only one caption from each test image,

the caption pool may not be large enough to contain a sig-

nificant number of both short and long captions that are rel-

evant for a given image.

Differing information content Related to the issues of

L2 normalization is the fact that annotators may not use the

same amounts of detail to describe the same scene. This

especially becomes an issue when the annotators fail to

mention highly visual concepts such as “beach” or “street”.

For instance in Figure 4, the first caption does not mention

“restaurant”, “meal”, or “dinner”, words which have high

positive responses according to our model. This makes it

difficult for the first caption to be rated highly for the im-

age. As a result, an ideal model might have to capture the

potential scene even when it is not explicitly mentioned.

In the strict ranking evaluation framework, where only

the original captions are considered relevant, recovering this

missing information can be tricky. For instance, consider

Figure 5, which shows two images of the dataset that in-

volve bikes. One of the original captions for the image on

the left is simply “A man on an orange bike” despite the im-

age being a picture of a person jumping through the air with

the bike and not a more typical action such as riding the

bike down a street . We may also not know that this caption

cannot apply to the biking image on the right, especially if

we cannot accurately check the color of the bike in the im-

age. One possibility to alleviate this problem is allowing for
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Model R@1 R@5 R@10 Median

Independent Baseline 4.1 13.2 20.3 51.0

Joint 5.4 ± 0.2 18.8 ± 0.5 26.4 ± 0.2 37.7 ± 2.3

Joint IDF 5.6 ± 0.2 17.9 ± 0.5 26.5 ± 0.2 39.5 ± 1.8

Joint w/ Extra Training 6.3 ± 0.2 18.8 ± 0.9 27.5 ± 0.6 38.5 ± 1.3

Joint IDF w/ Extra Training 6.8 ± 0.1 19.2 ± 0.3 28.7 ± 0.3 34.7 ± 1.5

Joint L2 w/ Extra Training 5.6 ± 0.2 17.8 ± 0.2 27.6 ± 0.2 37.5 ± 1.3

Joint L2 IDF w/ Extra Training 7.0 ± 0.6 18.7 ± 1.0 27.0 ± 1.4 36.7 ± 1.5

KCCA [11] 8.3 21.6 30.3 34.0

Table 1. Results for the quantitative ranking evaluation of searching for the relevant caption among candidates for a given image query

Word Highest ranked images Word Highest ranked images

Crowd Bicycle

Table Two

Figure 2. An example of the top responding images to certain words of our lexicon among held out images for a jointly trained model (Joint

IDF w/ Extra Training)

Joint I
M
IDF w/ 
Model 

Ex
res

xtra Train
sponses

ning

Overall 0.35 person 0.05

group 0.18 toss -0.10

large -0.03 yard 0.25

Ind
M
depend
Model r

ent
res

t Baseline
sponses

e

Overall -0.37 person 0.07

group 0.33 toss -0.87

large 0.26 yard -0.16

Figure 3. A comparison between the overall responses of a trained Joint IDF w/ Extra Training model and the independent baseline on a

held out image paired with its original caption. In addition, the response for the models on the image paired with individual words are

displayed. The values cannot be directly compared, but “toss” causes the performance to be worse for the baseline

A well lit room, with three glasses on the table and two plates. A meal is on a table in a restaurant.

MModel ressponsess

Overall -0.85 plate -0.12 three -0.45

glasses 0.04 room 0.02 two -0.26

lit -0.05 table 0.22 well -0.25

MModel reesponses

Overall 0.96 table 0.22

meal 0.39

restaurant 0.34

Figure 4. An example of a Joint IDF w/ Extra Training model’s response for a held out image on two of the original captions (and constituent

words) for that image

the addition of plausible “scene words” to the short caption.

However, we may add “woods” or “street” to the caption,

allowing for a greater (incorrect) response for the right im-

age. In addition, it may be unclear from the training data

that phrases such as “jumping” or “in the air” are plausible

to be implied by the annotator rather than explicitly stated

when describing pictures of people on bicycles.

Visual Saliency Words in an image’s captions do not nec-

essarily correspond to a significant portion of the image.

Figure 5. Biking images from our dataset with different overall

contexts
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A man is getting into a red car A small dog tries to catch a red ball  A woman in red shoes walking in the street 
Figure 6. “Red” images. The amount of red actually in the pictures varies significantly

This is especially apparent for adjectives, such as colors like

“red” as shown in Figure 6. The red car takes up a signifi-

cant portion of the left image, and therefore modeling “red”

to describe the entire image is plausible. However in the im-

age on the right, the redness of the shoes is salient enough

to be mentioned, but it represents very few pixels of the im-

age. This extends to the actors and objects as well, as the

“shoes” themselves may not have been mentioned if the red-

ness did not make them stand out. Unsurprisingly, certain

words are more likely to influence the overall composition

of an image and lend themselves as being more meaning-

ful for a non-localized model. For example, words such as

“lake” in Figure 7 and “crowd” and “table” in Figure 2 can

strongly constrain the overall look of a photograph.

Duplicate mentions A caption may contain multiple

words that describe the same concept in an image. Consider

the caption “Three dogs play in a grassy field”. For images

with a “grassy field”, the overall response in our model to

both “grassy” and “field” are likely to be positive. As a re-

sult, the caption will be considered more favorable than if

just “field” was mentioned, even though both “grassy” and

“field” refer to the same concept in the image. For a more

concrete example consider Figure 7 where the caption on

the right is not completely accurate for the image while the

the caption on the left is. The caption on the right is scored

higher by a model because the annotator said “lake or river”.

Determiners The word “two” has little meaning on its

own, unless it is combined with a noun, i.e. “two skate-

boarders”. As a result, to use these determiners correctly, a

model would require the ability to count and localize ob-

jects. However, we still found that leaving these words

in the text representation can potentially be beneficial. As

shown in Figure 2, the use of the word “two” in the dataset

is correlated with the kinds of images where an annotator

would say there were two salient people in the image, which

our model is able to capture to a certain degree. As a result

these words improve performance for such images even if

the model isn’t explicitly “counting”. This also has the ef-

fect of hurting performance when “two” is used differently,

as in the case of the first caption of Figure 4. By listing

the number of plates and glasses in the caption, the model

incorrectly expects an image of a small group of people.

Context Consider the example in Figure 8 of pictures of

people sleeping. In the left image, the fact that the per-

son is asleep in a chair means that the person’s position and

the general layout of the image is closer to a “sitting” pic-

ture than the example of someone sleeping on a couch on

the right. Modeling such concepts as “sleeping” as a sin-

gle class to predict regardless of context (even with jointly

learning the concepts) may not be expressive enough to be

accurate. A related issue is the fact that annotators can of-

ten refer to the same object with different words. However,

given enough training data, this may not be a significant

issue. For instance, in Figure 7, as shown in the right sen-

tence, both “lake” and “river” have strong responses to the

image. It is also important to remember that by casting the

task as ranking, our jointly trained models do not explicitly

treat words that are not used in a caption as being unable to

be applied to the image.

6. Conclusion

Associating images with English captions is a difficult

task. In this paper, we examine a model that has been pro-

posed for image tagging which can scale to large datasets.

English sentences are not like the labels of typical image

classification and annotation tasks, but models for image

tagging should nevertheless be considered important base-

lines for this task. Unlike approaches such as KCCA, the

model we examine here operates on an explicit text repre-

sentation. The analysis of our experimental results reveals a

number of linguistic issues that arise in this setting. In par-

ticular, captions may only provide partial descriptions of an

image, and different captions convey different amounts of

detail. Future models also need to address the problems of

visual polysemy (i.e. the fact that the same word can have

multiple visual interpretations) and visual salience (i.e. the

fact that different parts of the sentence may correspond to

smaller or larger portions of an image).
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 MModel ressponses

Overall 1.81 man -0.03

deck 0.17 river 0.70

lake 0.89 stand 0.09

A little boy at a lake watching a duck A man standing on a deck above a lake or river

 MModel ressponses

Overall 1.20 lake 0.89

boy 0.13 little -0.08

duck 0.17 watch 0.09

Figure 7. A Joint IDF w/ Extra Training model’s responses to an held out image to two different captions (and their constituent words).

The left caption is an originally paired caption. By saying “river” and “lake” the incorrect caption is considered better by the model

A man asleep in a chair in 
front of a full bookshelf

A woman in a red shirt is 
sleeping on a tan couch.

Figure 8. Sleeping images. Depending on the context, a person

sleeping can look very different
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